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Abstract. In [BGK12], Bringmann, Guerzhoy and Kane showed how to ‘regularize’ mock modular

forms by a certain linear combination of the Eichler integral of their shadows in order to obtain

p-adic modular forms in the sense of Serre. In this paper, we give a new proof of a refined form

of their results (for good primes p) by employing the geometric theory of harmonic Maass forms

developed by the first author [Can14] and the theory of overconvergent modular forms due to Katz

and Coleman. In particular, our main results imply that the p-adic modular forms in [BGK12] are

overconvergent.

1. Introduction

Over the past decade, there has been a renewed interest in Ramanujan’s mock modular forms and

related objects, such as harmonic (weak) Maass forms, whose Fourier coefficients have been found in

many instances to encode interesting arithmetic data, similarly as in the classical theory of modular

forms. In this paper, we introduce a new perspective on the p-adic properties of Fourier coefficients

of mock modular forms, based on the algebro-geometric theory of p-adic modular forms due Katz

[Kat73] and Coleman [Col96]. Such p-adic properties were originally discovered by Guerzhoy–Kent–

Ono [GKO10] and Bringmann–Guerzhoy–Kane [BGK12], but we believe that our methods offer a

most natural approach to such results.

In order to state our results precisely, let τ = u+ iv ∈ h be the variable in Poincaré’s upper-half

plane, with u, v ∈ R, let Γ0(N) be the standard congruence subgroup of SL2(Z) of level N , and let

χ be a Dirichlet character modulo N . Denote by Hk(Γ0(N), χ) the space of harmonic Maass forms

on Γ0(N) of integral weight k and character χ (as defined in [BGK12, §2]). Any harmonic Maass

form F has a decomposition

F = F+ + F−

into a holomorphic part F+ with poles supported at the cusps and a nonholomorphic part F−.

After Zwegers’ work [Zwe02] (see also [Zag09] for an influential overview), the function F+ : h→ C
is called a mock modular form; in general it does not transform like a modular form, but (as first

discovered by Ramanujan) the properties of its Fourier coefficients resemble those of a classical

modular form.

As shown in [BOR08], harmonic Maass forms map into classical modular forms via differential

operators. Denote by M !
k(Γ0(N), χ) (resp. Sk(Γ0(N), χ)) the space of weakly holomorphic modular

forms (resp. cusp forms) of weight k, level N , and character χ. If for any w ∈ Z we let

(1) ξw := 2ivw
∂

∂τ
,
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then f := ξ2−k(F ) = ξ2−k(F
−) is a cusp form in Sk(Γ0(N), χ) for all F ∈ H2−k(Γ0(N), χ). We say

that f is the shadow of F , and a fundamental question in the subject is to relate the coefficients of

a mock modular form F+ to the coefficients of its shadow.

However, with the differential operator (1) having an infinite-dimensional kernel, to obtain results

in this direction it becomes necessary to work with a refined notion of harmonic Maass forms lifting

a given f . For any congruence subgroup Γ of SL2(Z), let Sk(Γ,K) (resp. M !
k(Γ,K)) be the space

of cusp forms (weakly homomorphic modular forms) of weight k and level Γ whose q-expansion

coefficients all lie in K ⊆ C.

Definition 1.1. A harmonic Maass form F ∈ H2−k(Γ1(N)) is good for f ∈ Sk(Γ1(N),K) if:

(i) The principal parts of F at all cusps are defined over K.

(ii) We have ξ2−k(F ) = f/‖f‖2, where ‖f‖ is the Petersson norm of f .

Suppose that f ∈ Sk(Γ1(N),K) is a (normalized) newform defined over K, let F be a harmonic

Maass form that is good for f , and write

F+ =
∑

n�−∞
c+(n)qn

for the holomorphic part of F . Let Ef =
∑∞

n=1 n
1−kanq

n be the so-called Eichler integral of f , so

that Dk−1(Ef ) = f for the differential operator Dk−1 acting as (qd/dq)k−1 on q-expansions. It is

shown in [GKO10] (and in Theorem 4.1 below by different methods) that for any α ∈ C such that

α− c+(1) ∈ K, the coefficients of

Fα := F+ − αEf =
∑

n�−∞
cα(n)qn

also lie in K. In particular, this applies of course to α = c+(1).

Now fix a prime p - N , and a choice of complex and p-adic embeddings Q ↪→ C and Q ↪→ Cp,
and let vp be the resulting p-adic valuation on Q normalized so that vp(p) = 1. Thus for any value

of α in the set

(2) c+(1) + Cp := {c+(1) + γ : γ ∈ Cp},

the q-expansion of Fα lies in Cp[[q]][q−1], and it becomes meaningful to ask about the p-adic

properties of its coefficients; in particular, whether the resulting q-expansion corresponds to a p-

adic modular form. In general, the coefficients cα(n) of Fα will have unbounded p-adic valuation

(see e.g. [BGK12, p. 2396]), but the following special case of our main result shows that, for a

specific value of α, a certain regularization of Fα indeed gives rise to a p-adic modular form.

For the statement, let β and β′ be the roots of the Hecke polynomial of f at p:

T 2 − apT + χ(p)pk−1 = (T − β)(T − β′),

ordered so that vp(β) 6 vp(β′). Let V be the operator acting as q 7→ qp on q-expansions.

Theorem 1.2. With the above notations and hypotheses, suppose vp(β) < vp(β
′) and vp(β

′) < k−1,

and set F∗α := Fα − p1−kβ′V (Fα). Then among all values α ∈ c+(1) + Cp, the value

α = c+(1) + (β − β′) lim
w→+∞

cc+(1)(p
w)

βw+1
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is the unique one such that F∗α is an overconvergent modular form of weight 2− k.

We refer the reader to Definition 3.1 for the precise notion of overconvergent modular forms to

which Theorem 1.2 applies, but suffice it to say that they bear a relation to Coleman’s overconver-

gent modular forms [Col96] analogous to that of p-adic modular forms in the sense of [BGK12] to

Serre’s p-adic modular forms [Ser73]. In particular, our results in Section 5 (of which Theorem 1.2

is a special case) yield a new proof of a refined form of the main results obtained by Bringmann–

Guerzhoy–Kane in [BGK12], showing that the p-adic modular forms constructed in loc.cit. are

overconvergent.

We conclude this Introduction by briefly mentioning some key ideas behind our proof of The-

orem 1.2. Let fβ and fβ′ be the p-stabilizations of f , which are modular forms of level Np that

are eigenvectors for the U -operator with eigenvalues β and β′, respectively. In Theorem 4.3 we

show that, for all but one value of α, the p-stabilized shadow fβ can be recovered from an iterated

application of U on Dk−1(Fα); the exceptional value of α yields the precise value in Theorem 1.2.

The forms fβ and fβ′ define classes in the f -isotypical component of a certain parabolic cohomology

group, and in Proposition 3.4 we show that under the assumptions of Theorem 1.2 they form a

basis for this space. Writing the class of Dk−1(Fα) in terms of this basis, our proof of Theorem 4.3

then follows from an analysis of the action of U on cohomology.

Acknowledgements. We would like to sincerely thank our Ph.D. advisor Henri Darmon, who gen-

erously shared with one of us his ideas on mock modular forms. We would also like to thank

Matt Boylan and Pavel Guerzhoy for their comments on an earlier version of this paper, and the

anonymous referee for a very careful reading of our manuscript and a number of suggestions that

led to significant improvements in the exposition.

2. Harmonic Maass forms: the geometric point of view

We begin by briefly recalling the geometric interpretation of harmonic Maass forms given in

[Can14]. For N > 4, consider the moduli functor M1(N) of generalized elliptic curves with a point

of order N , which is represented by a smooth and proper scheme over Z[1/N ]. Let Egen →M1(N)

be the universal generalized elliptic curve, and let ω be its relative dualizing sheaf. Let X :=

M1(N)×Z[1/N ]Q and Y := XrC, where C is the cuspidal subscheme, whose ideal sheaf we denote

by IC . For any extension K/Q, we denote by XK , YK the base-change to K.

We have well-known canonical isomorphisms

M !
k(Γ1(N),K) ' H0(YK , ω

k), Sk(Γ1(N),K) ' H0(XK , ω
k ⊗ IC),

where a modular form f of weight k is identified with the differential f(dq/q)k. Let π : E → Y

be the universal elliptic curve with Γ1(N)-level structure. The relative de Rham cohomology of

π : E → Y canonically extends to a rank two vector bundle H1
dR over X. Let

Hr := Symr(H1
dR).

The Gauss–Manin connection of π : E → Y extends to a connection with logarithmic poles ∇ :

H1
dR → H1

dR ⊗ Ω1
X(logC) over X, and we let

∇r : Hr −→ Hr ⊗ Ω1
X(logC)
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denote its r-th symmetric power. Define

(3) H1
par(X,Hr) := H1(X,Hr ⊗ IC

∇r−→ Hr ⊗ Ω1
X),

where H• denotes hypercohomology. The formation of H1
par(X,Hr) is compatible with base-change

under field extensions K/Q, and over C it is canonically isomorphic to the parabolic cohomology

group attached to the space of cusp forms of weight r + 2 and level Γ1(N). In particular, by the

Shimura isomorphism (see e.g [Del71, Thm. 2.10]) H1
par(XC,Hr) is canonically isomorphic to the

direct sum of Sr+2(Γ1(N)) and its complex conjugate.

More generally, the following second description of H1
par(X,Hr) in terms of modular forms will

play an important role here. Recall that for all k > 2 there is a differential operator

Dk−1 : M !
2−k(Γ1(N)) −→M !

k(Γ1(N))

acting on q-expansion as (qd/dq)k−1. In particular, Dk−1 preserves fields of definition.

Theorem 2.1 ([Can14, Thm. 6]). Let K be a subfield of C and let S!
k(Γ1(N),K) be the subspace

of those modular forms in M !
k(Γ1(N),K) with vanishing constant coefficient in their q-expansions

at the cusps. Then for all k > 2 there is a canonical isomorphism:

H1
par(XK ,Hk−2) '

S!
k(Γ1(N),K)

Dk−1M !
2−k(Γ1(N),K)

.

The spaces H1
par(XK ,Hk−2) are endowed with an action of the Hecke operators T` for all primes

` - N , and if f ∈ Sk(Γ1(N),K) is a newform, we let

MdR(f) := H1
par(XK ,Hk−2)f

denote the f -isotypical component for this action.

Now let [φ] be a class in MdR(f) represented by an element φ ∈ S!
k(Γ1(N),K) using Theorem 2.1.

The Shimura isomorphism yields MdR(f)⊗K C ' C[f ]⊕ C[f̄ ], and so

(4) ηf = s1[f ] + s2[f̄ ],

for some s1, s2 ∈ C. Let C∞Y (resp. A1
Y ) be the sheaf of smooth functions (resp. smooth differential

forms) on YC. The differential φ− s1f − s2f̄ is smooth over YC, and it defines a class in

H1(Hk−2 ⊗ C∞Y
∇k−2−−−→ Hk−2 ⊗A1

Y ) '
H0(YC,Hk−2 ⊗A1

Y )

∇k−2H0(YC,Hk−2 ⊗ C∞Y )

which is trivial by construction. Therefore, there exists a smooth Hk−2-valued section F such that

∇k−2(F) = φ− s1f − s2f̄ .

The vector bundle Hk−2 decomposes into line bundles as

Hk−2 ' ω2−k ⊕ ω4−k ⊕ . . .⊕ ωk−2,

and we let F ∈ ω2−k be the projection of F to the first factor. With this construction, it is shown

in [Can14, Prop. 4] that F is a harmonic Maass form of weight 2− k satisfying

Dk−1(F+) = φ− s1f,
2iv2−k

(−4π)k−1
∂

∂τ
(F−) = s2f̄ .
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Carrying out the above construction of F with a class [φ] normalized so that 〈f, φ〉 = 1 under

the cup product, one then finds that the constant s2 in (4) is given

s2 = 1/〈f, f̄〉 = 1/(−4π)k−1‖f‖2,

which shows that ξ2−k(F ) = f/‖f‖2 and F is good for f in the sense of Definition 1.1.

3. Overconvergent modular forms

Let p > 5 be a prime and let Cp be the completion of an algebraic closure of Qp. We fix a

valuation vp on Cp such that vp(p) = 1 and an absolute value | · | on Cp compatible with vp. Let Kp

be a complete discretely-valued subfield of Cp and let Rp be its ring of integers. Suppose (p,N) = 1,

and let X := M1(N) ×Z[1/N ] Rp be the base-change to Rp. Let Ep−1 ∈ H0(X ×Rp Kp, ω
p−1) be

the global section given by the Eisenstein series of weight p − 1 and level 1, normalized so that

its constant coefficient is 1. As in [Col96, §1], for any ε ∈ |Rp| there are rigid analytic spaces X(ε)

characterized by

Xcl
(ε) = {x ∈ (X ×Rp Kp)

cl : |Ep−1(x)| > ε},

where the superscript ‘cl’ denotes the set of closed points. In the terminology of [Col89], the spaces

X(ε) for 0 < ε < 1 are wide-open neighborhoods of the ordinary locus Xord of X, which is the rigid

analytic space characterized by

(Xord)cl = {x ∈ (X ×Rp Kp)
cl : |Ep−1(x)| > 1}.

Since |Ep−1(c)| = 1 for all c ∈ C, we have C ⊆ X(ε) for all ε ∈ |Rp|, and we let

Y ord := Xord r C, Y(ε) := X(ε) r C

be the rigid analytic spaces obtained by removing the cusps. The invertible sheaves ωk restrict to

rigid analytic line bundles on these spaces denoted in the same manner.

Definition 3.1. An overconvergent modular form of integral weight k is a rigid analytic section of

ωk on Y(ε) for some ε < 1.

Remark 3.2. As shown by Katz [Kat73], sections of ωk over Xord are the same as Serre’s p-adic

modular forms [Ser73] of integral weight k, and therefore elements in H0(Y ord, ωk) correspond to

p-adic modular forms in the sense considered in [BGK12]. As explained in [loc.cit., p. 2394], the

latter give rise to Serre’s p-adic modular forms upon multiplication by an appropriate power of

the modular discriminant ∆ ∈ S12(SL2(Z)), and the same argument shows that overconvergent

modular forms in the sense of Definition 3.1 give rise to overconvergent modular forms in the sense

of Coleman [Col96].

For any wide-open neighborhood W of Xord, set W ◦ := W r C and define

H1(W ◦,Hr) := H1(W ◦,Hr
∇r−→ Hr ⊗ Ω1

X) '
H0(W ◦,Hr ⊗ Ω1

X)

∇rH0(W ◦,Hr)
,

where the isomorphism follows from the fact that Hq(W ◦,H) = 0 for q > 0 and any coherent sheaf

H on W ◦. The next two results will play an important role in the proofs of our main results.
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Theorem 3.3 (Coleman). For every r > 0 there is linear map

θr+1 : H0(W ◦, ω−r) −→ H0(W ◦, ωr+2)

whose action on q-expansions is (qd/dq)r+1, and the natural injection

H0(W ◦, ωr+2) ' H0(W ◦, ωr ⊗ Ω1
X) ↪→ H0(W ◦,Hr ⊗ Ω1

X)

induces an isomorphism

H1(W ◦,Hr) '
H0(W ◦, ωr+2)

θr+1H0(W ◦, ω−r)
.

Proof. See [Col96, Prop. 4.3] for the construction of θr+1 and [loc.cit., Thm. 5.4] for the last

isomorphism. �

Consider now the wide-open neighborhoods of Xord given by W1 := X(p−p/p+1) and W2 :=

X(p−1/p+1) ⊆W1, and let

U : H0(W2, ω
k) −→ H0(W1, ω

k), V : H0(W1, ω
k) −→ H0(W2, ω

k)

be the operators defined in [Col96, §§2, 3] and whose action on q-expansions is given by the usual

formulas

U

(∑
n

anq
n

)
=
∑
n

apnq
n, V

(∑
n

anq
n

)
=
∑
n

anq
pn.

Let f =
∑∞

n=1 anq
n ∈ Sk(Γ0(N), χ) be a newform defined over a number field K and with Tp-

eigenvalue ap. Then the relation Tp = U + χ(p)pk−1V trivially implies that

apf = U(f) + χ(p)pk−1V (f) ∈ H0(W2, ω
k),

from which it follows easily that the p-stabilizations

(5) fβ := f − β′V (f) fβ′ := f − βV (f)

are U -eigenvectors with eigenvalues β and β′, respectively. After replacing K by a quadratic

extension if necessary, we assume from now on that both β and β′ lie in K.

Let Kp be the completion of K at the prime above p induced by our fixed embedding Q ↪→ Cp,
and set MdR,p(f) := MdR(f) ⊗K Kp. For any wide-open neighborhood W of Xord, the natural

restriction

(6) H1
par(XKp ,Hk−2) −→ H1(W ◦,Hk−2)

is injective. (See [Col89, Thm. 4.2] for the case k = 2 and [Col94, Prop. 10.3] for higher weights.)

The image of this map can be described in terms of p-adic residues, and as a result for any newform f

as above, the classes [fβ], [fβ′ ] ∈ H1(W ◦2 ,Hk−2) naturally lie in H1
par(XKp ,Hk−2). In fact, similarly

as H1
par(XKp ,Hk−2), the spaces H1(W ◦,Hk−2) are endowed with an action of the Hecke operators T`

for ` - Np (see [Col94, §8]), and the restriction map (6) is equivariant for these actions. Therefore,

the classes [fβ], [fβ′ ] naturally lie in MdR,p(f).

Proposition 3.4. Let f =
∑∞

n=1 anq
n ∈ Sk(Γ0(N), χ) be a newform of weight k > 2, and let β and

β′ be the roots of T 2 − apT + χ(p)pk−1, ordered so that vp(β) 6 vp(β
′). Assume that the following

two conditions hold:

(i) β 6= β′.

(ii) fβ′ 6∈ im(θk−1).
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Then {[f ], [V (f)]} is a basis for MdR,p(f).

Proof. It suffices to show that the classes [f ] and [V (f)] are linearly independent. Since clearly

vp(β) < k − 1, by [Col96, Lem. 6.3] we have [fβ] 6= 0. Thus by conditions (i) and (ii) the classes

[fβ] and [fβ′ ] are linearly independent, and so must be [f ] and [V (f)] in light of (5). �

Remark 3.5. By results of Coleman–Edixhoven [CE98], condition (i) in Proposition 3.4 holds if

k = 2, and for k > 2 it is a consequence of the semi-simplicity of crystalline Frobenius, which

remains an open conjecture. On the other hand, by [Col96, Prop. 7.1] condition (ii) fails if f has

CM by an imaginary quadratic field in which p splits, and the ‘p-adic variational Hodge conjecture’

of Emerton–Mazur (see [Eme97]) predicts that these are the only cases where it fails.

4. Recovering the shadow

Let f =
∑∞

n=1 anq
n be a normalized newform and let F be a harmonic Maass form which is good

for f in the sense Definition 1.1. By the construction in Section 2, we may assume that F satisfies

(7) Dk−1(F ) = Dk−1(F+) = φ− s1f

for some φ ∈ S!
k(Γ1(N),K) and s1 ∈ C.

In [GKO10], Guerzhoy, Kent, and Ono showed that one of the p-stabilizations of f can be

recovered p-adically from an iterated application of U to a certain ‘regularization’ of Dk−1(F+).

In this section, we give a new proof of this result using the p-adic techniques developed above. We

begin by giving a new proof of [loc.cit., Thm. 1.1].

Theorem 4.1. Let α ∈ C be such that α− c+(1) ∈ K. Then the coefficients of

Fα := F+ − αEf :=
∑

n�−∞
c+(n)qn − α

∞∑
n=1

ann
1−kqn

are all in K.

Proof. Write φ =
∑

n�−∞ d(n)qn, with d(n) ∈ K. By (7), we have the formula

(8) c+(n) =

(
d(n)− s1an

nk−1

)
where an := 0 for n 6 0. The result is thus clear for n 6 0. Now let n > 1, and write α = c+(1) +γ

with γ ∈ K, or equivalently, α = d(1) − s1 + γ. Using (8), an immediate calculation reveals that

the coefficient of qn in Fα is given by (d(n)− d(1)− γ)n1−k. �

Since one can always take α = c+(1) in Theorem 4.1, the coefficients of Fc+(1) are all in K.

Writing

Dk−1(Fc+(1)) =
∑

n�−∞
cc+(1)(n)qn,

we may thus view the coefficients cc+(1)(n) inside Cp via our fixed embedding Q ↪→ Cp. Our next

result is a special case of [GKO10, Thm. 1.2(i)], but the ideas in the proof of the general case (see

Theorem 4.3 below) already appear here.
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Theorem 4.2. Assume that vp(β) < vp(β
′) and that fβ′ 6∈ im(θk−1). Then

lim
w→+∞

UwDk−1(Fc+(1))

cc+(1)(p
w)

= fβ.

Proof. First note that by equations (7) and (8) we have

Dk−1(Fc+(1)) = φ− d(1)f,

which is a weakly holomorphic cusp form of weight k with q-expansion coefficients in K, hence

defining a class in MdR(f) (see Theorem 2.1). Our assumptions clearly imply conditions (i) and

(ii) of Proposition 3.4, and so (as shown in the proof) the Kp-vector space MdR,p(f) has a basis

{[fβ], [fβ′ ]} of eigenvectors for U . In particular, we can write

[Dk−1(Fc+(1))] = t1[fβ] + t2[fβ′ ]

for some constants t1, t2 ∈ Kp. By restriction, the differential Dk−1(Fc+(1)) − t1fβ − t2fβ′ defines

a class in H1(W ◦2 ,Hk−2) ' H0(W ◦2 , ω
k)/θk−1H0(W ◦2 , ω

2−k) which is trivial by construction. Thus

we may write

Dk−1(Fc+(1)) = t1fβ + t2fβ′ + θk−1h

for some h ∈ H0(W ◦2 , ω
2−k). Applying U to both sides of the equation gives

UDk−1(Fc+(1)) = t1βfβ + t2β
′fβ′ + U(θk−1h);

and more generally, for any power w > 1, we obtain

(9) UwDk−1(Fc+(1)) = t1β
wfβ + t2β

′wfβ′ + Uw(θk−1h).

Dividing by βw we get

β−wUwDk−1(Fc+(1)) = t1fβ + t2

(
β′

β

)w
fβ′ + β−wUw(θk−1h)

and taking the limit as w → +∞ we arrive at

lim
w→+∞

β−wUwDk−1(Fc+(1)) = t1fβ.

Here we used the hypothesis vp(β
′/β) > 0, and that fact that (since the coefficients of h have

bounded denominators) the differential Uw(θk−1h) has coefficients with arbitrarily high valuation

as w → +∞.

To determine the value of t1, consider the coefficient of qp
w

in (9), which is given by

cc+(1)(p
w) = apw(Dk−1(Fc+(1))) = a1(U

wDk−1(Fc+(1)))

= t1β
w + t2β

′w +O(pw(k−1)),

where we let an(g) denote the n-th Fourier coefficients in a q-expansion g, and we used the fact that

both fβ and fβ′ are normalized, so that a1(fβ) = a1(fβ′) = 1. Thus taking the limit as w → +∞
we obtain

(10) lim
w→+∞

β−wcc+(1)(p
w) = t1

which gives the result. �
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Now for any α with α− c+(1) ∈ K, define

Fα := F+ − αEf
and let cα(n) denote the n-th coefficient in the expansion

Dk−1(Fα) =
∑

n�−∞
cα(n)qn.

The following is the content of [GKO10, Thm. 1.2(i)] for primes p - N .

Theorem 4.3. Assume that vp(β) < vp(β
′) and that fβ′ 6∈ im(θk−1). Then for all but at most one

choice of α with α− c+(1) ∈ K, we have

lim
w→+∞

UwDk−1(Fα)

cα(pw)
= fβ.

Proof. As in the proof of Theorem 4.2, we can write

(11) [Dk−1(Fc+(1))] = t1[fβ] + t2[fβ′ ]

in MdR,p(f) with the value of t1 given by (10). Let γ ∈ K be such that α = c+(1) + γ, so that

Fα = Fc+(1) − γEf by definition. Noting that

(12) f =
βfβ − β′fβ′
β − β′

,

and substituting into the expression (11) with Fα in place of Fc+(1), we obtain

[Dk−1(Fα)] =

(
t1 − γ

β

β − β′

)
[fβ] +

(
t2 + γ

β′

β − β′

)
[fβ′ ],

and hence we have the equality

(13) Dk−1(Fα) =

(
t1 − γ

β

β − β′

)
fβ +

(
t2 + γ

β′

β − β′

)
fβ′ + θk−1h

as sections in H0(W ◦2 , ω
k), for some h ∈ H0(W ◦2 , ω

2−k). Applying Uw to both sides of this equation

and letting w → +∞, we deduce that

(14) lim
w→+∞

UwDk−1(Fα)

βw
=

(
t1 − γ

β

β − β′

)
fβ

as in the proof of Theorem 4.2. On the other hand, arguing again as in Theorem 4.2, we find that

the pw-th coefficient of Dk−1(Fα) is given by

cα(pw) =

(
t1 − γ

β

β − β′

)
βw +

(
t2 + γ

β′

β − β′

)
β′w +O(pw(k−1)),

and hence

(15)

(
t1 − γ

β

β − β′

)
= lim

w→+∞

cα(pw)

βw
.

Therefore, except in the case where

(16) γ =
t1(β − β′)

β
= (β − β′) lim

w→+∞

cc+(1)(p
w)

βw+1
,

combining (14) and (15) we recover fβ from Fα as in the statement the theorem. �
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5. Mock modular forms as overconvergent modular forms

We now let α range over the larger set of values (2), and interpret the exceptional value of α in

Theorem 4.3 as the only value of α for which the ‘regularized’ mock modular form

Fα = F+ − αEf
gives rise to an overconvergent modular form (see Definition 3.1) upon p-stabilization. Recall that

we let β and β′ be the roots of the p-th Hecke polynomial of f , ordered so that vp(β) 6 vp(β′).

Definition 5.1. For any α ∈ c+(1) + Cp, define

F∗α := Fα − p1−kβ′Fα|V

and write Dk−1(F∗α) =
∑

n�−∞ c
∗
α(n)qn.

Our first result shows that, similarly as in Theorem 4.3 for Fα, the p-stabilization fβ of the

shadow of F+ can be recovered p-adically from F∗α.

Theorem 5.2. Assume that vp(β) < vp(β
′) and that fβ′ 6∈ im(θk−1). Then for all but at most one

choice of α ∈ c+(1) + Cp, we have

lim
w→+∞

UwDk−1(F∗α)

c∗α(pw)
= fβ.

Proof. Writing α = c+(1) + γ with γ ∈ Cp, an immediate calculation reveals that

(17) Dk−1(F∗α) = Dk−1(Fc+(1))|(1− β′V )− γfβ.

As in the proof of Theorem 4.2, we write

[Dk−1(Fc+(1))] = t1[fβ] + t2[fβ′ ]

in MdR,p(f) with t1 = limw→+∞ β
−wcc+(1). Applying the operator 1 − β′V to this last equality,

and noting that V = U−1 on cohomology, we obtain

[Dk−1(Fc+(1))|(1− β′V )] = t1
(β − β′)

β
[fβ],

and hence by (17):

(18) [Dk−1(F∗α)] =

(
t1(β − β′)

β
− γ
)

[fβ].

Arguing again as in the proof of Theorem 4.2, we obtain the equalities

(19) lim
w→+∞

Uw(Dk−1(F∗α))

βw
=

(
t1(β − β′)

β
− γ
)
fβ

and

(20)
t1(β − β′)

β
− γ = lim

w→+∞

c∗α(pw)

βw
.

Therefore, except in the case where

(21) γ =
t1(β − β′)

β
= (β − β′) lim

w→+∞

cc+(1)(p
w)

βw+1
,

the combination of (14) and (15) recovers fβ from F∗α as in the statement. �
10



Considering the exceptional value of α arising in the proof of Theorem 5.2, we recover a refined

form of [BGK12, Thm. 1.1].

Theorem 5.3. Assume that vp(β) < vp(β
′) and that fβ′ 6∈ im(θk−1). Then among all values of

α ∈ c+(1) + Cp, the value

α = c+(1) + (β − β′) lim
w→+∞

cc+(1)(p
w)

βw+1

is the unique one such that F∗α is an overconvergent modular form of weight 2− k.

Proof. Write α = c+(1) + γ with γ ∈ Cp. Since [fβ] 6= 0 ∈ MdR,p(f) (see the proof of Proposi-

tion 3.4), we deduce from (18) and (21) that the class of Dk−1(F∗α) in MdR,p(f) vanishes only for

the value of α in the statement. Since the restriction map

H1
par(XKp ,Hk−2) −→ H1(W ◦2 ,Hk−2) '

H0(W ◦2 , ω
k)

θk−1H0(W ◦2 , ω
2−k)

is injective, the above value of α is also the unique one such that the class of Dk−1(F∗α) becomes

trivial in H1(W ◦2 ,Hk−2), and hence such that F∗α ∈ H0(W ◦2 , ω
2−k). �

Next we consider a second modification of Fα =
∑

n�−∞ aFα(n)qn.

Definition 5.4. For any δ ∈ Cp, define

Fα,δ := Fα − δ(Ef − βEf |V ).

Our next result determines the values of α and δ for which Fα,δ is an overconvergent modular

form, recovering a refined form of [BGK12, Thm 1.2(2)].

Theorem 5.5. Assume that vp(β) < vp(β
′) and that fβ′ 6∈ im(θk−1). Then Fα,δ is an overconver-

gent modular form for a unique pair (α, δ). In fact, α is as in Theorem 5.3, and

δ = lim
w→+∞

aFα(pw)pw(k−1)

β′w
.

Proof. With the same notations as in the proof of Theorem 4.3, we can write the equality

(22) [Dk−1(Fα,δ)] =

(
t1 − γ

β′

β − β′

)
[fβ] +

(
t2 + γ

β

β − β′
− δ
)

[fβ′ ]

in MdR,p(f). Since we may check the triviality of these classes upon restriction to W ◦2 , it follows

that Fα,δ is an overconvergent modular form of weight 2 − k if and only if the class [Dk−1(Fα,δ)]
vanishes. As in the proof of Proposition 3.4, the classes [fβ], [fβ′ ] form a basis for MdR,p(f), and

hence Fα,δ is an overconvergent modular form if and only if both coefficients in the right-hand side

of (22) vanish. In particular (by the second coefficient), this shows that the value of γ is given by

(16), and therefore the necessary value of α = c+(1) + γ is the same as in Theorem 5.3.

To determine the value of δ, we rewrite equation (13) for the above value of α (so that the first

summand in the right-hand side of that equation vanishes):

Dk−1(Fα) =

(
t2 + γ

β′

β − β′

)
fβ′ + θk−1h.

11



Equating the pw-th coefficients in this equality we obtain

cα(pw) =

(
t2 + γ

β′

β − β′

)
β′w +O(pw(k−1)),

and hence dividing by β′w and letting w → +∞ we deduce

(23) lim
w→+∞

cα(pw)

β′w
=

(
t2 + γ

β′

β − β′

)
.

(Note that the assumption vp(β
′) < k − 1 is being used here.) Finally, substituting (23) into (22)

we see that the necessary value for δ is given by

δ = lim
w→∞

cα(pw)

β′w
= lim

w→∞

aFα(pw)pw(k−1)

β′w
,

as was to be shown. �

6. The CM case

In this section we treat the case in which f has CM. This case is of special interest, since then

one can choose a good harmonic Maass form F for f as in Section 2 with F+ having algebraic

coefficients.

Thus assume that f =
∑∞

n=1 anq
n ∈ Sk(Γ1(N),K) has CM by an imaginary quadratic field M

of discriminant prime to p, and let F = F+ + F− be a good harmonic Maass form attached to f .

We also assume (upon enlarging K if necessary) that K contains a primitive m-th root of unity,

where m = N · disc(M). Then by [BOR08, Thm. 1.3], F+ has coefficients in K, and so Dk−1(F+)

defines a class in MdR(f).

We first treat the case in which p is inert in M . In this case ap = β+β′ = 0, and so by the proof

of Proposition 3.4, the space MdR,p(f) admits a basis given by the classes [fβ] and [fβ′ ].

Lemma 6.1. Assume that p is inert in M , and write [Dk−1(F+)] = t1[fβ]+t2[fβ′ ] with t1, t2 ∈ Kp.

Then

lim
w→+∞

aDk−1(F+)(p
2w+1)

β2w+1
= t1 − t2.

Proof. The proof will be obtained by arguments similar to the proof of Theorem 4.2, but some

adjustments are necessary due to the fact that condition vp(β) 6= vp(β
′) clearly does not hold in

this case. Instead, we shall exploit the extra symmetry β′ = −β.

Upon restriction to W ◦2 , we can write

(24) Dk−1(F+) = t1fβ + t2fβ′ + θk−1h

for some h ∈ H0(W ◦2 , ω
2−k). Taking p2w+1-st coefficients in this identity we obtain

aDk−1(F+)(p
2w+1) = t1β

2w+1 + t2β
′2w+1 +O(p(2w+1)(k−1))

= (t1 − t2)β2w+1 +O(p(2w+1)(k−1)),

and hence dividing by β2w+1 and letting w → +∞ the result follows. �

Definition 6.2. For any α ∈ Cp, define

F̃α := F+ − αEf |V .
12



Armed with Lemma 6.1, in Corollary 6.4 below we will determine the values of α for which F̃α
is an overconvergent modular form, thus recovering a refined form of [BGK12, Thm. 1.3]. This will

be an immediate consequence of the following result.

Theorem 6.3. Assume that p - N is inert in M , and for any α̃ ∈ Cp define

Gα̃ := F+ − α̃(Ef − βEf |V ).

Then there exists a unique value of α̃ such that Gα̃ is an overconvergent modular form of weight

2− k, and it is given by

α̃ = lim
w→+∞

aDk−1(F+)(p
2w+1)

β2w+1
.

Proof. We will deduce this result by first determining the values of α and δ for which the form

Fα,δ of Definition 5.4 is an overconvergent modular form. Note that this case is not covered by

Theorem 5.5, since its proof exploits the assumption that vp(β) < vp(β
′). However, [fβ] and [fβ′ ]

still form a basis for MdR(f), and so equation (22) for [Dk−1(Fα,δ)] applies, yielding (setting γ = α

by the algebraicity of c+(1))

(25) [Dk−1(Fα,δ)] =
(
t1 −

α

2

)
[fβ] +

(
t2 −

α

2
− δ
)

[fβ′ ].

By Theorem 3.4, the classes [f ] and [V (f)] form a basis for MdR(f), and rewriting (25) in terms of

them we arrive at

(26) [Dk−1(Fα,δ)] = (t1 + t2 − α− δ)[f ] + β(t1 − t2 − α− δ)[V (f)].

Now, Fα,δ is an overconvergent modular form if and only if both coefficients in equation (26) vanish;

in particular, we need to have

(27) α+ δ = t1 − t2 = lim
w→+∞

aDk−1(F+)(p
2w+1)

β2w+1
,

where we used Lemma 6.1 for the second equality. The necessary vanishing of (26) also forces the

vanishing of t2 and hence from (25) we deduce that δ = −α
2 , or equivalently, α + δ = α

2 . Finally,

noting that

Fα,δ = F+ − α

2

(
Ef − βEf |V

)
= Gα

2
,

we conclude from (27) that Gα̃ is an overconvergent modular form of weight 2− k if and only if α̃

is given by the p-adic limit in the statement. �

Corollary 6.4. Assume that p - N is inert in M . Then there exists a unique value of α such that

F̃α is an overconvergent modular form of weight 2− k, and it is given by

α = lim
w→+∞

aDk−1(F+)(p
2w+1)

β2w
.

Proof. Comparing the definitions of F̃α and Gα̃, we see that

Gα̃ = F̃α − α̃Ef ,

with α = α̃β. Since Ef is easily seen to be an overconvergent modular form of weight 2− k under

our running hypotheses (see [BGK12, Prop. 4.2], which remains true in our case p - N), the result

follows from Theorem 6.3. �
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Finally, we deal with the case in which f has CM by an imaginary quadratic field M in which

p splits, characterizing the values of α ∈ Cp for which F∗α is an overconvergent modular form. As

noted in Remark 3.5, the class [fβ′ ] vanishes in this case, and so the proofs of Theorem 5.2 and

Theorem 5.3 break down. However, based on the observation that (using the algebraicity of c+(1)

to set α = γ)

(28) F∗α = (F+ − αEf )|(1− p1−kβ′V ) = F∗0 − αEfβ ,

we can easily prove the following result (cf. [BGK12, Thm. 1.2]).

Theorem 6.5. Assume that p - N is split in M . Then among all values of α ∈ Cp, the value α = 0

is the unique one for which F∗α is an overconvergent modular form of weight 2− k.

Proof. As we have already argued in preceding proofs, F∗α is an overconvergent modular form of

weight 2− k if and only if the class [Dk−1(F∗α)] vanishes, and from (28) we see that

[Dk−1(F∗α)] = 0 ⇐⇒ α[fβ] = [Dk−1(F∗0 )].

In particular, this shows that F∗α is an overconvergent modular form of weight 2− k for α = 0, and

so [Dk−1(F∗0 )] = 0. On the other hand, since [fβ] 6= 0 (see the proof of Proposition 3.4), the above

equivalence shows that [Dk−1(F∗α)] 6= 0 for α 6= 0, yielding the result. �
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