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Abstract. We construct a new anticyclotomic Euler system (in the sense of Jetchev–Nekovář–Skinner)
for the Galois representation Vf,χ attached to a newform f of weight k ≥ 2 twisted by an anticyclotomic

Hecke character χ. We then show some arithmetic applications of the constructed Euler system, including

new results on the Bloch–Kato conjecture in ranks zero and one, and a divisibility towards the Iwasawa–
Greenberg main conjecture for Vf,χ.

In particular, in the case where the base-change of f to our imaginary quadratic field has root number
+1 and χ has higher weight (which implies that the complex L-function L(Vf,χ, s) vanishes at the center),

our results show that the Bloch–Kato Selmer group of Vf,χ is nonzero, and if a certain distinguished class

κf,χ is nonzero, then the Selmer group is one-dimensional. Such applications to the Bloch–Kato conjecture
for Vf,χ were left wide open by the earlier approaches using Heegner cycles and/or Beilinson–Flach classes.

Our construction is based instead on a generalisation of the Gross–Kudla–Schoen diagonal cycles.
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Introduction

Let f =
∑∞
n=1 anq

n ∈ Sk(Γ0(Nf )) be an elliptic newform of even weight k ≥ 2, and let p - 6Nf be a
prime. Let K/Q be an imaginary quadratic field in which p splits. Let L be a number field containing K
and the Fourier coefficients of f , and let P be a prime of L above p at which f is ordinary, i.e. vP(ap) = 0.

Let χ be an anticyclotomic Hecke character of K, and consider the conjugate self-dual GK = Gal(Q/K)-
representation

Vf,χ := V ∨f (1− k/2)⊗ χ−1,

where V ∨f is the contragredient of Deligne’s P-adic Galois representation associated to f .
We prove, among other results, the following applications to the Bloch–Kato conjecture for Vf,χ: Under

mild hypothesis on f and χ, the nonvanishing of the Rankin–Selberg L-function L(f/K, χ, s) at the center
s = k/2 implies that the dimension of the associated Bloch–Kato Selmer group is 0; and when this central
L-value vanishes, the nonvanishing of a distinguished class κf,χ implies that the dimension of the associated
Bloch–Kato Selmer group is 1. These results are applications of the main contribution of this paper, which
is the construction of a new anticyclotomic Euler system for Vf,χ.

Our construction is based on a generalisation of the diagonal cycles introduced by Gross–Kudla [GK92]
and Gross–Schoen [GS95], and studied more recently by Darmon–Rotger and Bertolini–Seveso–Venerucci
(see [BDR+22]).

0.1. Main results. Assume that the discriminant DK of K satisfies (DK , Nf ) = 1. Write Nf = N+N−

with N+ (resp. N−) divisible only by primes that are split (resp. inert) in K, and assume that

(0.1) N− is squarefree.

Denote by ν(N−) the number of prime factors of N−, and assume also that

(0.2) χ has conductor cOK with (c, pNf ) = 1.

Under hypotheses (0.1) and (0.2), it is known that the sign ε(f, χ) in the functional equation for L(f/K, χ, s)
(relating its values at s and k − s) depends only on the global root number of the base-change of f to K,
given by

ε(f/K) = −(−1)ν(N−),

and the infinity type (−j, j) of χ. According to these, the values of ε(f, χ) are as in the following table1:

1Because L(f/K, χ, s) = L(f/K, χc, s), where χc is the composition of χ with the action of complex conjugation, without

loss of generality we may assume j ≥ 0.
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ε(f/K) = −1 ε(f/K) = +1
0 ≤ j < k/2 −1 +1
j ≥ k/2 +1 −1

0.1.1. The Euler system. Throughout the remainder of this Introduction, assume that f and K satisfy the
following hypotheses:

(h1) f is ordinary and non-Eisenstein at P;
(h2) p = pp̄ splits in K;
(h3) p - hK , where hK is the class number of K.

For every positive integer n, let K[n] be the maximal p-subextension of the ring class field of K of conductor
n. Denote by N the set of squarefree products of primes l ⊂ OK split in K with ` = NK/Q(l) prime to p.

Theorem A (Theorem 2.3.2). There exists a family of cohomology classes

zf,χ,m,r ∈ H1(K[mpr], Tf,χ)

indexed by the ideals m ∈ N with m = NK/Q(m) coprime to p and r ≥ 0, where Tf,χ is a certain GK-stable
O-lattice inside Vf,χ, such that

corK[mpr+1]/K[mpr](zf,χ,m,r+1) = zf,χ,m,r

for all r ≥ 0, and for every split prime l of OK of norm ` with (`,mp) = 1 we have the tame norm relation

corK[m`pr]/K[mpr](zf,χ,ml,r) = Pl(Frobl) zf,χ,m,r,

where Pl(X) = det(1− FroblX |V ∨f,χ(1)), and Frobl is the geometric Frobenius.

The system of classes of Theorem A defines an anticyclotomic Euler system in the sense of Jetchev–
Nekovář–Skinner [JNS] for the conjugate self-dual representation Vf,χ. Significantly extending Kolyvagin’s
methods, the general theory developed in op. cit. provides a machinery that bounds Selmer groups for
conjugate self-dual representations V from the input of a non-trivial anticyclotomic Euler system for
V . The Selmer group being bounded depends on the local condition at p satisfied by the Euler system
classes, and by varying certain elements in the construction of zf,χ,m,r, we produce in fact two different
anticyclotomic Euler systems for Vf,χ, differing by their local conditions at the primes above p.

To describe this, recall that by P-ordinarity of f , the Galois representation V ∨f restricted to a decom-
position group GQp ⊂ GQ fits into a short exact sequence

0→ V ∨,+f → V ∨f → V ∨,−f → 0,

where V ∨,±f ' LP, with the GQp -action on V ∨,−f given by the unramified character sending the arithmetic

Frobenius Frob−1
p to αp, the unit root of x2 − apx+ pk−1. Put

V ±f,χ := V ∨,±f (1− k/2)⊗ χ−1.

Then more generally, we construct:

• An anticyclotomic Euler system {zord,ord
f,χ,m,r}m,r with the local condition at the primes w|p defined

by
H1

ord(K[mpr]w, Vf,χ) := ker
(
H1(K[mpr]w, Vf,χ)→ H1(K[mpr]w, V

−
f,χ)

)
.

• An anticyclotomic Euler system {zrel,str
f,χ,m,r}m,r for the local condition at the primes w|p defined by{

H1(K[mpr]w, Vf,χ) if w|p,

0 if w|p̄.

Using the Panchiskin condition, it can be shown that at least one of these classes land in the Bloch–Kato
Selmer group SelBK(K[mpr], Vf,χ), namely the class

κf,χ,m,r :=

{
zrel,str
f,χ,m,r if j ≥ k/2,

zord,ord
f,χ,m,r if 0 ≤ j < k/2.
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0.1.2. Applications to the Bloch–Kato conjecture in rank 1. Put

κf,χ := corK[1]/K(κf,χ,(1),0) ∈ SelBK(K,Vf,χ)

From the general Euler system machinery of [JNS] applied to the construction of Theorem A we deduce
in particular the following result. Let O be the ring of integers of LP. We say that f has big image if for a
certain Galois stable O-lattice T∨f ⊂ V ∨f , the image of GQ in AutO(T∨f ) contains a conjugate of SL2(Zp).

Theorem B (Theorem 5.7.1). Let f ∈ Sk(Γ0(Nf )) be a newform and χ an anticyclotomic Hecke character
of K as above of infinity type (−j, j). Assume that

ε(f/K) = +1 and j ≥ k/2,

which implies L(f/K, χ, k/2) = 0. Assume also that p > k− 2, ρ̄f is p-distinguished, and f has big image.
Then

dimLP
SelBK(K,Vf,χ) ≥ 1.

Moreover, if the class κf,χ is nonzero, then

SelBK(K,Vf,χ) = LP · κf,χ.

By the Gross–Zagier formula for the modified diagonal cycles introduced in [GK92, GS95] (a special case
of the arithmetic Gan–Gross–Prasad conjecture for SO(3)×SO(4)) proved by Yuan–Zhang–Zhang [YZZ] in
certain cases, the non-triviality of κf,χ is expected to be governed by the nonvanishing of L′(f/K, χ, k/2),
and hence Theorem B provides strong evidence towards the Bloch–Kato conjecture for Vf,χ in analytic
rank 1.

Our methods also yield an analogue of Theorem B in the “indefinite case” ε(f/K) = −1 and 0 ≤ j < k/2
(indeed, for N− = 1 this follows immediately from Theorem 6.6.1), but in this case such result can also be
obtained from the Euler system of (generalised) Heegner cycles [Nek92, CH18a].

0.1.3. Applications to the Bloch–Kato conjecture in rank 0. We now turn our attention to the cases where
ε(f, χ) = +1, so the central value L(f/K, χ, k/2) is expected to be generically nonzero. Put

κ′f,χ,m,r :=

{
zord,ord
f,χ,m,r if j ≥ k/2,

zrel,str
f,χ,m,r if 0 ≤ j < k/2,

and κ′f,χ := corK[1]/K(κ′f,χ,(1),0). Building on the reciprocity law for diagonal cycles by Bertolini–Seveso–

Venerucci [BSV22], we show that the class κ′f,χ is non-crystalline at p precisely when L(f/K, χ, k/2) 6= 0.

Together with the machinery of [JNS] applied to the anticyclotomic Euler system of Theorem A extending
κ′f,χ, we thus deduce in particular the following cases of the Bloch–Kato conjecture in analytic rank 0.

Theorem C (Theorem 5.5.1). Let f ∈ Sk(Γ0(Nf )) be a newform and χ an anticyclotomic Hecke character
of K as above. Assume that ε(f/K) = +1 and p > k − 2. Then

L(f/K, χ, k/2) 6= 0 =⇒ SelBK(K,Vf,χ) = 0,

and hence the Bloch–Kato conjecture holds in this case.

Note that the nonvanishing of L(f/K, χ, k/2) implies that ε(f, χ) = +1, and so without loss of generality,
the character χ in Theorem C may be assumed to have infinity type (−j, j) with 0 ≤ j < k/2. Similarly as in
the rank 1 case, our methods also yield an analogue of Theorem C in the indefinite case (see Theorem 6.5.1).

Finally, we note that results also include the proof of a divisibility towards the anticyclotomic Iwasawa
Main Conjecture for Vf,χ, giving in particular a new proof of the main result of [BD05] (see Theorem 5.6.1).
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0.2. Relation to previous works. Starting with the landmark results by Gross–Zagier and Kolyvagin
[GZ86, Kol88] (see also [BD90]), and followed by their vast generalisations by Zhang [Zha97], Tian [Tia03],
Nekovář [Nek07], Yuan–Zhang–Zhang [YZZ13] and others, the Euler system of Heegner points and Heegner
cycles has been a key ingredient in the study of the arithmetic of Vf,χ under the Heegner hypothesis

ε(f/K) = −1.

Classical Heegner cycles account for the cases where the anticyclotomic character χ has finite order (i.e.,
j = 0), but using their new variant by Bertolini–Darmon–Prasanna [BDP13], one obtains classes controlling
the arithmetic of SelBK(K,Vf,χ) in the following cases:

(1st quadrant) ε(f/K) = −1, 0 ≤ j < k/2.

In another major advance, Bertolini–Darmon [BD05] exploited congruences between modular forms on
different quaternion algebras and the Cerednik–Drinfeld theory of interchange of invariants to realise the
Galois representation (on finite quotients of) Tf,χ in the torsion of the Jacobian of certain Shimura curves.
This allowed them to still use the Heegner point construction in situations where ε(f/K) = +1. Together
with the extension to higher weights by Chida–Hsieh [CH15], these methods yielded a proof of many cases
of the Bloch–Kato conjecture in analytic rank 0 when

(2nd quadrant) ε(f/K) = +1, 0 ≤ j < k/2.

under a certain “level-raising” hypothesis. More recently, the Euler system of Beilinson–Flach classes con-
structed by Lei–Loeffler–Zerbes [LLZ14, LLZ15] and Kings–Loeffler–Zerbes [KLZ17, KLZ20] (inspired in
part by earlier results of Bertolini–Darmon–Rotger [BDR15a, BDR15b]) provided an alternative approach
to similar rank 0 results under some hypotheses (among other applications).

On the other hand, exploiting the variation of (generalised) Heegner cycles in p-adic families, the first
author and Hsieh [CH18a, Cas20], and more recently Kobayashi [Kob], obtained results on the Bloch–Kato
conjecture for Vf,χ in rank 0 in the cases

(3rd quadrant) ε(f/K) = −1, j ≥ k/2.

Contrastingly, in the cases where

(4th quadrant) ε(f/K) = +1, j ≥ k/2,

the conjectures of Beilinson–Bloch and Bloch–Kato predict the existence of non-trivial classes in SelBK(K,Vf,χ)
coming from geometry (since ε(f, χ) = −1 and therefore L(f/K, χ, k/2) = 0), but the construction of such
classes seems to fall outside of all the aforementioned methods.

The anticyclotomic Euler system constructed in this paper allows us to fill this gap, while also providing
a new approach to the aforementioned results in other cases:

ε(f/K) = −1 ε(f/K) = +1
1st quadrant 2nd quadrant

0 ≤ j < k/2 [Kol88], [Tia03], [Nek07], etc. [BD05], [CH15], [KLZ17], etc.
Theorem 6.6.1 Theorem 5.5.1
3rd quadrant 4th quadrant

j ≥ k/2 [CH18a], [Cas20], [Kob], etc. −
Theorem 6.5.1 Theorem 5.7.1

In future work, we intend to generalise our construction to totally real fields, a setting in which one finds
even more cases where the arithmetic of Rankin–Selberg convolutions falls outside the scope of Heegner
cycles and/or Beilinson–Flach classes.
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Part 1. The Euler system

1. Preliminaries

1.1. Modular curves and Hecke operators. We give a precise description of the modular curves and
Hecke operators that will appear in our construction. The main references for this section are [Kat04, §2],
[BSV22, §2], and [ACR21, §2], where more details can be found.

1.1.1. Modular curves. Let M,N, u, v be positive integers such that M + N ≥ 5. Define Y (M,N) to be
the affine modular curve over Z[1/MN ] representing the functor

S 7→

 isomorphism classes of triples (E,P,Q) where E is an elliptic curve over S,
P , Q are sections of E over S such that M · P = N ·Q = 0; and the map
Z/MZ× Z/NZ→ E, sending (a, b) 7→ a · P + b ·Q is injective


for Z[1/MN ]-schemes S. More generally, define the affine modular curve Y (M(u), N(v)) over Z[1/MNuv]
representing the functor

S 7→


isomorphism classes of quintuples (E,P,Q,C,D) where (E,P,Q) is as above,
P ∈ C is a cyclic subgroup of E of order Mu,
Q ∈ D is a cyclic subgroup of E of order Nv such that
C is complementary to Q and D is complementary to P


for Z[1/MNuv]-schemes S. When either u = 1 or v = 1, we drop them from the notation.

Let H be the Poincaré upper half-plane and define the modular group:

Γ(M(u), N(v)) =

{
γ ∈ SL2(Z) such that γ ≡

(
1 0
0 1

)
mod

(
M Mu
Nv N

)}
.

The Riemann surface Y (M,N)(C) admits a complex uniformisation:

(Z/MZ)× × Γ(M,N)\H ∼−→ Y (M,N)(C)
(m, z) 7→ (C/Z + Zz,mz/M, 1/N),

and similarly for Y (M(u), N(v))(C).
Let ` be a prime. There is an isomorphism of Z[1/`MN ]-schemes:

ϕ` : Y (M,N(`)) → Y (M(`), N)
(E,P,Q,C) 7→ (E/NC,P +NC, `−1(Q) ∩ C +NC, (`−1(Z · P +NC)/NC)),

which under the complex uniformisation is induced by the map (m, z) 7→ (m, ` · z).

1.1.2. Degeneracy maps. We have the natural degeneracy maps

Y (M,N`)
µ` // Y (M,N(`))

ϕ`

��

ν` // Y (M,N)

Y (M`,N)
µ̌` // Y (M(`), N)

ν̌` // Y (M,N),

where µ`(E,P,Q) = (E,P, ` ·Q,Z ·Q), ν`(E,P,Q,C) = (E,P,Q), and µ̌`, ν̌` are defined similarly. Put

pr1 := ν` ◦ µ` : Y (M,N`)→ Y (M,N),

(E,P,Q) 7→ (E,P, ` ·Q)
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and

pr` := ν̌` ◦ ϕ` ◦ µ` : Y (M,N`)→ Y (M,N)

(E,P,Q) 7→ (E/NZ ·Q,P +NZ ·Q,Q+NZ ·Q).

On the complex upper half plane H, the map pr1 (resp. pr`) is induced by the identity (resp. multiplication
by `). Moreover, µ`, µ̌`, ν`, ν̌`,pr1,pr` are all finite étale morphisms of Z[1/MN`]-schemes.

1.1.3. Relative Tate modules and Hecke operators. Let S be a Z[1/MN`p]-scheme where p is a fixed prime.
For each Z[1/MN`p]-scheme X, denote the base change XS = X ×Z[1/MN`p] S. Notate A = AX to be
either the locally constant sheaf Z/pmZ(j) or the locally constant p-adic sheaf Zp(j) on Xét for some fixed
j ∈ Z and m ≥ 1.

For the ease of notation, we may write · for M(u), N(v) (i.e. Y (·) = Y (M(u), N(v))). Denote by E(·)
the universal elliptic curve over Y (·). Then one obtains a natural degree ` isogeny of universal elliptic
curves under the base change by ϕ∗`E(M(`), N)→ Y (M,N(`)):

λ` : E(M,N(`))→ ϕ∗` (E(M(`), N).

Denote by v· : E(·)S → Y (·)S the structure map. We also use ν`, ν̌` and λ` for the base change to S of the
corresponding degeneracy maps. Set:

T·(A) = R1v·∗Zp(1)⊗Zp A and T ∗· (A) = HomA(T·(A), A)

where Rqv·∗ is the q-th right derivative of v·∗ : E(·)ét → Y (·)ét. When A = Zp, this gives the relative Tate
module of the universal elliptic curve, in which case we will drop the Zp from the notation.

Fix an integer r ≥ 0. The (perfect) cup product pairing combined with the relative trace

T· ⊗Zp T· → R2v·∗Zp(2) ∼= Zp(1)

allows us to identify T·(−1) with T ∗· . Put

L·,r(A) = Tsymr
AT·(A), S·,r(A) = Symmr

AT ∗· (A),

where Tsymr
RM is the R-submodule of the symmetric tensors in M⊗r, Symmr

RM is the maximal symmetric
quotient of M⊗r, and M is any finite free module over a profinite Zp-algebra R. When the level is clear,
we shall simplify the notations, e.g. writing:

(1.1) Lr(A) = LM(u),N(v),r(A), Lr = Lr(Zp), Sr(A) = SM(u),N(v),r(A), Sr = Sr(Zp).

Let F r
· be either L·,r(A) or S·,r(A). Then there are natural isomorphisms of sheaves

ν∗` (F r
M,N ) ∼= F r

M,N(`), ν̌∗` (F r
M,N ),∼= F r

M(`),N ,

and these induce pullback maps

Hi
ét(Y (M,N(`))S ,F

r
M,N(`))

ν∗`←− Hi
ét(Y (M,N)S ,F

r
M,N )

ν̌∗`−→ Hi
ét(Y (M(`), N)S ,F

r
M(`),N )

and traces

Hi
ét(Y (M,N(`))S ,F

r
M,N(`))

ν`∗−−→ Hi
ét(Y (M,N)S ,F

r
M,N )

ν̌`∗←−− Hi
ét(Y (M(`), N)S ,F

r
M(`),N ).

The finite étale isogeny λ` induces morphisms

λ`∗ : F r
M,N(`) → ϕ∗` (F

r
M(`),N ), λ∗` : ϕ∗` (F

r
M(`),N )→ F r

M,N(`)

and this allows us to define a pushforward

Φ`∗ := ϕ`∗ ◦ λ`∗ : Hi
ét(Y (M,N(`))S ,F

r
M,N(`))→ Hi

ét(Y (M(`), N)S ,F
r
M(`),N )

and a pullback

Φ∗` := λ∗` ◦ ϕ∗` : Hi
ét(Y (M(`), N)S ,F

r
M(`),N )→ Hi

ét(Y (M,N(`))S ,F
r
M,N(`)).

The Hecke operator T` and the dual Hecke operator T ′` acting on Hi
ét(Y (M,N)S ,F

r
M,N ) are defined by

T` := ν̌`∗ ◦ Φ`∗ ◦ ν∗` , T ′` := ν`∗ ◦ Φ∗` ◦ ν̌∗` .
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Remark 1.1.1. Note the relations

deg(µ`)T` = pr`∗ ◦ pr∗1, deg(µ`)T
′
` = pr1∗ ◦ pr∗` ,

as follow immediately from the definitions.

For d ∈ (Z/MNZ)∗, the diamond operator 〈d〉 on Y (·) is defined in terms of moduli by

(E,P,Q,C,D) 7→ (E, d−1 · P, d ·Q,C,D).

This is also a unique diamond operator 〈d〉 on the universal elliptic curve making the following diagram
cartesian:

E(·)S
v·

��

〈d〉 // E(·)S
v·

��
Y (·)S

〈d〉 // Y (·)S

,

and this induces automorphisms 〈d〉 = 〈d〉∗ and 〈d〉′ = 〈d〉∗ on Hi
ét(Y (·)S ,F·).

For any profinite Zp-algebra R and finite free R-module M , the evaluation map induces a perfect pairing

Tsymr
RM ⊗R Symmr

RM
∗ → R,

where M∗ = HomR(M,Zp). This gives a perfect pairing Lr ⊗Zp Sr → Zp, and therefore a cup product

〈·, ·〉 : H1
ét(Y (·)Q,L r(1))⊗Zp H

1
ét,c(Y (·)Q,S r)→ H2

ét(Y (·)Q,Zp(1)) ∼= Zp,

which is perfect after inverting p. Moreover, the Hecke operators T`, T
′
` , 〈d〉, 〈d〉′ induce endomorphisms on

the compactly supported cohomology groups H1
ét,c(Y (·)Q,S r), and by construction, (T`, T

′
`) and (〈d〉, 〈d〉′)

are adjoint pairs under 〈·, ·〉. The Eichler–Shimura isomorphism [Shi94]

H1
ét(Y1(N)Q,L r)⊗Zp C ∼= Mr+2(N,C)⊕ Sr+2(N,C)

commutes with the action of the Hecke operators on both sides.

1.2. Galois representations associated to newforms. Let f =
∑∞
n=1 anq

n be a normalised newform

of weight k ≥ 2, level Γ1(Nf ), and nebentype χf . Let p - Nf be a prime. Fix embeddings i∞ : Q ↪→ C

and ip : Q ↪→ Qp. Let L/Q be a finite extension containing all values i−1
∞ (an) and i−1

∞ ◦ χf . Let P be
the prime of L above p with respect to ip. Then Eichler–Shimura and Deligne construct a p-adic Galois
representation associated to f :

ρf,P : GQ → GL2(LP)

which is unramified outside pNf , and characterised by the property for all finite primes ` - pNf ,

trace(ρf,P(Frob`)) = ip(a`), det(ρf,P(Frob`)) = ip(χf (`)lk−1),

where Frob` is the geometric Frobenius. Moreover, ρf,P is known to be irreducible [Rib77], hence absolutely
irreducible since the image of the complex conjugation has eigenvalues 1 and −1.

1.2.1. Geometric realisations. The representation ρf,P can be realised geometrically as the largest subspace
Vf of

H1
ét(Y1(Nf )Q,S k−2)⊗ LP

on which T` acts as multiplication by a` for all ` - Nfp and 〈d〉′ = 〈d〉∗ acts as multiplication by χf (d) for
all d ∈ (Z/NfZ)×. If N is any multiple of Nf , then the above subspace with Nf replaced by N gives rise
to a representation Vf (N) isomorphic (non-canonically) to a finite number of copies of Vf .

The dual V ∨f = Hom(Vf , LP) can be interpreted as the maximal quotient of

H1
ét(Y1(Nf )Q,L k−2(1))⊗ LP

on which the dual Hecke operator T ′` acts as multiplication by a` for all ` - Nfp and 〈d〉 = 〈d〉∗ acts as
multiplication by χf (d) for all d ∈ (Z/NfZ)×.
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Let O be the ring of integers of LP. In this paper we shall be mostly working with V ∨f and the GQ-stable

O-lattice T∨f ⊂ V ∨f defined as the image of H1
ét(Y1(Nf )Q,L k−2(1))⊗O in V ∨f .

1.2.2. The p-ordinary case. If f is ordinary at p, i.e. ip(ap) ∈ O×, then the restriction of Vf to GQp ⊂ GQ

is reducible, fitting into and exact sequence of LP[GQp ]-modules

0→ V +
f → Vf → V −f → 0

with dimLP
V ±f = 1, and which the GQp

-action on the subspace V +
f given by the unramified character

sending Frobp to αp, the unit root of x2 − apx+ χf (p)pk−1. By duality, we also obtain an exact sequence
for V ∨f restricted to GQp

(1.2) 0→ V ∨,+f → V ∨f → V ∨,−f → 0

with V ∨,+f ' (V −f )∨(1− k)(χ−1
f ), and with the GQp

-action on the quotient V ∨,−f given by the unramified

character sending arithmetic Frobenius Frob−1
p to αp.

1.3. Patched CM Hecke modules. In this section, after explaining our conventions on Hecke characters,
we recall the construction of certain patched CM Hecke modules from [LLZ15].

1.3.1. Hecke characters and theta series. Let K be an imaginary quadratic field in which

p = pp̄ splits,

with p the prime of K above p induced by ip : Q ↪→ Qp. We say that a Hecke character ψ : A×K/K× → C×

has infinity type (a, b) ∈ Z2 if ψ∞(x∞) = xa∞x̄
b
∞. Then ψ(x)x−a∞ x̄−b∞ is a ray class character, hence it takes

value in a finite extension L/K. For P|p the prime of L above p induced by ip, we define the p-adic avatar
ψP of ψ as follows. Denote by recK : A×K → Gab

K the geometrically normalised Artin reciprocity map. For

g ∈ GK , we take x ∈ A×K such that recK(x) = g|Kab and define

ψP(g) = ip ◦ i−1
∞ (ψ(x)x−a∞ x̄−b∞ )xapx

b
p̄.

Since there should be no confusion, in the following we shall also use ψ to denote its p-adic avatar.
Let ψ be a Hecke character of K of infinity type (−1, 0), conductor f, taking values in a finite extension

L/K. The theta series attached to ψ is

θψ =
∑

(a,f)=1

ψ(a)qNK/Q(a) ∈ S2(Γ1(Nψ), χψεK)

where Nψ = NK/Q(f)disc(K/Q), χψ is the unique Dirichlet character modulo NK/Q(f) such that ψ((n)) =
nχψ(n) for all n ∈ Z with (n,NK/Q(f)) = 1, and εK is the quadratic Dirichlet character attached to K.
The cuspform θψ is new of level Nψ if f is the conductor of ψ, and its P-adic representation satisfies

Vθψ
∼= IndQ

KLP(ψ), V ∨θψ
∼= IndQ

KLP(ψ−1).

1.3.2. Hecke algebras and norm maps. Let n ⊂ OK be an ideal divisible by f. PutN = NK/Q(n)disc(K/Q).
Let K[n] be the ray class field of K with conductor n, and let Hn be the ray class group of K modulo

n. Let K(n) be the largest p-subextension of K contained in K[n], so Gal(K(n)/K) ∼= H
(p)
n is the largest

p-power quotient of Hn. For an ideal k of K coprime to n, let [k] be the class of k in Hn.

Proposition 1.3.1 ([LLZ15, Prop. 3.2.1]). Let T′(N) be the subalgebra of EndZ(H1(Y1(N)(C),Z)) gen-
erated by 〈d〉′ and T ′` for all primes `. There exists a homomorphism φn : T′(N)→ O[Hn] defined by

φn(T ′`) =
∑
l

[l]ψ(l),

φn(〈d〉′) = χψ(d)εK(d)[(d)],

where the sum is over the ideals l ⊂ OK with l - n and NK/Q(l) = `.
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For n′ = nl, with l a prime ideal and (n′, p) = 1, put N ′ = NK/Q(n′)disc(K/Q). Following [LLZ15,
§3.3], we consider the norm maps

N n′

n : O[H
(p)
n′ ]⊗T′(N ′)⊗Zp,φn′

H1
ét(Y1(N ′)Q,Zp(1))→ O[H

(p)
n ]⊗T′(N)⊗Zp,φn

H1
ét(Y1(N)Q,Zp(1))

defined by the following formulae:

• If l | n then

N n′

n = 1⊗ pr1∗;

• If l - n is split or ramified in K, then

N n′

n = 1⊗ pr1∗ −
ψ(l)[l]

`
⊗ pr`∗;

• If l - n is inert in K, say l = (`), then

N n′

n = 1⊗ pr1∗ −
ψ(l)[l]

`2
⊗ pr``∗;

and we extend the definition of N n′

n to any pair of ideals n | n′ by composition.

Notation 1.3.2. Let ψ be a character character of K of infinity type (−1, 0) and conductor f. We say that
ψ satisfies Condition ♠ if either (p, f) = 1, or p | f, p̄ - f, and

ψ|O×K 6≡ ω (modP),

where ω is the Teichmüller character.

Since we assume that p splits in K, by Proposition 5.1.2 and Remark 5.1.3 in [LLZ15], if Condition ♠
holds, then for any ideal n ⊂ OK divisible by f and with (n, p̄) = 1, the maximal ideal of T′(N) defined by
the kernel of the composite map

T′(N)
φn−→ O[Hn]

aug−→ O → O/P,

where φn is the map from Proposition 1.3.1, is non-Eisenstein, p-ordinary, and p-distinguished.

Theorem 1.3.3. Let A be the set of ideals m ⊂ OK with (m, p̄) = 1, and put Af = {fm : m ∈ A}. Suppose

ψ satisfies Condition ♠. Then there is a family of GQ-equivariant isomorphisms of O[H
(p)
n ]-modules

νn : O[H
(p)
n ]⊗T′(N)⊗Zp,φn

H1
ét(Y1(N)Q,Zp(1))

∼=−→ IndQ
K(n)O(ψ−1

P )

indexed by n ∈ Af, such that for any n, n′ ∈ Af with n | n′ the following diagram commutes:

O[H
(p)
n′ ]⊗T′(N ′)⊗Zp,φn′

H1
ét(Y1(N ′)Q,Zp(1))

Nn′
n

��

νn′

∼=
// IndQ

K(n′)O(ψ−1
P )

Normn′
n

��
O[H

(p)
n ]⊗T′(N)⊗Zp,φn

H1
ét(Y1(N)Q,Zp(1))

νn
∼=
// IndQ

K(n)O(ψ−1
P ),

where Normn′

n is the natural norm map.

Proof. This is a reformulation of Corollary 5.2.6 in [LLZ15] in the case where p splits in K. �
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1.4. Diagonal classes. We sketch the construction of the diagonal classes in the triple product of modular
curves Y1(N) using classical invariant theory, following Section 3 in [BSV22].

We recall some notation used in Section 1.1.3. Here, Y1(N) = Y1(N)Q, E1(N) = E1(N)Q the universal
elliptic curve over Y1(N) together with the structural map v : E1(N)→ Y1(N). The relative Tate module
of the universal elliptic curve is T = R1v∗Zp(1), and its dual is T ∗ = HomZp(T ,Zp). The cup product
pairing combined with the relative trace

T ⊗Zp T → R2v∗Zp(2) ∼= Zp(1)

gives a perfect relative Weil pairing

〈, 〉E1(N)p∞ : T ⊗Zp T → Zp(1),

which allows T (−1) to be identified with T ∗.
For A either the locally constant sheaf Z/pmZ(j) or the locally constant p-adic sheaf Zp(j) on Xét for

some fixed m ≥ 1 and m, j ∈ Z, recall that

Lr(A) = Tsymr
AT (A), Sr(A) = Symmr

AT ∗(A),

where given any finite free module M over a profinite Zp-algebra R, Tsymr
RM is the R- submodule of the

symmetric tensors in M⊗r, and Symmr
RM is the maximal symmetric quotient of M⊗r.

For a fixed geometric point η : Spec(Q)→ Y1(N), denote by Gη = πét
1 (Y1(N), η) the fundamental group

of Y1(N) with base point η. The stalk of T at η, denoted Tη, is a free Zp-module of rank 2, equipped
with a continuous action of Gη. Fix a choice of Zp-module isomorphism ζ : Tη

∼= Zp ⊕ Zp such that

〈x, y〉E1(N)p∞ = ζ(x) ∧ ζ(y) (where we identify
∧2

Z2
p with Zp via (1, 0) ∧ (0, 1) = 1). One then obtains a

continuous group homomorphism:

ρη : Gη → AutZp(Tη) ∼= GL2(Zp).

By [FK88, Prop A I.8], the category of locally constant p-adic sheaves on Y1(N)ét is equivalent to the
category of p-adic representations of Gη via the map F 7→ Fη. Using ρη, one can associate with every
continuous representation of GL2(Zp) over a free finite Zp-module M a smooth sheaf M ét on Y1(N) such
that M ét

η = M .
Let Si(A) be the set of 2-variable homogeneous polynomials of degree i in A[x1, x2] equipped with the

action of GL2(Zp) by gP (x1, x2) = P ((x1, x2) · g) for all g ∈ GL2(Zp) and P ∈ Si(A). Its A-linear dual
Li(A) is also equipped with a GL2(Zp)-action by gτ(P (x1, x2)) = τ(g−1P (x1, x2)) for all g ∈ GL2(Zp),
P ∈ Si(A), and τ ∈ Li(A). As sheaves on Y1(N)Q, one has

Li(A)ét = L i(A) and Si(A)ét = S i(A).

Hence Tη
∼= L1(Zp) and Zp(1)η ∼=

∧2 Tη
∼= det−1. This implies that for any j ∈ Z, and any p-adic

representation M of GL2(Zp):

(1.3) H0(GL2(Zp),M ⊗ det−j) ↪→ H0(Gη,M ⊗ det−j) ∼= H0
ét(Y1(N),M ét(j)).

Assumption 1.1. Let r = (r1, r2, r3) such that ri ∈ Z≥0, (r1 + r2 + r3)/2 = r ∈ Z≥0, and ri + rj ≥ rk
for all permutation (i, j, k) of (1, 2, 3). We call this the balanced condition.

Under the Assumption 1.1, let

Sr = Sr1(Zp)⊗Zp Sr2(Zp)⊗Zp Sr3(Zp)

a GL2(Zp)-representation, and let

S r = S ét
r = S r1(Zp)⊗Zp S r2(Zp)⊗Zp S r3(Zp).

We identify Sr with the module of 6-variable polynomials Zp[x1, x2, y1, y2, z1, z2] which is homogeneous of
degree r1, r2, and r3 in the variables (x1, x2), (y1, y2), and (z1, z2) respectively. By the Clebsch–Gordan
decomposition of classical invariant theory, the following is a GL2(Zp)-invariant of Sr ⊗ det−r:

DetrN := det

(
x1 x2

y1 y2

)r−r3
det

(
x1 x2

z1 z2

)r−r2
det

(
y1 y2

z1 z2

)r−r1
,
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i.e. DetrN ∈ H0(GL2(Zp), Sr ⊗ det−r) and denote its image under (1.3) as

(1.4) DetrN ∈ H0
ét(Y1(N),S r(r)).

Let pj : Y1(N)3 → Y1(N) for j ∈ {1, 2, 3} be the natural projections and denote

S [r] := p∗1 S r1(Zp)⊗Zp p
∗
2 S r2(Zp)⊗Zp p

∗
3 S r3(Zp),

WN,r := H3
ét(Y1(N)3

Q
,S [r](r + 2)).

Because Y1(N)Q is a smooth affine curve over Q, we have H4
ét(Y1(N)3

Q
,S [r](r + 2)) = 0. Hence by the

Hochschild–Serre spectral sequence,

Hp(Q, Hq
ét(Y1(N)3

Q
,S [r](r + 2))) =⇒ Hp+q

ét (Y1(N)3
Q
,S [r](r + 2))

one obtains

HS : H4
ét(Y1(N)3,S [r](r + 2))→ H1(Q, WN,r).

If we let d : Y1(N)→ Y1(N)3 be the diagonal embedding, then there is a natural isomorphism d∗S [r]
∼= S r

of smooth sheaves on Y1(N)ét. As d is an embedding of codimension 2, there is a pushforward map

d∗ : H0
ét(Y1(N),S r(r))→ H4

ét(Y1(N)3,S r(r + 2)),

and we define the class

(HS ◦ d∗)(DetrN ) ∈ H1(Q, WN,r).

Dually, by the bilinear form det∗ : Li(Zp)⊗ZpLi(Zp)→ Zp⊗det−i defined by det∗(τ⊗σ) = τ⊗σ((x1y2−
x2y1)i) that becomes perfect after inverting p, we can define an isomorphism of GL2(Zp)-modules

si : Si(Qp) ∼= Li(Qp)⊗ deti,

and so si : S i(Qp) ∼= L i(Qp)⊗ deti by the above equivalence of categories. We then similarly define the
sheaves L r on Y1(N) and L [r] on Y1(N)3. Set

VN,r := H3
ét(Y1(N)3

Q
,L [r](2− r)), VN,r = VN,r ⊗Qp.

Let sr = sr1
⊗ sr2

⊗ sr3
, which gives an isomorphism WN,r → VN,r, and finally as in [BSV22] put

(1.5) κN,r := (sr∗ ◦ HS ◦ d∗)(DetrN ) ∈ H1(Q, VN,r).

As explained in detail in [loc. cit., §3.2], the class κN,r is closely related to the p-adic étale Abel–Jacobi
image of the generalised Gross–Kudla–Schoen diagonal cycles on Kuga–Sato varieties studied in [DR14].

Proposition 1.4.1. For a prime number ` and a positive integer m, if (m`, pN) = 1 then

(pri∗,prj∗,prk∗)κm`,r = (F)κm,r

where
(i, j, k) F
(`, 1, 1) (`− 1)(T`, 1, 1)
(1, `, 1) (`− 1)(1, T`, 1)
(1, 1, `) (`− 1)(1, 1, T`)
(1, `, `) `r−r1(`− 1)(T ′` , 1, 1)
(`, 1, `) `r−r2(`− 1)(1, T ′` , 1)
(`, `, 1) `r−r3(`− 1)(1, 1, T ′`)

If (`,m) = 1 then we also have

(i, j, k) F
(1, 1, 1) (`2 − 1)
(`, `, `) (`2 − 1)`r

Proof. See equations (174) and (176) in [BSV22]. �
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2. Main theorems

In this section, for a newform f and two Hecke characters ψ1, ψ2 of an imaginary quadratic field K,
using the results from [BSV22] and [LLZ15] recalled in the preceding section, we construct a family of
cohomology classes for f ⊗ ψ1ψ2 defined over ring class field extensions of K, and prove that they satisfy
the norm relations of an anticyclotomic Euler system.

The construction is in two steps: we first give the construction and the proof of the tame norm relations
in the case where (f, θψ1

, θψ2
) have weights (2, 2, 2); then using the variation of diagonal cycle classes in

Hida families we extend the construction to more general weights and deduce the proof of the wild norm
relations.

Throughout this section we consider the following set-up. We let f ∈ Sk(Γ0(Nf )) be a newform of
weight k ≥ 2, K/Q an imaginary quadratic field of discriminant prime to Nf , and ψ1, ψ2 (not necessarily
primitive) Hecke characters of K of infinity type (1−k1, 0), (1−k2, 0), with k1, k2 ≥ 1, and modulus f1, f2,
respectively. Denote by

θψi ∈ Ski(Nψi , χψi)
the associated theta series, where Nψi = NK/Q(fi) · disc(K/Q) and χφi is the Dirichlet character modulo

NK/Q(fi) defined by ψi((n)) = nki−1χψi(n) for all integers n prime to NK/Q(fi) (i = 1, 2). We assume the
self-duality condition

(2.1) χψ1
χψ2

= 1.

In particular, since k is even by hypothesis, condition (2.1) implies that k1 ≡ k2 (mod 2).
Let L/K be a finite extension containing the Fourier coefficients of f , θψ1 , and θψ2 . Let p ≥ 5 be a

prime that splits in K and such that (p,NfNψ1Nψ2) = 1, and let P|p be the primes of L/K above p

determined by a fixed embedding ip : Q ↪→ Qp. Finally, let LP be the completion of L at P, and denote
by O the ring of integers of LP.

2.1. Construction in weight (2, 2, 2). Suppose in this subsection that k = k1 = k2 = 2. Let N =
lcm(Nf , Nψ1 , Nψ2) and for every positive integer m put

Y (m) := Y (1, Nm) = Y1(Nm).

When m = 1, we drop it from the notation, so Y := Y1(N). We begin with the cohomology class

(2.2) κ̃(1)
m := sr∗ ◦ HS ◦ d∗(DetrNm) ∈ H1

(
Q, H3

ét(Y (m)3
Q
,Zp(2)

)
in the notations of Section 1.4, where r = (0, 0, 0), and put

κ̃(2)
m = (prm∗, 1, 1)κ̃(1)

m ∈ H1
(
Q, H3

ét(YQ × Y (m)2
Q
,Zp(2)

)
,

where, writing m =
∏
i `i as a product of (not necessarily distinct) primes, prm∗ is the composition of the

pushforward by the degeneracy maps pr`i .
Applying the Künneth decomposition theorem (see e.g. [Mil80, Thm. 22.4]) together with the natural

degeneracy maps Y (m)→ Y1(Nψim) (i = 1, 2), the class κ̃
(2)
m is projected to

(2.3) κ̃(3)
m ∈ H1

(
Q, H1

ét(YQ,Zp(1))⊗H1
ét(Y1(Nψ1

m)Q,Zp(1))⊗H1
ét(Y1(Nψ2

m)Q,Zp(1))(−1)
)
.

Now we fix a test vector f̆ ∈ S2(N)[f ]. The maps used in the construction κ̃
(3)
m are compatible with

correspondences, and so after tensoring with O the above process gives rise to a class

κ̃
(4)
f,ψ1,ψ2,m

∈ H1
(
Q, T∨f ⊗H1

ét(Y1(Nψ1m)Q,Zp(1))⊗T′(Nψ1
m) O[H

(p)
f1m

]

⊗H1
ét(Y1(Nψ2

m)Q,Zp(1))⊗T′(Nψ2
m) O[H

(p)
f2m

]
)
,

where the labeled tensor products are with respect to the Hecke algebra homomorphisms

φf1m : T′(Nψ1m)→ O[H
(p)
f1m

], φf2m : T′(Nψ2m)→ O[H
(p)
f2m

]
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of Proposition 1.3.1, and we used our chosen f̆ to take the image under the projection H1
ét(YQ,Zp(1))→ T∨f

in the first factor.
Since p splits in K and is coprime to f1f2, Condition ♠ is satisfied for both ψ1 and ψ2. Therefore by

the isomorphisms from Proposition 1.3.3:

νf1m : H1
ét(Y1(Nψ1

m)Q,Zp(1))⊗T′(Nψ1
m) O[H

(p)
f1m

]
∼−→ IndQ

K(f1m)O(ψ−1
1 ),

νf2m : H1
ét(Y1(Nψ2

m)Q,Zp(1))⊗T′(Nψ2
m) O[H

(p)
f2m

]
∼−→ IndQ

K(f2m)O(ψ−1
2 ),

the class κ̃
(4)
f,ψ1,ψ2,m

defines an element in

H1
(
Q, T∨f ⊗O IndQ

K(f1m)O(ψ−1
1 )⊗O IndQ

K(f2m)O(ψ−1
2 )(−1)

)
,

which under the maps induced by Hf1m � Hm and Hf2m � Hm is naturally projected to a class

κ̃
(5)
f,ψ1,ψ2,m

∈ H1
(
Q, T∨f ⊗O IndQ

KOψ−1
1

[H
(p)
m ]⊗O IndQ

KOψ−1
2

[H
(p)
m ](−1)

)
.

2.1.1. Projection to ring class groups. Directly from the definitions of the class groups involved, we deduce
the commutative diagram with exact rows

O×K ×O
×
K

// (OK/m)× × (OK/m)× // Hm ×Hm
// H1 ×H1

// 1

O×K

∆

OO

// (OK/mOK)×

'

OO

// Hm

OO

// H1

∆

OO

// 1,

where the unlabelled vertical arrow is given by the restriction map

σ 7→ (σ|Km
, σ|Km

).

In particular, when p - 6hK , where hK := |H1| is the class number of K, taking p-primary parts this map
induces an isomorphism

(2.4) H(p)
m

'−→ H
(p)
m ×H(p)

m .

Given an integer n > 0, let H[n] be the ring class group of K of conductor n, so H[n] ' Pic(On) under
the Artin reciprocity map, where On = Z + nOK is the order of K of conductor n. Let H[n](p) be the
maximal p-power quotient of H[n], and denote by K[n] be the maximal p-extension inside the ring class
field of K of conductor n, so H[n](p) = Gal(K[n]/K).

Proposition 2.1.1. Suppose p - 6hK and m is an ideal of OK of norm m divisible only by primes that

are split in K. Then, identifying H
(p)
m with H

(p)
m ×H(p)

m as in (2.4), we have an exact sequence

1 −→ (Z/mZ)×,(p)
∆−→ H

(p)
m ×H(p)

m

π∆−→ H[m](p) −→ 1,

where the map ∆ sends a 7→ ([a], [a]) for every integer a coprime to m. Moreover, if (`) = ll is a prime
that splits in K and is coprime to m, the projection π∆ sends

[l]× [l] 7→ Frobl

where Frobl is the Frobenius element of l in H[m](p).

Proof. The first part is clear from the above discussion together with the commutative diagram with exact
rows

O×K //

��

(OK/mOK)× //

��

Hm
//

��

H1
//

��

1

O×K/Z× // (OK/mOK)×/(Z/mZ)× // H[m] // H1
// 1,

where the vertical arrows are given by the natural projections. The second part follows from the functo-
riality properties of Frobenii. �
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Under the hypotheses in Proposition 2.1.1, we can consider the image of κ̃
(5)
f,ψ1,ψ2,m

under the composite
map

(2.5)

IndQ
KOψ−1

1
[H

(p)
m ]⊗O IndQ

KOψ−1
2

[H
(p)
m ]

ξ∆ ++

ξ // IndQ
KOψ−1

1 ψ−1
2

[H
(p)
m ×H(p)

m ]

π∆

��
IndQ

KOψ−1
1 ψ−1

2
[H[m](p)],

where the horizontal arrow is the map determined by φ1⊗φ2 7→ ξ(φ1⊗φ2) with ξ(φ1⊗φ2)(g) = φ1(g1)⊗
φ2(g2) if g = (g1, g2) ∈ H(p)

m ×H(p)
m , resulting in the class

κ
(6)
f,ψ1,ψ2,m

∈ H1
(
Q, T∨f ⊗O IndQ

KOψ−1
1 ψ−1

2
[H[m](p)](−1)

)
.

Definition 2.1.2. Suppose p - 6hK splits in K and m is an ideal of OK of norm m divisible only by primes
that split in K. Then we define

κ̃f,ψ1,ψ2,m ∈ H1
(
K[m], T∨f (ψ−1

1 ψ−1
2 )(−1)

)
to be the image of κ

(6)
f,ψ1,ψ2,m

under the isomorphism

H1
(
Q, T∨f ⊗O IndQ

KOψ−1
1 ψ−1

2
[H[m](p)](−1)

)
' H1

(
K[m], T∨f (ψ−1

1 ψ−1
2 )(−1)

)
given by Shapiro’s lemma.

We finish this section by recording the following observation for our later use.

Lemma 2.1.3. The following diagram is commutative:

IndQ
KOψ−1

1
[H

(p)
ml ]⊗O IndQ

KOψ−1
2

[H
(p)

ml
]

Normml
m ⊗Normml

m

��

// IndQ
KOψ−1

1 ψ−1
2

[H[ml](p)]

Normml
m

��
IndQ

KOψ−1
1

[H
(p)
m ]⊗O IndQ

KOψ−1
2

[H
(p)
m ] // IndQ

KOψ−1
1 ψ−1

2
[H[m](p)],

where the horizonal arrows are given by the composition ξ∆ in (2.5).

Proof. This is clear from the explicit description of the maps involved. �

2.2. Proof of the tame norm relations. Let m be an ideal of norm m for which we have the class
κ̃f,ψ1,ψ2,m as in Definition 2.1.2.

Proposition 2.2.1. Let l be a prime split in K of norm ` coprime to mp. Then

Norm
K[m`]
K[m] (κ̃f,ψ1,ψ2,ml) = (`− 1)

(
a`(f)− ψ1(l)ψ2(l)

`
([l]× [l])− ψ1(l)ψ2(l)

`
([l]× [l])

+ (1− `)ψ1(l)ψ2(l)

`2
([l]× [l])

)
(κ̃f,ψ1,ψ2,m).

Proof. In the notations of Theorem 1.3.3, for any n = fm ∈ Af put

H1(ψ, fm) := H1
ét(Y1(Nψm)Q,Zp(1))⊗T′(Nψm) O[H

(p)
fm ].

Then from Theorem 1.3.3 and Lemma 2.1.3 we have the following commutative diagram:

(2.6)

H1
(
Q, T∨f ⊗H1(ψ1, f1ml)⊗H1(ψ2, f2ml)

)
1⊗Nml

m ⊗N
ml
m

��

// H1
(
K[ml], T∨f (ψ−1

1 ψ−1
2 )(−1)

)
Normml

m

��
H1
(
Q, T∨f ⊗H1(ψ1, f1m)⊗H1(ψ2, f2m)

)
// H1

(
K[m], T∨f (ψ−1

1 ψ−1
2 )(−1)

)
,
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where the horizontal arrows are given by the maps induced by the composition

H1(ψ1, f1m
′)

νf1m′−−−→ IndQ
K(f1m′)

O(ψ−1
1 ) ' IndQ

KOψ−1
1

[H
(p)
f1m′

] −→ IndQ
KOψ−1

1
[H

(p)
m′ ]

and likewise for H1(ψ2, f2m
′), together with the composition ξ∆ in (2.5).

Now, tracing through the definitions we compute:

(1⊗Nml
m ⊗Nml

m )(κ̃
(2)
m`)

= (1⊗Nml
m ⊗Nml

m )(prm`∗, 1, 1)(κ̃
(1)
m`)

= (prm∗, 1, 1)(pr`∗ ⊗Nml
m ⊗Nml

m )(κ̃
(1)
m`)

= (prm∗, 1, 1)

(
pr`∗×(1⊗ pr1∗ −

ψ1(l)[l]

`
⊗ pr`∗)× (1⊗ pr1∗ −

ψ2(̄l)[̄l]

`
⊗ pr`∗)

)
(κ̃

(1)
m`)

= (prm∗, 1, 1)

(
(pr`∗,pr1∗,pr1∗)−

ψ1(l)[l]

`
(pr`∗,pr`∗,pr1∗)−

ψ2(l)[l]

`
(pr`∗,pr1∗,pr`∗)

+
ψ1(l)ψ2(l)

`2
([l]× [l])(pr`∗,pr`∗,pr`∗)

)
(κ̃

(1)
m`).

Together with Proposition 1.4.1, we thus obtain

(1⊗Nml
m ⊗Nml

m )(κ̃
(2)
m`) = (`− 1)(prm∗, 1, 1)

(
(T`, 1, 1)− ψ1(l)[l]

`
(1, 1, T ′`)− (1, T ′` , 1)

ψ2(l)[l]

`

+
ψ1(l)ψ2(l)

`2
([l]× [l])(`+ 1)

)
(κ̃(1)
m )

= (`− 1)

(
(T`, 1, 1)− ψ1(l)[l]

`
(1, 1, T ′`)− (1, T ′` , 1)

ψ2(l)[l]

`

+
ψ1(l)ψ2(l)

`2
([l]× [l])(`+ 1)

)
(κ̃(2)
m ),

and from this it follows that

(1⊗Nml
m ⊗Nml

m )(κ̃
(4)
f,ψ1,ψ2,ml)

= (`− 1)

(
a`(f)− ψ1(l)[l]

`
(ψ2(l)[l] + ψ2(l)[l])− (ψ1(l)[l] + ψ1(l)[l])

ψ2(l)[l]

`

+
ψ1(l)ψ2(l)

`2
([l]× [l])(`+ 1)

)
(κ̃

(4)
f,ψ1,ψ2,m

)

= (`− 1)

(
a`(f)− ψ1(l)ψ2(l)

`
([l]× [l])− ψ1(l)ψ2(l)

`
([l]× [l])

+ (1− `)ψ1(l)ψ2(l)

`2
([l]× [l])

)
(κ̃

(4)
f,ψ1,ψ2,m

).

In light of the commutative diagram (2.6), this yields the result. �

Remark 2.2.2. The appearance of the factor (` − 1) in Proposition 2.2.1 can be traced back to the
relations deg(µ`)T` = pr`∗ ◦ pr∗1 and deg(µ`)T

′
` = pr1∗ ◦ pr∗` , i.e., it is caused by the degeneracy map µ`. In

the next subsection we shall get rid of this extra factor.

Remark 2.2.3. We want to emphasize that Proposition 2.2.1 is the key result for the construction of our
anticyclotomic Euler system for T∨f (ψ−1

1 ψ−1
2 )(−1). Indeed, with the factor (`− 1) stripped out, the term

in the right-hand side of Proposition 2.2.1 can be massaged to agree with the local Euler factor at l of the
Galois representation [T∨f (ψ−1

1 ψ−1
2 )(−1)]∨(1) = Tf (ψ1ψ2)(2), giving the correct norm relations.
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2.2.1. Removing the extra factor (` − 1). Adapting some ideas from [DR17, §1.4], we now introduce a
modification of the classes κ̃f,ψ1,ψ2,m for which we can prove an analogue of Proposition 2.2.1 without the
extra factor (`− 1).

We begin by noting that for any prime ` - N the degeneracy maps pr1,pr` : Y1(N`) → Y1(N) can be
factored as

Y1(N`)

pr1

%%
µ`

��
Y (1, N(`))

π1

// Y1(N)

Y1(N`)

pr`

&&
µ`

��
Y (1, N(`))

π`
// Y1(N),

where π1 and π` are a non-Galois coverings of degree `+1, and we recall that µ` is a cyclic Galois covering
of degree `− 1.

Denote by

Dm = {(〈d〉, 〈d〉) : d ∈ (Z/NmZ)×, d ≡ 1 (modN)}
the set of diamond operators acting diagonally on Y1(Nm)2. Set

W1(Nm) = (Y1(Nm)× Y1(Nm))/Dm,

and denote by dm : Y1(Nm)2 → W1(Nm) the natural projection map, which is an étale morphism of
degree φ(m) = |(Z/mZ)×|.

Let κ̃
(1)
m be as in (2.2), and denote by

κ(1)
m ∈ H1

(
Q, H3

ét(Y (1, N(m))Q ×W1(Nm)Q,Zp)(2)
)

the image of (µm∗, 1, 1)(κ̃
(1)
m ) under the natural map induced by dm; thus the class κ

(1)
m is defined by the

relation

(2.7) (µm∗, dm∗)κ̃
(1)
m = φ(m)κ(1)

m .

Proposition 2.2.4. For a prime number ` and a positive integer m such that (m, `) = 1 and (m`, pN) = 1,
we have

(πi∗,prj∗,prk∗)κ
(1)
m` = (F)κ(1)

m ,

where
(i, j, k) F (i, j, k) F
(`, 1, 1) (T`, 1, 1) (`, 1, `) (1, T ′` , 1)
(1, `, 1) (1, T`, 1) (`, `, 1) (1, 1, T ′`)
(1, 1, `) (1, 1, T`) (1, 1, 1) (`+ 1)
(1, `, `) (T ′` , 1, 1) (`, `, `) (`+ 1)

Proof. Directly from the definitions we find

(µm∗, dm∗)(pr`∗,pr1∗,pr1∗)κ̃
(1)
m` = (π`∗,pr1∗,pr1∗)(µm`∗, dm`∗)κ̃

(1)
m

= φ(m`)(π`∗,pr1∗,pr1∗)κ
(1)
m ,

while on the other hand, from Proposition 1.4.1 and (2.7) we have

(µm∗, dm∗)(pr`∗,pr1∗,pr1∗)κ̃
(1)
m` = (µm∗, dm∗)(`− 1)(T`, 1, 1)κ̃(1)

m

= φ(m)(`− 1)(T`, 1, 1)κ(1)
m .

Since φ(m`) = (` − 1)φ(m) under our assumptions, this shows the result in the case (i, j, k) = (`, 1, 1)
and the other cases are shown in the same manner. �

Now we want to proceed as above to obtain from the new κ
(1)
m a construction of classes satisfying the

correct norm relations (i.e., without the factor `−1). This requires a careful study of the étale cohomology
of the quotient Y (1, N(m))×W1(Nm).



18 F. CASTELLA AND K. T. DO

We begin with the Hochschild–Serre spectral sequence:

Ep,q2 = Hp
(
Dm, H

q
ét,c(Y (1, N(m))Q × Y1(Nm)2

Q
,Zp)

)
⇒ Hp+q

ét,c

(
Y (1, N(m))Q ×W1(Nm)Q,Zp

)
.

This yields the exact sequence

(2.8) E −→ H3
ét,c

(
Y (1, N(m))Q ×W1(Nm)Q,Zp

) (1,d∗m)−−−−→ E0,3
2

d0,3
2−−→ E2,2

2 ,

where E is naturally identified with a subquotient of E1,2
2 ⊕E

2,1
2 . Thus we see that the difference between

the two middle pieces are classes coming from Hq
ét,c(Y (1, N(m))Q × Y1(Nm)2

Q
,Zp) with 0 ≤ q ≤ 2. From

the Künneth decomposition, each of these classes will have a factor from either H0
ét,c(Y (1, N(m))Q,Zp) or

H0
ét,c(Y1(Nm)Q,Zp), and so they will be annihilated after localisation at a non-Eisenstein ideal I of T′Nm,

therefore obtaining an isomorphism

H3
ét,c

(
Y (1, N(m))Q ×W1(Nm)Q,Zp

)
I

(1,d∗m)−−−−→ H3
ét,c

(
Y (1, N(m))Q × Y1(Nm)2

Q
,Zp)

)Dm
I

after localizing (2.8) at I. By Poincaré duality, from (2.8) we obtain a map

(2.9) H3
ét

(
Y (1, N(m))Q ×W1(Nm)Q,Zp

) (1,dm∗)←−−−−− H3
ét

(
Y (1, N(m))Q × Y1(Nm)2

Q
,Zp)

)
Dm

whose kernel and cokernel will also be annihilated by localization at a non-Eisenstein ideal I. Additionally,
we recall the following lemma:

Lemma 2.2.5. For I a non-Eisenstein maximal ideal of T′N , we have natural isomorphisms

H1
c (Y1(N)Q,Zp)I

∼−→ H1(X1(N)Q,Zp)I
∼−→ H1(Y1(N)Q,Zp)I .

Proof. Immediate from the Manin–Drinfeld theorem (see e.g. [LLZ14, Prop. 4.1.3]). �

Hence from (2.9), Lemma 2.2.5, and the Künneth decomposition, it follows that after localization at a
non-Eisenstein maximal ideal I we get a natural map

(2.10) H3
ét(Y (1, N(m))Q ×W1(Nm)Q,Zp)I

(1,d−1
m∗)−−−−−→ H1

ét(Y (1, N(m))Q,Zp)I⊗
H1

ét(Y1(Nm)Q,Zp)I ⊗Dm H1
ét(Y1(Nm)Q,Zp))I .

Next, for ψ a Hecke character of K of conductor f and m an ideal of K of norm m coprime to p divisible
only by primes that split in K, we let Ifm be the kernel of the composite map

T′Nm
φfm−−→ O[Hfm]

aug−−→ O −→ O/P.
By [LLZ15, Prop 5.1.2], the maximal ideal Ifm is non-Eisenstein, p-ordinary and p-distinguished. At a
later step, we shall look at the module

O[H
(p)
fm ]⊗T′(Nm)⊗Zp,φfm

H1
ét(Y1(Nm)Q,Zp(1)),

and it is clear that the map from H1
ét(Y1(Nm)Q,Zp(1)) to this module factors through completion at Ifm.

Moreover, assuming that f is non-Eisenstein modulo P (i.e. T∨f is residually irreducible), we can choose

an auxiliary prime q - Nmp with 1 + q − aq(f) ∈ Z×p and
1+q−Tq

1+q−aq(f) /∈ Ifm, hence defining an invertible

element after localization at Ifm that fixes the f -isotypic component we are interested in.

Now we put κ
(2)
m := (πm∗, 1, 1)κ

(1)
m , and define

κ(3)
m ∈ H1

(
Q, H1

ét(Y (1, N(m))Q,Zp)I ⊗H
1
ét(Y1(Nψ1m)Q,Zp)I ⊗Dm H1

ét(Y1(Nψ2m)Q,Zp)I(−1)
)
,

with I = Ifm, to be the image of κ
(2)
m under the map (2.10) composed with the natural degeneracy maps

Y1(Nm)→ Y1(Nψim) (i = 1, 2).

Note that taking D
(p)
m -coinvariants (where D

(p)
m denotes the p-part of Dm) is compatible with the

diagonal map ξ∆ in (2.5), since by Theorem 1.3.1 for (〈d〉, 〈d〉) ∈ D
(p)
m we have φm(〈d〉′) × φm(〈d〉′) =



DIAGONAL CYCLES AND ANTICYCLOTOMIC IWASAWA THEORY OF MODULAR FORMS 19

[d] × [d] ∈ H(p)
m ×H(p)

m , and this is in the kernel of π∆. Thus applying to κ
(3)
m the same process we used

above to go from κ̃
(3)
m to the class κ̃f,ψ1,ψ2,m of Definition 2.1.2 we obtain

κf,ψ1,ψ2,m ∈ H1
(
K[m], T∨f (ψ−1

1 ψ−1
2 )(−1)

)
.

Proposition 2.2.6. Suppose f is non-Eisenstein modulo P. Let m be an ideal of OK of norm m divisible
only by primes split in K, and let l be a prime split in K of norm ` coprime to mp. Then

Norm
K[m`]
K[m] (κf,ψ1,ψ2,ml) =

(
a`(f)− ψ1(l)ψ2(l)

`
([l]× [l])− ψ1(l)ψ2(l)

`
([l]× [l])

+ (1− `)ψ1(l)ψ2(l)

`2
([l]× [l])

)
(κf,ψ1,ψ2,m).

Proof. After the above discussion, the same calculation as in the proof of Proposition 2.2.1 applies, replac-
ing the use of Proposition 1.4.1 by Proposition 2.2.4. �

Thus we arrive at the following theorem:

Theorem 2.2.7. Suppose p - 6hK and f is non-Eisenstein modulo P. Let m run over the ideals of OK
divisible only by primes that are split in K with m = NK/Q(m) coprime to p. Then there exists a collection
of cohomology classes

zf,ψ1,ψ2,m ∈ H1
(
K[m], T∨f (ψ−1

1 ψ−1
2 )(−1)

)
such that for every split prime l of OK of norm ` with (`,mp) = 1 we have the norm relation

Norm
K[m`]
K[m] (zf,ψ1,ψ2,ml) = Pl(Frobl)(zf,ψ1,ψ2,m),

where Pl(X) = det(1−X · Frobl |Tf (ψ1ψ2)(2)).

Proof. Denote by Ql the factor appearing in the right-hand side of Proposition 2.2.6. Recalling that [l]× [l]
corresponds to Frobl ∈ H[m](p) under the map π∆ of Proposition 2.1.1, we find the following congruences
as endomorphisms of H1(K[m], T∨f (ψ−1

1 ψ−1
2 )(−1)):

− ψ1ψ2(l)([l]× [l]) ·Ql

≡ −a`(f)ψ1ψ2(l)([l]× [l]) +
ψ1ψ2(l)2

`
([l]× [l])2 +

ψ1ψ2((`))

`
([`]× [`])

≡ Pl(Frobl) (mod `− 1),

using the relation ψ1ψ2((`)) = χψ1
χψ2

(`)`2 = `2 and the fact that [`] × [`] is in the kernel of π∆ for the
second congruence. Therefore, by Lemma 9.6.1 and 9.6.3 in [Rub00], the existence of classes zf,ψ1,ψ2,m

satisfying the stated norm relations follows from Proposition 2.2.6. �

Remark 2.2.8. Similar to what we did for l a split prime of K, when l = (`) is inert in K, we also obtain
such a norm relation like in Theorem 2.2.7. Remember that in this case, we push forward from level N`2

to level N . First, note that the norm map from Proposition 1.3.1 is then given by

N n(`)
n = 1⊗ pr1∗ −

ψ(`)[(`)]

`2
⊗ pr``∗

Second, to calculate (1⊗Nm`
m ⊗Nm`

m )(κ
(2)
m`), just like in Proposition 2.2.1, we use the table in Proposition

1.4.1 together with

(pr`∗,pr1*,pr1*)(T`, 1, 1)κ
(2)
m` = {(T 2

` , 1, 1)− (`+ 1)(〈`〉, 1, 1)}κ(2)
m ,

(pr`∗,pr`∗,pr1*)(1, 1, T ′`)κ
(2)
m` = {(1, 1, T ′2` )− (`+ 1)(1, 1, 〈`〉′)}κ(2)

m ,

and arrive at

Norm
K[m`]
K[m] (κ

(6)
f,ψ1,ψ2,ml) = (`− 1)

(
a`(f)2 − (`+ 1)− 2(`+ 1)

`
[`]× [`] + (`+ 1)[`]× [`]

)
(κ

(6)
f,ψ1,ψ2,m

).
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Instead of Proposition 2.1.1, we use the following exact sequence

1 −→ Hm
∆−→ Hm ×Hm −→ Hm −→ 1,

combining with the quotient Hm → H[m], which makes [`]× [`] acting trivially on the cohomology class.
After removing the extra factor (`− 1) and multiplying with −1 on the RHS factor, we obtain the correct
Euler factor modulo `2 − 1:

Pl(Frobl) = 2 + 2`− a`(f)2.

Note that (`+ 1)/` ≡ (`+ 1)` = `2 + ` ≡ 1 + ` (mod `2 − 1) and the twist ψ1(`)ψ2(`)/`2 = 1.

2.3. Construction for general weights and wild norm relations. Keeping the setting introduced
at the beginning of §2, we now extend the construction of the preceding subsection to arbitrary weights
k ≥ 1 and k1, k2 ≥ 1, and prove that the resulting classes κf,ψ1,ψ2,m also satisfy the wild norm relations
(i.e., they are universal norms for the anticyclotomic Zp-extension of K). In this subsection, we assume
in addition that

(2.11) p = pp̄ splits in K,

with p the prime of K above p induced by our fixed embedding ip : Qp ↪→ Qp, and that

(2.12) p - hK ,

where hK is the class number of K.
Let Γp the Galois group of the unique Zp-extension of K unramified outside p, and let ψ0 be the unique

Hecke character of K of infinity type (−1, 0), conductor p, and whose P-adic avatar factors through Γp. (As
noted in [BL18, §3.2.1], the uniqueness of ψ0 is a consequence of our assumption (2.12).) The characters
ψ1, ψ2 fixed at the beginning of this section can be uniquely written as

ψi = ξiψ
ki−1
0 ,

where ξi is a ray class character of K of conductor dividing fip. Viewing ψ0 and ξi as characters on Hfip∞

(noting that Γp is a quotient the latter group), we consider the formal q-expansion

θξi(q) =
∑

(a,fip)=1

ξiψ0(a)[a]qNK/Q(a) ∈ Λp[[q]],

where Λp = O[[Γp]]. Identifying Γp with Γ = 1 + pZp via the (geometrically normalised) local Artin map,
inducing an identification Λp ' OJΓK, then θξi is the Hida family passing through θψi , in the sense that
the specialisation of θξi at weight ki and trivial character recovers the ordinary p-stabilization of θψi (see
§4.1.1 below for our conventions regarding Hida families).

In the following, we let f be the Hida family associated to f , and

(g,h) = (θξ1 ,θξ2)

be the CM Hida families associated to ψ1 and ψ2, respectively. We also use κf , κg, and κh to denote the
Dirichlet characters modulo p giving the p-part of the tame characters of f , g, and h, respectively.

Let Λ = ZpJΓK. For each i ∈ Z/(p− 1)Z denote by κi : Z×p → Λ× the character z 7→ ωi(z)[〈z〉], where

ω : Z×p → Z×p is the reduction map composed with the Teichmüller lift, and 〈z〉 = zω−1(z) ∈ 1 + pZp.

Set T = Z×p × Zp, T′ = pZp × Z×p . Let mΛ be the maximal ideal of Λ, denote by Cont(Zp,Λ) the
Λ-module of continuous functions on Zp with values in Λ, and put κ = κi for some i ∈ Z/(p − 1)Z. We
consider the Λ-modules

Aκ =
{
f : T→ Λ | f(1, z) ∈ Cont(Zp,Λ) and f(a · t) = κ(a) · f(t) for all a ∈ Z×p , t ∈ T

}
,

A′κ =
{
f : T′ → Λ | f(pz, 1) ∈ Cont(Zp,Λ) and f(a · t) = κ(a) · f(t) for all a ∈ Z×p , t ∈ T′

}
equipped with the mΛ-adic topology, and set

Dκ = Homcont,Λ(Aκ,Λ), D′κ = Homcont,Λ(A′κ,Λ)

equipped with the weak-∗ topology.
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As in [BSV22, Eq. (81))], the evaluation A·κ ⊗Λ D·κ → Λ gives rise to a Λ-module homomorphism

ξi : H1(Γ,Aκ)→ HomΛ(H1
c (Γ,Dκ),Λ).

Similarly, the determinant map det : T×T′ → Z×p defined by det((x1, x2), (y1, y2)) = x1y2−x2y1, composed

with κi : Z×p → Λ× gives rise to

ζi : HomΛ(H1
c (Γ,Dκ),Λ)→ H1(Γ,D′κ)(−κi).

Then for any weight k = r + 2 ≥ 2 with k ≡ i (mod p− 1) we have specialization maps

ρr : H1(Γ,Aκ)→ H1
ét(YQ,Sr), ρr : H1(Γ,D′κ)→ H1

ét(YQ,Lr)

fitting into the commutative diagram

H1(Γ,Aκ)

ρr

��

ζi◦ξi //

ρr

��

H1(Γ,D′κ)(−κi)

ρr

��
H1

ét(YQ,Sr)
sr // H1

ét(YQ,Lr)(−r).

To ease notation, set Y (m, p) = Y (1, Nm(p)) and denote by Γ(m, p) the associated congruence subgroup.
Adopting the notations from [BSV22, §8.1] (but working the modules of continuous functions A·κ and their
duals D·κ as above, rather than the analogous spaces of locally analytic functions considered in [BSV22]),
we denote by

(2.13) κ̃(1)
m ∈ H1

(
Q, H1(Γ(m, p),D′κf )⊗̂OH1(Γ(m, p),D′κg )⊗̂OH1(Γ(m, p),D′κh)(2− κ∗fgh)

)
the image of the element DetfghNm,p ∈ H0

ét(Y (m, p),A′κf ⊗Aκg ⊗Aκh(−κ∗fgh)) defined in [BSV22, §8.1]
under the composition

H0
ét

(
Y (m, p),A′κf ⊗Aκg ⊗Aκh(−κ∗fgh)

)
d∗−→ H4

ét

(
Y (m, p)3,A′κf �Aκg �Aκh(−κ∗fgh)⊗ Zp(2)

)
HS−→ H1(Q, H3

ét(Y (m, p)3
Q
,A′κf �Aκg �Aκh)(2 + κ∗fgh))

K−→ H1
(
Q, H1(Γ(m, p),A′κf )⊗̂OH1(Γ(m, p),Aκg )⊗̂OH1(Γ(m, p),Aκh)(2 + κ∗fgh)

)
(wp⊗1⊗1)∗−−−−−−−→ H1

(
Q, H1(Γ(m, p),Aκf )⊗̂OH1(Γ(m, p),Aκg )⊗̂OH1(Γ(m, p),Aκh)(2 + κ∗fgh)

)
sfgh−−−→ H1

(
Q, H1(Γ(m, p),D′κf )⊗̂OH1(Γ(m, p),D′κg )⊗̂OH1(Γ(m, p),D′κh)(2− κ∗fgh)

)
,

where sfgh is the tensor of the compositions ζi ◦ ξi for i = κf , κg, κh.
As we did in §2.2.1, replacing the second and third copies of Y (m, p) in the above construction by the

quotient (Y (m, p)× Y (m, p))/Dm, where Dm is the group of diamond operators, we obtain the class

(2.14) κ(1)
m ∈ H1

(
Q, H1(Γ̃(m, p),D′κf )⊗̂OH1(Γ(m, p),D′κg )⊗̂O[Dm]H

1(Γ(m, p),D′κh)(2− κ∗fgh)
)

determined by the relation φ(m)κ
(1)
m = (µm∗, dm∗)κ̃

(1)
m , where Γ̃(m, p) = Γ(1, N(mp)), and we put

(2.15) κ(2)
m := (πm∗, 1, 1)κ(1)

m .

Proposition 2.3.1. For a prime number ` and a positive integer m with (m`, pN) = 1 we have

(πi∗,prj∗,prk∗)κ
(1)
m` = (F)κ(1)

m ,

where



22 F. CASTELLA AND K. T. DO

(i, j, k) F
(`, 1, 1) (T`, 1, 1)
(1, `, 1) (1, T`, 1)
(1, 1, `) (1, 1, T`)
(1, `, `) κ∗fgh(`)κ∗f (`)−1(T ′` , 1, 1)

(`, 1, `) κ∗fgh(`)κ∗g(`)−1(1, T ′` , 1)

(`, `, 1) κ∗fgh(`)κ∗h(`)−1(1, 1, T ′`)

If we also have that (`,m) = 1 then

(i, j, k) F
(1, 1, 1) (`+ 1)
(`, `, `) (`+ 1)κ∗fgh(`)

Proof. With πi replaced by pri and the classes κ
(1)
m replaced by κ̃

(1)
m , the stated relations with an extra

factor of ` − 1 follow immediately from equations (174) and (176) in [BSV22] (adding the prime ` to the

level, rather than p). The stated relations for κ
(1)
m then follow in the same way as in Proposition 2.2.4. �

Assume that

ξiψ0 6≡ ω (modP)

for i = 1, 2. Then for every r ≥ 0 Condition ♠ holds, and so by Theorem 1.3.3, for every ideal m of norm
m coprime to p the Hecke algebra homomorphism

φfimpr : T(1, Nψimp
r)′ → O[Hfimpr ]

associated to ξiψ0 induces an isomorphism

νfimpr : H1
ét(Y1(Nψimp

r)Q,Zp(1))⊗O[H
(p)
fimpr ]

'−→ IndQ
K(fimpr)O((ξiψ0)−1)

safisfying the natural compatibility as r varies. On the other hand, as noted in [BSV22, p. 38], from a
slight variant of Lemma 6.8 in [GS93] we obtain a GQ-module isomorphisms

(2.16) H1(Γ(1, Nψim(p)),D′κi)(1) ' ei lim←−
r

H1
ét(Y1(Nψimp

r)Q,Zp(1)).

Therefore combining (2.16) with the inverse limit of the isomorphisms νfimpr we obtain the GQ-equivariant
isomorphisms

νfimp∞ : H1(Γ(1, Nψim(p)),D′κi)⊗O[[H
(p)
fimp∞ ]]

'−→ IndQ
K(fim)Λp((ξiψ0)−1).

Composing these with the natural degeneracy maps from level Γ(m, p) to level Γ(1, Nψim(p)) and the

projection H
(p)
fim
→ H

(p)
m , we then obtain GQ-equivariant maps

(2.17)
H1(Γ(m, p),D′κ1

)⊗O[[H
(p)
f1mp∞ ]]→ IndQ

KO(ξ1ψ0)−1 [H
(p)
m ][[Γp]],

H1(Γ(m, p),D′κ2
)⊗O[[H

(p)
f2mp∞ ]]→ IndQ

KO(ξ2ψ0)−1 [H
(p)
m ][[Γp]].

Similarly as in §2.1, the maps used in the construction of the class κ
(2)
m in (2.15) are compatible under

correspondences. Hence after tensoring with O[H
(p)
f1mpr ] and O[H

(p)
f2mpr ] using the maps φf1mpr and φf2mpr ,

respectively, and letting r →∞, the same construction gives rise to a class

κ
(3)
ψ1,ψ2,m

∈ H1
(
Q, H1(Γ(1, N(p)),D′κf )⊗̂O(H1(Γ(m, p),D′κg )⊗O[[H

(p)
f1mp∞ ]])

⊗̂O[Dm](H
1(Γ(m, p),D′κh)⊗O[[H

(p)
f2mp∞ ]])(2− κ∗fgh)

)
.

Now let f̆ be a level-N test vector for f , and consider the associated specialization map

(2.18) πf : H1(Γ(1, N(p),D′κf )(1)→ T∨f .



DIAGONAL CYCLES AND ANTICYCLOTOMIC IWASAWA THEORY OF MODULAR FORMS 23

Then taking the image of κ
(3)
ψ1,ψ2,m

under the natural maps induced by (2.17) and (2.18) we obtain

κ
(4)
f,ψ1,ψ2,m

∈ H1
(
Q, T∨f ⊗O (IndQ

KO(ξ1ψ0)−1 [H
(p)
m ][[Γp]])⊗̂O[Dm](IndQ

KO(ξ2ψ0)−1 [H
(p)
m ][[Γp]])(−1− κ∗fgh)

)
,

which after specializing the third factor to weight k2, i.e. taking the projection

O(ξ−1
2 ψ0)−1 [H

(p)
m ][[Γp]]→ Oψ−1

2
[H

(p)
m ],

and applying the diagonal map ξ∆ in (2.5) finally gives rise to the class

(2.19) κ
(5)
f,ψ1,ψ2,m

∈ H1
(
Q, T∨f (1− k/2)⊗O IndQ

K[m]ΛO(ψ−1
1 ψ−1

2 κ(k1+k2−4)/2
ac κ−1

ac )(1− (k1 + k2)/2)
)
.

Here, we identify Γ− = Gal(K−∞/K) with the anti-diagonal in (1 + pZp) × (1 + pZp) ' O(1)
K,p × O

(1)
K,p̄ via

the geometric normalised Artin map, and define

κac : Γ− → Z×p , ((1 + p)−1/2, (1 + p)1/2) 7→ (1 + p),

κac : Γ− → Λ×, ((1 + p)−1/2, (1 + p)1/2) 7→ [(1 + p)].

Then, for T an O-lattice inside a GK-representation V , by Shapiro’s lemma we have

H1
(
K,T ⊗̂OΛO(κ−1

ac )
)
' H1

Iw(K[p∞], T ),

where H1
Iw(K[p∞], T ) := lim←−rH

1(K[pr], T ) with limit under the corestriction maps. Thus in the following

we shall view the class κ
(5)
f,ψ1,ψ2,m

in (2.19) as an Iwasawa cohomology class

(2.20) κf,ψ1,ψ2,m ∈ H1
Iw

(
K[mp∞], T∨f (1− k/2)⊗ ψ−1

1 ψ−1
2 κ(k1+k2−4)/2

ac (1− (k1 + k2)/2)
)

for the self-dual representation T∨f (1 − k/2) twisted by the Hecke character ψ−1
1 ψ−1

2 N1−(k1+k2)/2, which

is anticyclotomic and of infinity type ((k1 + k2)/2− 1,−(k1 + k2)/2 + 1). For the ease of notation, put

(2.21) Tf,ψ1,ψ2
= T∨f (1− k/2)⊗ ψ−1

1 ψ−1
2 (1− (k1 + k2)/2).

Thus we arrive at the following key result.

Theorem 2.3.2. Suppose p - 6hK and f is non-Eisenstein modulo P. Let m run over the ideals of OK
divisible only by primes that are split in K with m = NK/Q(m) coprime to p. Then there exists a collection
of Iwasawa cohomology classes

zf,ψ1,ψ2,m ∈ H1
Iw

(
K[mp∞], Tf,ψ1,ψ2

)
such that for every split prime l of OK of norm ` with (`,mp) = 1 we have the norm relation

Norm
K[m`]
K[m] (zf,ψ1,ψ2,ml) = Pl(Frobl)(zf,ψ1,ψ2,m),

where Pl(X) = det(1−X · Frobl | (Tf,ψ1,ψ2)∨(1)).

Proof. This follows from a direct adaptation of the proof of Theorem 2.2.7. The only difference is that
this time we also invoke [Rub00, Thm 6.3.5] to go from a collection of Iwasawa cohomology classes for the
twist

T∨f (1− k/2)⊗ ψ−1
1 ψ−1

2 κ(k1+k2−4)/2
ac (1− (k1 + k2)/2) = Tf,ψ1,ψ2

⊗ κ(k1+k2−4)/2
ac

with the stated norm relations, to a similar collection of cohomology classes for Tf,ψ1,ψ2 . �

3. Anticyclotomic Euler systems

In this section we show that the system of classes constructed in Theorem 2.3.2 (and a variant thereof)
land in certain Selmer groups defined in the style of Greenberg [Gre94]. As a result, our classes form an
anticyclotomic Euler system in the sense of Jetchev–Nekovář–Skinner [JNS]. We then record the bounds
on different Selmer groups that follow by applying their machinery to our construction.

Throughout we let f ∈ Sk(Γ0(Nf )) be a p-ordinary newform of weight k ≥ 2 with p - Nf , and K/Q be
an imaginary quadratic field of discriminant prime to Nf in which p = pp̄ splits.
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3.1. Selmer groups. Let χ be an anticyclotomic Hecke character of K of infinity type (−j, j) for some
j ≥ 0, and consider the conjugate self-dual GK-representation

Vf,χ := V ∨f (1− k/2)⊗ χ−1.

Given a prime v of K above p and a GKv -stable subspace F+
v (Vf,χ) ⊂ Vf,χ, we put F−v (Vf,χ) =

Vf,χ/F+
v (Vf,χ).

Definition 3.1.1. Let L be a finite extension of K, and fix F = {F+
v (Vf,χ)}v|p. The associated Greenberg

Selmer group SelF (L, Vf,χ) is defined by

SelF (L, Vf,χ) := ker

{
H1(L, Vf,χ)→

∏
w

H1(Lw, Vf,χ)

H1
F (Lw, Vf,χ)

}
,

where w runs over the finite primes of L, and the local conditions are given by

H1
F (Lw, Vf,χ) =

{
ker
{
H1(Lw, Vf,χ)→ H1(Lur

w , Vf,χ)
}

if w - p,
ker
{
H1(Lw, Vf,χ)→ H1(Lw,F−v (Vf,χ))

}
if w | v | p.

Given any lattice Tf,χ ⊂ Vf,χ, we let H1
F (Lw, Tf,χ) be the inverse image of H1

F (Lw, Vf,χ) under the
natural map H1(Lw, Tf,χ) → H1(Lw, Vf,χ), and define SelF (L, Tf,χ) in the same manner; and given any
Zp-extension L∞ =

⋃
n Ln of L, we put

SelF (L∞, Tf,χ) := lim←−
n

SelF (Ln, Tf,χ),

with limit with respect to corestriction, and also put SelF (L∞, Vf,χ) := SelF (L∞, Tf,χ)⊗Zp Qp (which is
independent of the chosen Tf,χ).

We shall be particularly interested in the following two instances of these definitions:

• The relaxed-strict Selmer group Selrel,str(L, Vf,χ) obtained by taking

F+
v (Vf,χ) =

{
Vf,χ if v = p,

0 if v = p̄.

• The ordinary Selmer group Selord,ord(L, Vf,χ). Since f is p-ordinary, upon restriction to GQp
⊂ GQ

the Galois representation V ∨f fits into a short exact sequence

0→ V ∨,+f → V ∨f → V ∨,−f → 0

with V ∨,±f one-dimensional, and with the GQp
-action on V ∨,−f being unramified (see §1.2.2). Then

Selord,ord(L, Vf,χ) is the Greenberg Selmer group defined by

(3.1) F+
v (Vf,χ) = V +

f,χ := V ∨,+f (1− k/2)⊗ χ−1

for all v | p.
Following [BK90], we also define the Selmer group SelBK(L, Vf,χ) by

SelBK(L, Vf,χ) := ker

{
H1(L, Vf,χ)→

∏
w

H1(Lw, Vf,χ)

H1
f (Lw, Vf,χ)

}
,

where as before w runs over the finite primes of L, and the local conditions are given by

H1
f (Lw, Vf,χ) =

{
ker
{
H1(Lw, Vf,χ)→ H1(Lur

w , Vf,χ)
}

if w - p,
ker
{
H1(Lw, Vf,χ)→ H1(Lw, Vf,χ ⊗Bcris)

}
if w | p,

with Bcris being Fontaine’s crystalline period ring. The local conditions H1
f (Lw, Tf,χ) ⊂ H1(Lw, Tf,χ) are

then defined by propagation.
For our later convenience, we now recall the well-known relation between these different Selmer groups.

Here we shall adopt the convention that the p-adic cyclotomic character has Hodge–Tate weight −1. Thus,
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since χ has infinity type (−j, j) (see §1.3.1 for our convention regarding infinity types), the p-adic avatar
of χ has Hodge–Tate weight j at p and −j at p̄.

Lemma 3.1.2. For any finite extension L of K we have

SelBK(L, Vf,χ) =

{
Selrel,str(L, Vf,χ) if j ≥ k/2,
Selord,ord(L, Vf,χ) if 0 ≤ j < k/2.

Proof. Combining the results of [Nek00, (3.1)-(3.2)] and [Fla90, Lem. 2, p. 125], for every prime w|v|p of
L/K/Q we have

H1
f (Lw, Vf,χ) = im

{
H1(Lw,Fil1v(Vf,χ))→ H1(Lw, Vf,χ)

}
,

where Fil1v(Vf,χ) ⊂ Vf,χ is a GKv -stable subspace (assuming it exists) such that the Hodge–Tate weights

of Fil1v(Vf,χ) (resp. Vf,χ/Fil1v(Vf,χ)) are all < 0 (resp. ≥ 0).
Now, the Hodge–Tate weights of V +

f,χ and V −f,χ := Vf,χ/V
+
f,χ at the primes of K above p are given by:

V +
f,χ V −f,χ

HT weight at p −j − k/2 −j − 1− k/2
HT weight at p̄ j − k/2 j − 1 + k/2

and so we find that Fil1p(Vf,χ) = Vf,χ and Fil1p̄(Vf,χ) = 0 when j ≥ k/2, and Fil1p(Vf,χ) = Fil1p̄(Vf,χ) = V +
f,χ

when 0 ≤ j < k/2, yielding the equalities in the lemma. �

For Af,χ := HomZp(Tf,χ, µp∞), and a choice of Galois stable subspaces F = {F+
v (Vf,χ)}v|p, we define

the associated dual Selmer group SelF∗(L,Af,χ) by

SelF∗(L,Af,χ) := ker

{
H1(L,Af,χ)→

∏
w

H1(Lw, Af,χ)

H1
F∗(Lw, Af,χ)

}
,

where H1
F∗(Lw, Af,χ) is the orthogonal complement of H1

F (Lw, Tf,χ) under local Tate duality

H1(Lw, Tf,χ)×H1(Lw, Af,χ)→ Qp/Zp.

In particular, we find that:

• The dual Selmer group of Selrel,str(L, Tf,χ) consists of classes that are unramified outside p and
have the strict (resp. relaxed) condition at the primes w|p (resp. w|p̄); we shall denote this by
Selstr,rel(L,Af,χ).
• The dual Selmer group of Selord,ord(L, Tf,χ) consists of classes that are unramified outside p, and

land in the image of the natural map

H1(Lw,F
+
v (Af,χ))→ H1(Lw, Af,χ), F+

v (Af,χ) := HomZp(F−v (Tf,χ), µp∞),

for w|v|p; we shall denote this by Selord,ord(L,Af,χ).

3.2. Local conditions at p. Let ψ1, ψ2 be Hecke characters of K of infinity type (1 − k1, 0), (1 − k2, 0)
with k1, k2 ≥ 1, and whose central characters satisfy χψ1

χψ2
= 1.

By Theorem 2.3.2 we have classes

zf,ψ1,ψ2 ∈ H1
Iw(K[mp∞], Tf,ψ1,ψ2),

where Tf,ψ1,ψ2
= T∨f (1 − k/2) ⊗ ψ−1

1 ψ−1
2 (1 − (k1 + k2)/2). Replacing the map ξ in (2.5) by the map

φ1 ⊗ φ2 7→ ξc(φ1 ⊗ φ2) with ξc(φ1 ⊗ φ2)(g) = φ1(g1) ⊗ φc2(g2) for g = (g1, g2) ∈ H(p)
m × H(p)

m , the same
construction gives rise to classes

czf,ψ1,ψ2 ∈ H1
Iw(K[mp∞], Tf,ψ1,ψc

2
),

where Tf,ψ1,ψc
2

:= T∨f (1−k/2)⊗ψ−1
1 ψ−c2 (1−(k1 +k2)/2)), satisfying the same norm-compatibility relations

as in Theorem 2.3.2.
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Proposition 3.2.1. For all ideals m of OK divisible only by primes split in K with m = NK/Q(m) coprime
to p, the classes zf,ψ1,ψ2,m of Theorem 2.3.2 satisfy

zf,ψ1,ψ2,m ∈ Selrel,str(K[mp∞], Tf,ψ1,ψ2
),

and similarly czf,ψ1,ψ2,m ∈ Selord,ord(K[mp∞], Tf,ψ1,ψc
2
).

Proof. We shall adopt some of the notations introduced later in Section 4. Let f , g = θξ1(S1),h = θξ2(S2)
be the Hida families associated to f, θψ1 , θψ2 , respectively. By [BSV22, Cor. 8.2], after projection to V†

the class κ
(1)
m in (2.14) lands in the balanced Selmer group Selbal(Q,V†) (see Definition 4.2.2). Using that

the big Galois representations associated to g and h are both induced from K, upon restriction to GK the
triple tensor product V† specialised to f decomposes as

(3.2) V†Q0
|GK =

(
T∨f (1− k/2)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1

)
⊕
(
T∨f (1− k/2)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W2

)
,

and as in the proof of Proposition 5.3.1, from Shapiro’s lemma we find that the local condition F bal
p (V†Q0

)
cutting out the specialised balanced Selmer group at p corresponds to

F bal
p (V†Q0

|GK ) =
(
T∨f (1− k/2)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1

)
F bal

p̄ (V†Q0
|GK ) = {0}

⊕
(
T∨,+f (1− k/2)⊗ ξ−1

1 ξ−c2 Ψ1−c
W2

)
,

⊕
(
T∨,+f (1− k/2)⊗ ξ−1

1 ξ−c2 Ψ1−c
W2

)
.

Since the diagonal map ξ∆ in (2.5) (resp. its twisted variant ξc∆) has the effect of projecting onto the
first (resp. second) direct summand in (3.2), this shows that the classes zf,ψ1,ψ2,m (resp. czf,ψ1,ψ2,m)
satisfy the relaxed-strict (resp. ordinary-ordinary) condition at the primes above p. On the other hand,
at the primes w - p, because Vf,ψ1,ψ2

is conjugate self-dual and pure of weight −1, we see that

H0(K[mpr]w, Vf,ψ1,ψ2
) = H2(K[mpr]w, Vf,ψ1,ψ2

) = 0

for all r, and therefore H1(K[mpr]w, Vf,ψ1,ψ2
) = 0 by Tate’s local Euler characteristic formula. This shows

that H1(K[mpr]w, Tf,ψ1,ψ2
) is torsion, and as a result the inclusion

resw(zf,ψ1,ψ2,m) ∈ lim←−
r

H1
f (K[mpr]w, Tf,ψ1,ψ2

)

follows automatically. Similarly, we see that the classes czf,ψ1,ψ2,m are unramifed outside p, and since we
have shown that they are ordinary at the primes above p, the result follows. �

3.3. Applying the general machinery. We give some direct arithmetic applications that follow by
applying to our construction the general Euler system machinery of Jetchev–Nekovář–Skinner [JNS]. Later
in the paper, by exploiting the relation between our Euler system classes and special values of complex
and p-adic L-functions, we shall deduce from these results applications to the Bloch–Kato conjecture and
the anticyclotomic Iwasawa main conjecture.

For every ideal m ⊂ OK as in Theorem 2.3.2, denote by

zf,ψ1,ψ2,m ∈ Selrel,str(K[m], Tf,ψ1,ψ2)

the image of zf,ψ1,ψ2,m under the projection Selrel,str(K[mp∞], Tf,ψ1,ψ2
) → Selrel,str(K[m], Tf,ψ1,ψ2

), and
put

zf,ψ1,ψ2
:= corK[1]/K(zf,ψ1,ψ2,1) ∈ Selrel,str(K,Tf,ψ1,ψ2

).

Similarly, projecting to K[m] the class czf,ψ1,ψ2,m define

czf,ψ1,ψ2,m ∈ Selord,ord(K[m], Tf,ψ1,ψ2
),

and put czf,ψ1,ψ2
:= corK[1]/K(czf,ψ1,ψ2,1).
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3.3.1. Rank one results.

Theorem 3.3.1. Assume that f is not of CM-type and is non-Eisenstein at P, and that p - hK .

(I) If zf,ψ1,ψ2 6= 0, then Selrel,str(K,Vf,ψ1,ψ2) is one-dimensional.
(II) If czf,ψ1,ψ2 6= 0, then Selord,ord(K,Vf,ψ1,ψc

2
) is one-dimensional.

Proof. Denote by N the set of squarefree products of primes l of OK split in K and with ` = NK/Q(l)
coprime to p. By Theorem 2.3.2 and Proposition 3.2.1, the system of classes

(3.3)
{
zf,ψ1,ψ2,m ∈ Selrel,str(K[m], Tf,ψ1,ψ2

) : m ∈ N
}

forms an anticyclotomic Euler system in the sense of Jetchev–Nekovář–Skinner [JNS] for the relaxed-strict
Greenberg Selmer group. Hence from their general results the one-dimensionality of Selrel,str(K,Vf,ψ1,ψ2

)
follows from the nonvanishing of zf,ψ1,ψ2

provided the GK-representation V = Vf,ψ1,ψ2
satisfies the follow-

ing hypotheses:

(i) V is absolutely irreducible;
(ii) There is an element σ ∈ GK fixingK[1]K(µp∞ , (O×K)1/p∞) such that V/(σ−1)V is one-dimensional;

(iii) There is an element γ ∈ GK fixing K[1]K(µp∞ , (O×K)1/p∞) such that V γ=1 = 0.

Since we assume that f is not of CM-type, hypotheses (i)–(iii) follow easily from Momose’s big image
results [Mom81] as in [LLZ15, Prop. 7.1.4], whence the first part of the theorem; the proof of the second
part is the same. �

3.3.2. Iwasawa-theoretic results. Denote by K−∞ the anticyclotomic Zp-extension K[p∞]/K, and put Λ−K =

ZpJGal(K−∞/K)K. Let zf,ψ1,ψ2,1 be the Λ−K-adic class of Theorem 2.3.2 of conductor m = (1), and put

zf,ψ1,ψ2
:= corK[1]/K(zf,ψ1,ψ2,1) ∈ Selrel,str(K

−
∞, Tf,ψ1,ψ2

),

where the inclusion follows from Proposition 3.2.1. Similarly, put

czf,ψ1,ψ2
:= corK[1]/K(czf,ψ1,ψ2,1) ∈ Selord,ord(K−∞, Tf,ψ1,ψc

2
).

Notation 3.3.2. As in [LLZ15, §7.1], we shall say that f has big image at P if the image of GQ in AutO(T∨f )

contains a conjugate of SL2(Zp).

We also note that, by a theorem of Ribet [Rib85], if f is not of CM-type then it has big image for all
but finitely many primes of L.

Put

Xstr,rel(K
−
∞, Af,ψ1,ψ2

) = HomZp

(
lim−→ Selstr,rel(K

−
n , Af,ψ1,ψ2

),Qp/Zp
)

and likewise for Xord,ord(K−∞, Af,ψ1,ψc
2
).

The next result can be seen as a divisibility towards an anticyclotomic Iwasawa main conjecture ‘without
L-functions’.

Theorem 3.3.3. Assume that f is not of CM-type and it has big image at P, and that p - hK .

(I) If zf,ψ1,ψ2
is non-torsion, then Xstr,rel(K

−
∞, Af,ψ1,ψ2

) and Selrel,str(K
−
∞, Tf,ψ1,ψ2

) both have Λ−K-
rank one, and we have the divisibility

charΛ−K
(Xstr,rel(K

−
∞, Af,ψ1,ψ2

)tors) ⊃ charΛ−K

(
Selrel,str(K

−
∞, Tf,ψ1,ψ2

)

Λ−K · zf,ψ1,ψ2

)2

in Λ−K .

(II) If czf,ψ1,ψ2
is non-torsion, then Xord,ord(K−∞, Af,ψ1,ψc

2
) and Selord,ord(K−∞, Tf,ψ1,ψc

2
) both have Λ−K-

rank one, and we have the divisibility

charΛ−K
(Xord,ord(K−∞, Af,ψ1,ψc

2
)tors) ⊃ charΛ−K

(
Selord,ord(K−∞, Tf,ψ1,ψc

2
)

Λ−K · czf,ψ1,ψ2

)2

in Λ−K .
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Here, in both (I) and (II), the subscript tors denotes the Λ−K-torsion submodule.

Proof. With notations as in the proof of Theorem 3.3.1, by Theorem 2.3.2 and Proposition 3.2.1 the system
of classes

(3.4)
{
zf,ψ1,ψ2,m ∈ Selrel,str(K[mp∞], Tf,ψ1,ψ2) : m ∈ N

}
forms a Λ−K-adic anticyclotomic Euler system in the sense of Jetchev–Nekovář–Skinner for the relaxed-
strict Selmer group, and so the non-torsionness of zf,ψ1,ψ2

implies the conclusions in part (I) of the theorem
provided the GK-module T = Tf,ψ1,ψ2

satisfies the following hypotheses:

(i) T̄ := T/PT is absolutely irreducible;
(ii) There is an element σ ∈ GK fixing K[1]K(µp∞ , (O×K)1/p∞) such that T/(σ − 1)T is free of rank 1

over O;
(iii) There is an element γ ∈ GK fixing K[1]K(µp∞ , (O×K)1/p∞) and acting as multiplication by a scalar

aγ 6= 1 on T̄ ;

but these follow easily from the assumption that f has big image at P (see [LLZ15, Prop. 7.1.6]). This
shows part (I) of the theorem, and part (II) follows in the same manner. �
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Part 2. Applications

4. Preliminaries

In this section we briefly review the unbalanced triple product p-adic L-function constructed in [Hsi21],
their associated Selmer groups, and the explicit construction of certain CM Hida families. We also recall
from [BSV22] the explicit reciprocity law for diagonal classes, and Greenberg’s formulation of the Iwasawa
main conjecture for triple products following [ACR21].

4.1. Triple product p-adic L-function.

4.1.1. Hida families. Let I be a normal domain finite flat over

Λ := OJ1 + pZpK,

where O is the ring of integers of a finite extension of Qp. For a positive integer N prime p and a Dirichlet
character χ : (Z/NpZ)× → O×, we denote by So(N,χ, I) ⊂ IJqK the space of ordinary I-adic cusp forms
of tame level N and branch character χ as defined in [Hsi21, §3.1].

Denote by X+
I ⊂ Spec I(Qp) the set of arithmetic points of I, consisting of the ring homomorphisms

Q : I→ Qp such that Q|1+pZp is given by z 7→ zkQ−1εQ(z) for some kQ ∈ Z≥2 called the weight of Q and

εQ(z) ∈ µp∞ . As in [Hsi21, §3.1], we say that f =
∑∞
n=1 an(f)qn ∈ So(N,χ, I) is a primitive Hida family

if for every Q ∈ X+
I the specialization fQ gives the q-expansion of an ordinary p-stabilised newform of

weight kQ and tame conductor N . Attached to such f we let Xcls
I be the set of ring homomorphisms Q as

above with kQ ∈ Z≥1 such that fQ is the q-expansion of a classical modular form (thus Xcls
I contains X+

I ).
For f a primitive Hida family of tame level N , we let

ρf : GQ → AutI(Vf ) ' GL2(I)

denote the associated Galois representation, which here we take to be the dual of that in [Hsi21, §3.2]; in
particular, the determinant of ρf is χI · εcyc in the notations of loc. cit., where εcyc is the p-adic cyclotomic
character. By [Wil88, Thm. 2.2.2], restricted to GQp

the Galois representation Vf fits into a short exact
sequence

0→ V +
f → Vf → V −f → 0,

where the quotient V −f is free of rank one over I, with the GQp
-action given by the unramified character

sending an arithmetic Frobenius Frob−1
p to ap(f).

Denote by T(N, I) the Hecke algebra acting on
⊕

χ S
o(N,χ, I), where χ runs over the characters of

(Z/NpZ)×. Associated with f there is a I-algebra homomorphism

λf : T(N, I)→ I

factoring through a local component Tm. Following [Hid88a] define the congruence ideal C(f) of f by

C(f) := λf (AnnTm
(kerλf )) ⊂ I.

If the residual representation ρ̄f is absolutely irreducible and p-distinguished, it follows from the results
of [Wil95] and [Hid88a] that C(f) is generated by a nonzero element ηf ∈ I.

4.1.2. Triple products of Hida families. Let

(f , g,h) ∈ So(Nf , χf , If )× So(Ng, χg, Ig)× So(Nh, χh, Ih)

be a triple of primitive Hida families with

(4.1) χfχgχh = ω2a for some a ∈ Z,

where ω is the Teichmüller character. Put

R = If ⊗̂OIg⊗̂OIh,

which is a finite extension of the three-variable Iwasawa algebra Λ⊗̂OΛ⊗̂OΛ.
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Let X+
R ⊂ SpecR(Qp) be the weight space of R given by

X+
R :=

{
Q = (Q0, Q1, Q2) ∈ X+

If × Xcls
Ig × Xcls

Ih : kQ0
+ kQ1

+ kQ2
≡ 0 (mod 2)

}
.

This can be written as the disjoint union X+
I = Xbal

I t Xf
I t Xg

I t Xh
I , where

Xbal
R :=

{
Q ∈ X+

R : kQ0 + kQ1 + kQ2 > 2kQi for all i = 0, 1, 2
}

is the set of balanced weights, where each weight kQi is smaller than the sum of the other two, and

Xf
R :=

{
Q ∈ X+

R : kQ0
≥ kQ1

+ kQ2

}
,

Xf
R :=

{
Q ∈ X+

R : kQ1
≥ kQ0

+ kQ2

}
,

Xf
R :=

{
Q ∈ X+

R : kQ2
≥ kQ0

+ kQ1

}
,

are the set of f - (resp. g-, h-) unbalanced weights.
Let V = Vf ⊗̂OVg⊗̂OVh be the triple tensor product Galois representation attached to (f , g,h). Write

the determinant of V in the form det V = X 2εcyc (note that this is possible by (4.1)), and put

(4.2) V† := V ⊗X−1,

which is a self-dual twist of V. Define the rank four GQp
-invariant subspace F f

p (V†) ⊂ V† by

(4.3) F f
p (V†) := V +

f ⊗̂OVg⊗̂OVh ⊗X
−1,

and for any Q = (Q0, Q1, Q2) ∈ Xf
R denote by F f

p (V†Q) ⊂ V†Q the corresponding specialisations.

For a rational prime `, let ε`(V
†
Q) be the epsilon factor attached to the local representation V†Q|GQ`

(see [Tat79, p. 21]), and assume that

(4.4) for some Q ∈ Xf
R, we have ε`(V

†
Q) = +1 for all prime factors ` of NfNgNh.

As explained in [Hsi21, §1.2], it is known that condition (4.4) is independent of Q, and it implies that the
sign in the functional equation for the triple product L-function (with center at s = 0)

L(V†Q, s)

is +1 (resp. −1) for all Q ∈ Xf
R ∪ Xg

R ∪ Xh
R (resp. Q ∈ Xbal

R ).

Theorem 4.1.1. Let (f , g,h) be a triple of primitive Hida families satisfying conditions (4.1) and (4.4).
Assume in addition that:

• gcd(Nf , Ng, Nh) is square-free,
• the residual representation ρ̄f is absolutely irreducible and p-distinguished,

and fix a generator ηf of the congruence ideal of f . Then there exists a unique element

L
f ,ηf
p (f , g,h) ∈ R

such that for all Q = (Q0, Q1, Q2) ∈ Xf
R of weight (k0, k1, k2) with εQ0 = 1 we have

(
L

f ,ηf
p (f , g,h)(Q)

)2
= ΓV†Q

(0) ·
L(V†Q, 0)

(
√
−1)2k0 · Ω2

fQ0

· Ep(F f
p (V†Q)) ·

∏
q∈Σexc

(1 + q−1)2,

where:

• ΓV†Q
(0) = ΓC(cQ)ΓC(cQ + 2− k1 − k2)ΓC(cQ + 1− k1)ΓC(cQ + 1− k2), with

cQ = (k0 + k1 + k2 − 2)/2

and ΓC(s) = 2(2π)−sΓ(s);
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• ΩfQ0
is the canonical period

ΩfQ0
:= (−2

√
−1)k0+1 ·

‖f◦Q0
‖2Γ0(Nf )

ηfQ0

·
(

1−
χ′f (p)pk0−1

α2
Q0

)(
1−

χ′f (p)pk0−2

α2
Q0

)
,

with f◦Q0
∈ Sk0(Γ0(Nf )) the newform of conductor Nf associated with fQ0 , χ′f the prime-to-p part

of χf , and αQ0
the specialisation of ap(f) ∈ I×f at Q0;

• Ep(F f
p (V†Q)) is the modified p-Euler factor

Ep(F f
p (V†Q)) :=

Lp(F f
p (V†Q), 0)

εp(F
f
p (V†Q)) · Lp(V†Q/F

f
p (V†Q), 0)

· 1

Lp(V
†
Q, 0)

,

and Σexc is an explicitly defined subset of the prime factors of NfNgNh, [Hsi21, p. 416].

Proof. This is Theorem A in [Hsi21], which in fact proves a more general interpolation formula. �

Remark 4.1.2. The construction of the p-adic L-function L
f ,ηf
p (f , g,h) is based on the p-adic Rankin–

Selberg method of Hida [Hid88b], and the proof of the above exact interpolation formula relies on a suitable

choice (f̆?, ğ?, h̆?) of level-N test vectors for (f , g,h). In general, for any choice (f̆ , ğ, h̆) of level-N test
vectors, Hida’s method produces an element

L f
p (f̆ , ğ, h̆) ∈ Frac(If )⊗̂OIg⊗̂OIh,

and by virtue of the proof of Jacquet’s conjecture by Harris–Kudla [HK91], for any Q ∈ X f
R one can find

(f̆ , ğ, h̆) such that

L f
p (f̆ , ğ, h̆)(Q) 6= 0 ⇐⇒ L(V†Q, 0) 6= 0.

In particular, if the central L-value L(V†Q, 0) is nonzero, then L f
p (f̆ , ğ, h̆) 6= 0. (In the above notation,

we have L
f ,ηf
p (f , g,h) = ηf ·L f

p (f̆?, ğ?, h̆?).)

4.2. Triple product Selmer groups. Let V† = V ⊗ X−1 be the self-dual twist of the Galois represen-
tation associated to a triple of primitive Hida families (f , g,h) satisfying (4.1).

Definition 4.2.1. Put

F bal
p (V†) :=

(
Vf ⊗ V +

g ⊗ V +
h + V +

f ⊗ Vg ⊗ V
+
h + V +

f ⊗ V
+
g ⊗ Vh

)
⊗X−1,

and define the balanced local condition H1
bal(Qp,V

†) by

H1
bal(Qp,V

†) := im
(
H1(Qp,F

bal
p (V†))→ H1(Qp,V

†)
)
.

Similarly, put F f
p (V†) :=

(
V +
f ⊗Vg⊗Vh

)
⊗X−1, and define the f -unbalanced local condition H1

f (Qp,V
†)

by

H1
f (Qp,V

†) := im
(
H1(Qp,F

f
p (V†))→ H1(Qp,V

†)
)
.

It is easy to see that the maps appearing in these definitions are injective, and in the following we shall
use this to identify H1

?(Qp,V
†) with H1(Qp,F ?

p (V†)) for ? ∈ {bal,f}.

Definition 4.2.2. Let ? ∈ {bal,f}, and define the Selmer group Sel?(Q,V†) by

Sel?(Q,V†) := ker

{
H1(Q,V†)→ H1(Qp,V

†)

H1
?(Qp,V†)

×
∏
v 6=p

H1(Qnr
v ,V

†)

}
.

We call Selbal(Q,V†) (resp. Self (Q,V†)) the balanced (resp. f -unbalanced) Selmer group.
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Let A† = HomZp(V†, µp∞) and for ? ∈ {bal,f} define H1
?(Qp,A

†) ⊂ H1(Qp,A
†) to be the orthogonal

complement of H1
?(Qp,V

†) under the local Tate duality

H1(Qp,V
†)×H1(Qp,A

†)→ Qp/Zp.

Similarly as above, we then define the balanced and f -unbalanced Selmer groups with coefficients in A†

by

Sel?(Q,A†) := ker

{
H1(Q,A†)→ H1(Qp,A

†)

H1
?(Qp,A†)

×
∏
v 6=p

H1(Qnr
v ,A

†)

}
,

and let X?(Q,A†) = HomZp(Sel?(Q,A†),Qp/Zp) denote the Pontryagin dual of Sel?(Q,A†).

4.3. Diagonal classes. We continue to denote by (f , g,h) a triple of primitive Hida families as in §4.1.1
satisfying (4.1), and put N = lcm(Nf , Ng, Nh). Let

(4.5) κ(f , g,h) ∈ H1(Q,V†(N))

be the big diagonal class constructed in [BSV22, §8.1], where V†(N) is a free R-module isomorphic to

finitely many copies of V†. (Note that this is essentially the class κ̃
(1)
m in (2.13) with m = 1.) The definition

of the Selmer groups in §4.2 extends immediately to V†(N), and by Corollary 8.2 in loc. cit. one knows

that κ(f , g,h) ∈ Selbal(Q,V†(N)).
Put

F 3
p (V†) = V +

f ⊗̂OV
+
g ⊗̂OV +

h ⊗X
−1 ⊂ V†.

Then clearly F 3
p (V†) ⊂ F bal

p (V†), with quotient given by

(4.6) F bal
p (V†)/F 3

p (V†) ∼= Vgh
f ⊕Vfh

g ⊕Vfg
h ,

where

(4.7)

Vgh
f = V −f ⊗̂OV

+
g ⊗̂OV +

h ⊗X
−1,

Vfh
g = V +

f ⊗̂OV
−
g ⊗̂OV +

h ⊗X
−1,

Vfg
h = V +

f ⊗̂OV
+
g ⊗̂OV −h ⊗X

−1.

4.3.1. Reciprocity law. Assume that the congruence ideal C(f) ⊂ If is principal, generated by the nonzero
ηf ∈ If . As explained in [BSV22, §7.3], one can deduce from results in [KLZ17] the construction of an
injective three-variable p-adic regulator map with pseudo-null cokernel

(4.8) Logηf : H1(Qp,V
gh
f )→ R

characterised by the property that for all Z ∈ H1(Qp,V
gh
f ) and all points Q = (Q0, Q1, Q2) ∈ Xf

R of

weight (k0, k1, k2) with εQi = 1 (i = 0, 1, 2) we have

Logηf (Z)(Q)

ηfQ0

= (p− 1)αQ0

(
1− βQ0

αQ1
αQ2

pcQ

)(
1− αQ0

βQ1
βQ2

pcQ

)−1

×


(−1)

cQ−k0

(cQ−k0)! ·
〈

logp(ZQ), ηfQ0
⊗ ωgQ1

⊗ ωhQ2

〉
dR
, if Q ∈ Xbal

R ,

(k0 − cQ − 1)! ·
〈

exp∗p(ZQ), ηfQ0
⊗ ωgQ1

⊗ ωhQ2

〉
dR
, if Q ∈ Xf

R.

Here, cQ = (k0 + k1 + k2 − 2)/2 is as in Theorem 4.1.1, αQ0 denotes the specialisation of ap(f) at Q0,

we put βQ0
= χ′f (p)pk0−1α−1

Q0
, and (αQ1

, βQ1
) (resp. (αQ2

, βQ2
)) are defined likewise with g (resp. h) in

place of f .
Denote by resp(κ(f , g,h))f the image of κ(f , g,h) under natural map

(4.9) Selbal(Q,V†)
resp−−→ H1(Qp,F

bal
p (V†))→ H1(Qp,F

bal
p (V†)/F 3

p (V†))→ H1(Qp,V
gh
f )

arising from the restriction at p and the projection onto the first direct summand in (4.6).
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Theorem 4.3.1. Let (f , g,h) be a triple of primitive Hida families as in Theorem 4.1.1. Then

Logηf (resp(κ(f , g,h))f ) = L
f ,ηf
p (f , g,h).

Proof. This is Theorem A in [BSV22] (see also [DR22, Thm. 10]). �

Remark 4.3.2. The map Logηf in (4.8) depends on a choice of level-N test vectors (f̆ , ğ, h̆), and implictly

in the above statements we took the triple (f̆?, ğ?, h̆?) constructed in [Hsi21]. For any triple (f̆ , ğ, h̆), one
deduces from [KLZ17] the existence of a p-adic regulator map

Log
(f̆ ,ğ,h̆)

: H1(Qp,V
gh
f )→ Frac(If )⊗̂OIg⊗̂OIh

characterised by a similar interpolation property, and the explictly reciprocity law of Theorem 4.3.1 applies
more generally to give

Log
(f̆ ,ğ,h̆)

(resp(κ(f , g,h))f ) = L f
p (f̆ , ğ, h̆),

where L f
p (f̆ , ğ, h̆) is as in Remark 4.1.2.

4.3.2. Iwasawa–Greenberg main conjectures. Let (f , g,h) be a triple of primitive Hida families as in The-
orem 4.1.1, and assume that the associated ring R is regular. As explained in [ACR21, §7.3], the following
result can be seen as the equivalence between two different formulation of the Iwasawa main conjecture in
the style of Greenberg [Gre94] for the p-adic deformation V†.

Proposition 4.3.3. The following statements (I) and (II) are equivalent:

(I) L
f ,ηf
p (f , g,h) is nonzero, the modules Self (Q,V†) and Xf (Q,A†) are both R-torsion, and

charR
(
Xf (Q,A†)

)
=
(
L f
p (f , g,h)2

)
in R⊗Zp Qp.

(II) κ(f , g,h) is not R-torsion, the modules Selbal(Q,V†) and Xbal(Q,A†) have both R-rank one, and

charR
(
Xbal(Q,A†)tors

)
= charR

(
Selbal(Q,V†)

R · κ(f , g,h)

)2

in R⊗Zp Qp, where the subscript tors denotes the R-torsion submodule.

Proof. This follows from Theorem 4.3.1 and global duality in the same way as [ACR21, Thm. 7.15]. See
[Lai22] for the details in the stated level of generality. �

4.4. CM Hida families. We conclude this section with the explicit construction of certain CM Hida
families, following the exposition in [Hsi21, §8.1]. Let K be an imaginary quadratic field of discriminant
−DK < 0, and suppose that p = pp̄ splits in K, with p the prime of K above p induced by our fixed
embedding ıp : Q→ Qp.

Let K∞ be the Z2
p-extension of K, and denote by Kp∞ the maximal subfield of K∞ unramified outside

p. Put

Γ∞ := Gal(K∞/K) ' Z2
p, Γp := Gal(Kp∞/K) ' Zp.

For every ideal c ⊂ OK we denote by K[c] the ray class field of K of conductor c (so in particular Kp∞

is the maximal Zp-extension of K inside K[p∞]). Denote by Artp the restriction of the Artin map to K×p ,
with geometric normalisation. Then Artp induces an embedding 1 + pZp → Γp, where we identified Z×p
and O×Kp

via ιp. Write Iw
p = Artp(1 + pZp)|Kp∞ and put [Γp : Iw

p ] = pb.

Fix a topological generator γp ∈ Γp with γp
b

p = Artp(1 +p)|Kp∞ , and for each variable S let ΨS : Γ∞ →
OJSK× be the universal character given by

ΨS(σ) = (1 + S)l(σ),
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where l(σ) ∈ Zp is such that σ|Kp∞ = γ
l(σ)
p . Upon possibly enlarging O, assume that it contains an

element v with vp
b

= 1 + p. Assume that c is prime-to-p, and for any finite order character ξ : GK → O×
of conductor dividing c put

θξ(S)(q) =
∑

(a,pc)=1

ξ(σa)Ψ−1
v−1(1+S)−1(σa)qNK/Q(a) ∈ OJSKJqK,

where σa ∈ Gal(K[cp∞]/K) is the Artin symbol of a. Then θξ(S) is a Hida family defined over OJSK of
tame level NK/Q(c)DK and tame character (ξ ◦ V )εKω

−1, where V : Gab
Q → Gab

K is the transfer map and

εK is the quadratic character corresponding to K/Q.

5. Definite case

In this section we deduce our applications to the Bloch–Kato conjecture and the Iwasawa main conjecture
for anticyclotomic twists of f/K in the case where ε(f/K) = +1.

5.1. Anticyclotomic p-adic L-functions. Let f ∈ Sk(Γ0(pNf )) be a p-ordinary p-stabilised newform of
weight k = 2r ≥ 2, and tame level Nf defined over O, and denote by α = αp(f) ∈ O× the Up-eigenvalue
of f . Assume that f is p-old, and let f◦ ∈ Sk(Γ0(Nf )) be the newform associated with f . Write

Nf = N+N−

with N+ (resp. N−) divisible only by primes which are split (resp. inert) in K, and fix an ideal N+ ⊂ OK
with OK/N+ ' Z/N+Z.

Let Γ− be the Galois group of the anticyclotomic Zp-extension K∞/K. By definition, the map σ 7→
l(σ1−c|Kp∞ ) factor through Γ−, and we let γ− be the topological generator of Γ− mapping to 1 under the

resulting isomorphism Γ− ' Zp. As usual, we identity the anticyclotomic Iwasawa algebra

Λ−K := OJΓ−K

with the one-variable power series ring OJW K via γ− 7→ 1 +W . For any prime-to-p ideal a of K, let σa be
the image of a in the Galois group of the ray class field K[p∞]/K under the Artin reciprocity map.

Theorem 5.1.1. Let χ be a ring class character of conductor cOK with values in O, and suppose:

(i) (pNf , cDK) = 1,
(ii) N− is the squarefree product of an odd number of primes.

Then there exists a unique element ΘBD
p (f/K, χ)(W ) ∈ OJW K such that for every character φ of Γ− of

infinity type (j,−j) with 0 ≤ j < r and conductor pn, we have

ΘBD
p (f/K, χ)(φ(γ−)− 1)2 =

p(2r−1)n

αp(f)2n
· Γ(r)2 · Ep(f, χφ)2 · L(f◦, χφ, r)

(2π)2r · Ωf◦,N−
· u2

K

√
DKχφ(σN+) · εp,

where:

• Ep(f, χφ) =

{
(1− αp(f)−1pr−1χφ(p))(1− αp(f)pr−1χφ(p)) if n = 0,

1 if n > 0,

• Ωf◦,N− = 22r · ‖f◦‖2Γ0(Nf ) · η
−1
f,N− is the Gross period of f◦ (see [Hsi21, p. 524]),

• uK = |O×K |/2, and εp ∈ {±1} is the local root number of f◦ at p.

Proof. This is Theorem A in [CH18b] (see also [Hun17, Thm. A]), extending and refining a construction
in [BD96] in weight 2. �
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5.2. Factorisation of triple product p-adic L-functions. Let f ∈ S2r(pNf ) be a p-stabilised newform
as in §5.1, and suppose the residual representation ρ̄f satisfies:

(5.1) ρ̄f is absolutely irreducible and p-distinguished.

By Hida theory, f is the specialisation of a unique primitive Hida family f ∈ So(Nf , I) at an arithmetic
point Q0 ∈ X+

I of weight 2r. Let f1, f2 ⊂ OK be ideals coprime to pNf , and let ξ1, ξ2 be ray class characters
of K of conductors dividing f1, f2, respectively. Let χξi be the central character of ξi (i = 1, 2). We assume
that

(5.2) χξ1χξ2 = 1,

and let

(5.3) g1 = θξ1(S1) ∈ OJS1KJqK, g2 = θξ2(S2) ∈ OJS2KJqK

be the CM Hida families attached to ξ1 and ξ2, respectively.
The triple (f , g1, g2) satisfies conditions (4.1) and (4.4) and the associated f -unbalanced triple product

p-adic L-function L
f ,ηf
p (f , g1, g2) is an element in R = I⊗̂OOJS1K⊗̂OOJS2K ' IJS1, S2K; in the following

we let

(5.4) L
f ,ηf
p (f, g1, g2) ∈ OJS1, S2K

denote its image under the natural map IJS1, S2K→ OJS1, S2K defined by Q0. Denote by c the non-trivial
automorphism of K/Q, and for a Hecke character ψ put ψc(σ) := ψ(cσc).

Proposition 5.2.1. Assume (5.1), (5.2), and that N− is the squarefree product of an odd number of
primes. Set

W1 = v−1(1 + S1)1/2(1 + S2)1/2 − 1, W2 = (1 + S1)1/2(1 + S2)−1/2 − 1.

Then

L
f ,ηf
p (f, g1, g2)(S1, S2) = ±w ·ΘBD

p (f/K, ξ1ξ2)(W1) ·ΘBD
p (f/K, ξ1ξ

c
2)(W2) · ηf◦

ηf◦,N−
,

where w is a unit in OJS1, S2K.

Proof. This is an immediate extension of Proposition 8.1 in [Hsi21], where the case ξ2 = ξ−1
1 is treated. �

5.3. Selmer group decompositions. As in §5.2, suppose f is the Hida family passing through a p-
ordinary p-stabilised newform f ∈ Sk(pNf ) of weight k = 2r ≥ 2 (so fQ0

= f), and

(g,h) = (g1, g2) = (θξ1(S1),θξ2(S2))

are CM Hida families as in (5.3).

Write V†Q0
for the specialisation of V† at Q0. Let V ∨f be the Galois representation associated to f ,

and recall that det(V ∨f ) = ε2r−1
cyc in our conventions. Setting Ti = v−1(1 + Si) − 1 (i = 1, 2), we have

det(VgT1
⊗ VhT2

) = ΨT1ΨT2 ◦ V , and so

(5.5)
V†Q0

' T∨f ⊗ (IndQ
Kξ
−1
1 ΨT1)⊗ (IndQ

Kξ
−1
2 ΨT2)⊗ ε1−r

cyc (Ψ
−1/2
T1

Ψ
−1/2
T2

◦ V )

'
(
T∨f (1− r)⊗ IndQ

Kξ
−1
1 ξ−1

2 Ψ1−c
W1

)
⊕
(
T∨f (1− r)⊗ IndQ

Kξ
−1
1 ξ−c2 Ψ1−c

W2

)
,

where T∨f is a GQ-stable O-lattice inside V ∨f , and we put

W1 = v−1(1 + S1)1/2(1 + S2)1/2 − 1, W2 = (1 + S1)1/2(1 + S2)−1/2 − 1

as in Proposition 5.2.1. In particular, we get

(5.6) H1(Q,V†Q0
) ' H1(K,T∨f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)⊕H1(K,T∨f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W2

)

by Shapiro’s lemma.
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Proposition 5.3.1. Under (5.6), the balanced Selmer group Selbal(Q,V†Q0
) decomposes as

Selbal(Q,V†Q0
) ' Selrel,str(K,T

∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)⊕ Selord,ord(K,T∨f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W2

),

and the f -unbalanced Selmer group Self (Q,V†Q0
) decomposes as

Self (Q,V†Q0
) ' Selord,ord(K,T∨f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)⊕ Selord,ord(K,T∨f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W2

).

Proof. From (5.5) we see that the balanced local condition is given by

(5.7)
F bal
p (V†Q0

) '
(
T∨f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1

)
⊕
(
T∨,+f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W2

)
⊕
(
T∨,+f (1− r)⊗ ξ1ξc2Ψc−1

W2

)
.

Put Ṽ†Q0
= (T∨f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)⊕ (T∨f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W2

), so by (5.5) we have

(5.8) H1(Q,V†Q0
) ' H1(K, Ṽ†Q0

),

and from (5.7) we obtain

F bal
p (Ṽ†Q0

) '
(
T∨f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1

)
F bal

p̄ ' {0}

⊕
(
T∨,+f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W2

)
,

⊕ T∨,+f (1− r)⊗ ξ−1
1 ξ−c2 Ψ1−c

W2
,

and this yields the claimed description of Selbal(Q,V†Q0
). On the other hand, we similarly find that the

f -balanced local condition is given by

F f
p (Ṽ†Q0

) '
(
T∨,+f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1

)
⊕
(
T∨,+f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W2

)
,

F f
p̄ (Ṽ†Q0

) '
(
T∨,+f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1

)
⊕
(
T∨,+f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W2

)
,

from where the claimed description of Self (Q,V†Q0
) follows. �

As a consequence we also obtain the following decomposition for the Selmer groups with coefficients in

A†Q0
= HomZp(V†Q0

, µp∞), mirroring in the case of Self (Q,A†Q0
) the factorisation of p-adic L-functions in

Proposition 5.2.1.

Corollary 5.3.2. The balanced Selmer group Selbal(Q,A†Q0
) decomposes as

Selbal(Q,A†Q0
) ' Selstr,rel(K,Af (r)⊗ ξ1ξ2Ψc−1

W1
)⊕ Selord,ord(K,Af (r)⊗ ξ1ξc2Ψc−1

W2
),

where Af (r) = HomZp(T∨f (1− r), µp∞); and the f -unbalanced Selmer group Self (Q,A†x1
) decomposes as

Self (Q,A†Q0
) ' Selord,ord(K,Af (r)⊗ ξ1ξ2Ψc−1

W1
)⊕ Selord,ord(K,Af (r)⊗ ξ1ξc2Ψc−1

W2
).

Proof. This is immediate from Proposition 5.3.1 and local Tate duality. �

5.4. Explicit reciprocity law. With the same setting as in §5.3, put

V† = V†Q0
⊗OJS1,S2K OJS1, S2K/(S1 − S2)

(so in the quotient the weights of the CM Hida families g and h move in tandem), and denote by

(5.9) κ(f, gh) ∈ H1(Q,V†)
the resulting restriction of the three-variable big diagonal class κ(f , g,h) in (4.5). (Here we are implicitly

choosing level-N test vectors (f̆ , ğ, h̆), where N = lcm(Nf , NK/Q(f1f2)DK) to project the classes from

V†(N) to V†.) Similarly, we denote by L
f ,ηf
p (f, gh) the image of (5.4) in the quotient OJS1, S2K/(S1−S2).

Since κ(f, gh) ∈ Selbal(Q,V†) as a consequence of [BSV22, Cor. 8.2], we can write

(5.10) κ(f, gh) = (κ1(f, gh), κ2(f, gh))

according to the decomposition from Proposition 5.3.1; in particular, we have

(5.11) κ1(f, gh) ∈ Selrel,str(K,T
∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
),
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where W1 = v−1(1 + S1)− 1.
Similarly as in §4.1.1, denote by Xcls

OJW1K the set of ring homomorphisms Q ∈ Spec(OJW1K)(Qp) with

Q(W1) = ζQ(1 + p)kQ−1 − 1 for some ζQ ∈ µp∞ and kQ ∈ Z≥1, and for any OJW1K-module M denote

by MQ the corresponding specialisation. Write T∨,−f := T∨f /T
∨,+
f , where the GQp

-action is given by

the unramified character sending an arithmetic Frobenius to αp(f). Then it is easy to see that for any
Q ∈ Xcls

OJW1K the Bloch–Kato dual exponential and logarithm maps give rise to L(ζQ)-isomorphisms

(5.12)
exp∗p : H1(Kp, T

∨,−
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)Q → L(ζQ), if 1 ≤ kQ ≤ r,

logp : H1(Kp, T
∨,−
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)Q → L(ζQ), if kQ > r,

where L is the field of fractions of O.
Denote by p−f : T∨f (1− r)→ T∨,−f (1− r) the natural projection.

Theorem 5.4.1. There is an injective OJW1K-module homomorphism with pseudo-null cokernel

L
ηf
p : H1(Kp, T

∨,−
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)→ OJW1K

such that for any Z ∈ H1(Kp, T
∨,−
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
) and Q ∈ Xcls

OJW1K we have

L
ηf
p (Z)Q =

{
cQ · exp∗p(ZQ) if 1 ≤ kQ ≤ r,
cQ · logp(ZQ) if kQ > r,

where cQ is an explicit nonzero constant. Moreover, we have the explicit reciprocity law

L
ηf
p

(
p−f (resp(κ1(f, gh)))

)
(W1) = L

f ,ηf
p (f, gh)(S1),

where S1 = v(1 +W1)− 1.

Proof. In terms of (5.5), we find that F 3
p (V†) = T∨,+f (1− r)⊗ ξ1ξ2Ψ1−c

W1
, which together with (5.7) gives

the decomposition

F bal
p (V†)/F 3

p (V†) '
(
T∨,−f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1

)
⊕
(
T∨,+f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W2

)
W2
⊕
(
T∨,+f (1− r)⊗ ξ1ξc2Ψc−1

W2

)
W2
,

with the terms in the direct sum corresponding to Vgh
f , Vfgh , and Vfhg in (4.6), respectively. Here the

subscript W2 denotes the quotient by W2, noting that OJS1, S2K/(S1 − S2) ' OJW1,W2K/(W2).
Thus we find that under the first isomorphism of Proposition 5.3.1, the composite map in (4.9) corre-

sponds to the projection onto Selrel,str(K,T
∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
) composed with the natural map

Selrel,str(K,T
∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)

resp−−→ H1(Kp, T
∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)

p−f−−→ H1(Kp, T
∨,−
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
),

and so under the corresponding isomorphisms we have

resp(κ(f, gh))f = p−f (resp(κ1(f, gh))) ∈ H1(Qp,Vgh
f ) ' H1(Kp, T

∨,−
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
).

Finally, the construction of L
ηf
p is deduced from a specialization of the three-variable p-adic regulator

map Logηf in §4.3 by the same argument as in [ACR21, Prop. 7.3], and the associated explicit reciprocity
law then follows from Theorem 4.3.1. �

Remark 5.4.2. Without the need to assume condition (5.1) on ρ̄f , for any choice of level-N test vectors

(f̆ , ğ, h̆) the same argument as in the proof of Theorem 5.4.1 gives an equality

Lp,(f̆ ,ğh̆)

(
p−f (resp(κ1(f, gh)))

)
(W1) = L f

p (f̆ , ğh̆)(S1),

where Lp,(f̆ ,ğh̆) and L f
p (f̆ , ğh̆) are specilisation of the map Log

(f̆ ,ğ,h̆)
and the p-adic L-function L f

p (f̆ , ğ, h̆)

in Remark 4.3.2 and Remark 4.1.2, respectively.
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5.5. On the Bloch–Kato conjecture in rank 0. In this section we deduce our first applications to the
Bloch–Kato conjecture in analytic rank zero for the twisted GK-representation

Vf,χ := V ∨f (1− r)⊗ χ−1.

Denote by Kc the ring class field of K of conductor c. If χ is a Hecke character of conductor cOK , then its
p-adic avatar is a locally algebraic character of Gal(Kcp∞/K). The Galois group Γ− = Gal(K−∞/K) of the
anticyclotomic Zp-extension of K is the maximal Zp-free quotient of Gal(Kcp∞/K). Fix a (non-canonical)
splitting

(5.13) Gal(Kcp∞/K) ' ∆c × Γ−,

where ∆c is the torsion subgroup of Gal(Kcp∞/K). Note that every character of ∆c can be viewed as the
p-adic avatar of a ring class character of K of conductor dividing cpsOK for sufficiently large s. If χ is as
above, we then write χ = χt · χw according to the decomposition (5.13).

Theorem 5.5.1. Let f ∈ Sk(Γ0(pNf )) be a p-ordinary p-stabilised newform of weigh k = 2r ≥ 2 which is
old at p, and let χ be anticyclotomic Hecke character of conductor cOK and infinity type (−j, j) for some
j ≥ 0. Assume that:

• N− is a square-free product of an odd number of primes;
• ρ̄f is absolutely irreducible;
• (pNf , cDK) = 1;
• p > k − 2;
• p - hK , the class number of K;
• χt has conductor prime-to-p.

Then

L(f/K, χ, r) 6= 0 =⇒ SelBK(K,Vf,χ) = 0,

and hence the Bloch–Kato conjecture for Vf,χ holds in analytic rank zero.

Proof. We begin by noting that under our hypotheses the modular form f is not of CM-type (since N− > 1)
and the sign in the functional equation of L(f/K, χ, s) is −1 for j ≥ r, so without loss of generality below
we assume that 0 ≤ j < r.

Write χt = α/αc with α a ray class character of K of conductor f ⊂ OK prime-to-p (note that this is
possible by e.g. [DR17, Lem. 6.9] or [Hid06b, Lem. 5.31] and our assumption on χt). Now, we fix a prime
` 6= p split in K, and for an auxiliary ring class character β (to be further specified below) of `-power
conductor we consider the setting of §5.2 with the CM Hida families

g = θξ1(S1), h = θξ2(S2),

where

ξ1 := βα, ξ2 := β−1α−c.

Then the decomposition (5.5) of the associated V†Q0
specialised to S1 = S2 yields

(5.14) V† '
(
T∨f (1− r)⊗ IndQ

Kχ
−1
t Ψ1−c

W1

)
⊕
(
T∨f (1− r)⊗ IndQ

Kβ
−2,

where W1 = v−1(1+S1)−1. Denoting by Q the specialization W 7→ ζ(1+p)j−1 (ζ ∈ µp∞) corresponding
to χw, it follows that

L(V†Q, 0) = L(f/K, χ, r) · L(f/K, β2, r).

By [CH18b, Thm. D], the character β may be chose so that ΘBD
p (f/K, β2)(0) is nonzero, and for such

choice of β by Theorem 5.4.1 (see also Remark 5.4.2) we then have

L(f/K, χ, r) 6= 0 =⇒ resp(κ1(f, gh)Q) 6= 0.

By construction, the class κ1(f, gh)Q ∈ Selrel,str(K,Vf,χ) is the base class of the anticyclotomic Euler
system

{zf,ψ1,ψ2,m ∈ Selrel,str(K[m], Tf,χ) : m ∈ N}
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of (3.3), with (ψ1, ψ2) the Hecke characters associated with (gS1
,hS2

). Hence by Theorem 3.3.1 we deduce
that the Selmer group Selrel,str(K,Vf,χ) is one-dimensional, spanned by

zf,χ = corK[1]/K(zf,ψ1,ψ2,(1)) = κ1(f, gh)Q.

Since also resp(zf,χ) 6= 0, the vanishing of Selord,ord(K,Vf,χ) then follows by a standard argument using
Poitou–Tate duality (see e.g. [CH18a, Thm. 7.9]). Since by Lemma 3.1.2 for 0 ≤ j < r the latter group is
the same as SelBK(K,Vf,χ), this yields the result. �

5.6. On the Iwasawa main conjecture. Our next application is a divisibility in the anticyclotomic
Iwasawa main conjecture for modular forms in the definite setting. For an eigenform f of weight k = 2r ≥ 2
and trivial nebentypus and χ an anticyclotomic character, put

Af,χ = HomZp(T∨f (1− r)⊗ χ−1, µp∞).

Theorem 5.6.1. Let the hypotheses be as in Theorem 5.5.1, and assume in addition that:

• ρ̄f is p-distinguished;
• f has big image (see 3.3.2).

Then Selord,ord(K−∞, Af,χ) is cotorsion over Λ−K , and we have the divisibility

charΛ−K

(
Selord,ord(K−∞, Af,χ)∨

)
⊃
(
ΘBD
p (f/K, χ)

)
in Λ−K ⊗Zp Qp.

Proof. Proceeding as in the proof of Theorem 5.5.1 we obtain the decomposition (5.14), which by Propo-
sition 5.2.1 translates into the factorisation

(5.15) L
f ,ηf
p (f, gh)(S1) = ±w ·ΘBD

p (f/K, χt)(W1) ·ΘBD
p (f/K, β2)(0) · ηf◦

ηf◦,N−
,

where W1 = v−1(1 + S1) = 1, and from Proposition 5.3.1 we have

(5.16) Self (Q,A†) ' Selord,ord(K−∞, Af (r)⊗ χ)⊕ Selord,ord(K,Af (r)⊗ β2),

where A† = HomZp(V†, µp∞).
By Theorem 5.1.1 and [CH18b, Thm. D], the auxiliary ring class character β may be chosen so that

ΘBD
p (f/K, β2)(0) 6= 0. Moreover, by Vatsal’s nonvanishing results [Vat03] and their extension to higher

weights by Chida–Hsieh [CH18b], the p-adic L-function ΘBD
p (f/K, χt)(W1) is nonzero. Hence from (5.15)

and Theorem 5.4.1 it follows that the class

κ1(f, gh) ∈ Selrel,str(K,T
∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)

is non-torsion over OJW1K. Since by construction κ1(f, gh) is the base class of the Λ−K-adic anticyclotomic
Euler system {

zf,ψ1,ψ2,m ∈ Selrel,str(K[mp∞], Tf,χ) : m ∈ N
}

in (3.4), with (ψ1, ψ2) the Hecke characters corresponding to (gS1 ,hS2), the result follows immediately
from Theorem 3.3.3 applied to

(5.17) zf,χ := corK[1]/K(zf,ψ1,ψ2,(1)) = κ1(f, gh),

the equivalence in Proposition 4.3.3, and the Selmer group decomposition (5.16), using that by the rank 0
cases of the Bloch–Kato conjecture established in Theorem 5.5.1, the nonvanishing of L(f/K, β2, r) implies
that Selord,ord(K,Af (r)⊗ β2) is finite. �

Remark 5.6.2. A divisibility in the anticyclotomic Iwsawa Main Conjecture for Vf,χ was first obtained
by Bertolini–Darmon [BD05] in weight k = 2 and by Chida–Hsieh [CH15] in higher weights using Heegner
points and level-raising congruences. Our proof of Theorem 5.6.1 is completely different from theirs, and
in particular it dispenses with any “level-raising” hypothesis.



40 F. CASTELLA AND K. T. DO

5.7. On the Bloch–Kato conjecture in rank 1. The arguments in the proof of Theorem 5.6.1 give the
following result towards the Bloch–Kato conjecture in rank 1.

Theorem 5.7.1. Let the hypotheses be as in Theorem 5.5.1, and assume in addition that:

• ρ̄f is p-distinguished;
• f has big image.

If j ≥ r (which implies L(f/K, χ, r) = 0), then

dimLP
SelBK(K,Vf,χ) ≥ 1.

Moreover, there exists a class zf,χ ∈ SelBK(K,Vf,χ) such that

zf,χ 6= 0 =⇒ dimLP
SelBK(K,Vf,χ) = 1.

Proof. The proof of Theorem 5.6.1 shows the non-torsionness of the class zf,χ ∈ Selrel,str(K
−
∞, Tf,χ), which

is the base of a Λ−K-adic anticyclotomic Euler systems as in (5.17) for the relaxed-strict Selmer group. By

Theorem 3.3.3, it follows that Selrel,str(K
−
∞, Tf,χ) has Λ−K-rank 1. Since by (a straighforward variation of)

Mazur’s control theorem the natural map

(5.18) Selrel,str(K
−
∞, Tf,χ)/(γ− − 1)Selrel,str(K

−
∞, Tf,χ)→ Selrel,str(K,Tf,χ)

is injective with finite cokernel, we conclude that Selrel,str(K,Tf,χ) has positiveO-rank, and by Lemma 3.1.2
the first part of the theorem follows.

On the other hand, letting zf,χ ∈ Selrel,str(K,Tf,χ) be the image of zf,χ under the projection (5.18),
the last claim in the result follows from Theorem 3.3.1. �

Remark 5.7.2. From the Euler system of Beilinson–Flach elements constructed by Lei–Loeffler–Zerbes
and Kings–Loeffler–Zerbes [LLZ14, KLZ17] attached to the Rankin–Selberg convolution of f and a suitable
θ-series, one can produce a class BFf,χ ∈ H1(K,Vf,χ). As shown in [LLZ15] and [BL18], this class forms
the basis of an anticyclotomic Euler system for Vf,χ, but not for the correct local conditions at p. Indeed,
with notations as in the proof of Theorem 5.5.1, it follows from the explicit reciprocity law of [KLZ17] that,
for j ≥ r, the class BKf,χ lands in Selrel,str(K,Vf,χ) = SelBK(K,Vf,χ) precisely when the p-adic L-value
ΘBD
p (f/K, χt)(ζ(1 + p)j − 1) vanishes (see [Cas17, Thm. 2.4], [BL18, Thm. 3.11]). However, since j ≥ r

is outside the range of interpolation of ΘBD
p (f/K, χt), such vanishing is not a consequence of the forced

vanishing of L(f/K, χ, r), and Theorem 5.7.1 seems to fall outside the scope of these classes. (On the other
hand, it also seems to fall outside the scope of Heegner cycles, since the squarefree integer N− is assumed
to have an odd number of prime factors, so Heegner cycles are not directly available, and the level-raising
techniques of Bertolini–Darmon [BD05] are only known to yield results towards the Bloch–Kato conjecture
in rank 0, see e.g. [LV10].)

6. Indefinite case

In this section we deduce our applications to the Bloch–Kato conjecture and the Iwasawa main conjecture
for anticyclotomic twists of f/K when ε(f/K) = −1.

Since the nonvanishing results we shall need from [Hsi14] are currently only available in the literature
under the classical Heegner hypothesis, in the following we shall restrict to this case, but note that with the
required extension of [Hsi14] at hand (see [Bur17, Mag] for progress in this direction), our results directly
extend to the general indefinite case.

6.1. Anticyclotomic p-adic L-functions. Let f ∈ Sk(Γ0(pNf )) be a p-ordinary p-stabilised newform
as in §5.1 (in particular, f is old at p) where k = 2r ≥ 2, and let K be an imaginary quadratic field of
discriminant −DK < 0 in which p = pp̄ splits. Assume that K satisfies the classical Heegner hypothesis:

(6.1) every prime `|Nf splits in K,

and fix an ideal N ⊂ OK with OK/N ' Z/NfZ.
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Recall that Γ− denotes the Galois group of the anticyclotomic Zp-extension of K, and Λ−K = OJΓ−K is
the associated Iwasawa algebra. Let Ωp and ΩK be CM periods attached to K as in [CH18a, §2.5], and
put

Λ−,ur
K = Λ−K⊗̂Zur

p ,

where Zur
p is the completion of the ring of integers of the maximal unramified extension of Qp. Similarly

as before, we shall often identify Λ−,ur
K with the one-variable power series ring Zur

p JW K via γ− 7→ 1 + W

for a fixed topological generator γ− ∈ Γ−.

Theorem 6.1.1. Let χ be an O-valued ring class character of conductor cOK with (pNf , cDK) = 1. Then
there exists a unique element L BDP

p (f/K, χ) ∈ Zur
p JW K such that every character φ of Γ− of infinity type

(j,−j) with j ≥ r and conductor pn, we have

L BDP
p (f/K, χ)(φ(γ−)− 1)2 =

Ω4j
p

Ω4j
K

· Γ(r + j)Γ(j + 1− r)φ(N−1)

4(2π)2j+1
√
DK

2j−1
· ep(f, χφ) · L(f/K, χφ, r),

where

ep(f, χφ) =

{(
1− apχφ(p̄)p−r + χφ(p̄)2p−1

)2
if n = 0,

ε( 1
2 , χpφp)−2 else,

with ε( 1
2 , χpφp) the local ε-factor in [CH18a, p. 570] attached to the component at p of χφ. Moreover,

L BDP
p (f/K, χ) is a nonzero element of Λ−,ur

K .

Proof. This is a reformulation of results contained in [CH18a, §3]. In particular, since (Nf , DK) = 1 by
hypothesis (6.1), the nonvanishing of L BDP

p (f/K, χ) follows from [CH18a, Thm. 3.9]. �

Remark 6.1.2. The CM period ΩK ∈ C× in Theorem 6.1.1 agrees with that in [BDP13, (5.1.16)], but is
different from the period Ω∞ defined in [dS87, p. 66] and [HT93, (4.4b)]. In fact, one has

Ω∞ = 2πi · ΩK .

In terms of Ω∞, the interpolation formula in Theorem 6.1.1 reads

L BDP
p (f/K, χ)(φ(γ−)− 1)2 =

Ω4j
p

Ω4j
∞
· Γ(r + j)Γ(j + 1− r)φ(N−1)

4(2π)1−2j
√
DK

2j−1
· ep(f, χφ) · L(f/K, χφ, r).

This is the form of the interpolation that we shall use later.

6.2. Factorisation of triple product p-adic L-function. As in §5.2, we now let f ∈ So(Nf , I) be the
primitive Hida family associated to f ; so f specialises to f at an arithmetic point Q0 ∈ X+

I of weight 2r,
and consider a pair of CM Hida families

(6.2) (g,h) = (g1, g2) = (θξ1(S1),θξ2(S2)) ∈ OJS1KJqK×OJS2KJqK

similar to (5.3).
The triple product p-adic L-function of relevance in this section is the g-unbalanced L

g,ηg
p (f , g,h),

which is an element in R = I⊗̂OOJS1K⊗̂OOJS2K ' IJS1, S2K. In the following we let

L g,ηg
p (f, g,h) ∈ OJS1, S2K

be the image of L
g,ηg
p (f , g,h) under the map IJS1, S2K→ OJS1, S2K given by Q0 : I→ O.

6.2.1. Anticyclotomic Katz p-adic L-function. Before we can state and prove the main result of this section,
we need to recall the interpolation property of the Katz p-adic L-functions [Kat78], following the exposition
in [dS87].

Fix an ideal c ⊂ OK prime-to-p stable under the action of complex conjugation, and denote by Z(c) the
ray class group of K of conductor cp∞ (so Z(c) ' Gal(K[cp∞]/K)).
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Theorem 6.2.1. There exists an element LKatz
p,c ∈ OJZ(c)K⊗̂Zur

p such that for every character ξ of Z(c)
of infinity type (k, j) with k > −j ≥ 0 satisfies

LKatz
p,c (ξ) =

Ωk−jp

Ωk−j∞
· Γ(k) ·

(√
DK

2π

)j
· (1− ξ−1(p)p−1)(1− ξ(p̄)) · L(ξ, 0).

Moreover, we have the functional equation

LKatz
p,c (ξ) = LKatz

p,c (ξ−cN−1),

where the equality is up to a p-adic unit.

Proof. Our LKatz
p,c corresponds to the measure denoted µ(cp̄∞) in [dS87, Thm. II.4.14]. The stated func-

tional equation is given in [dS87, Thm. II.6.4]. �

Let Γc be the maximal torsion-free subgroup of Z(c), and fix a (non-canonical) splitting

Z(c) ' ∆c × Γc

with ∆c a finite group and Γc ' Z2
p. For c′|c the natural projection Z(c)� Z(c′) takes ∆c to ∆c′ , inducing

an isomorphism Γc
∼−→ Γc′ . Thus in the following we shall identify Γc with ΓK := Γ(1). Since p > 2, the

action of complex conjugation c splits

ΓK ' Γ+ × Γ−

with Γ± ' Zp, and where c sends γ ∈ Γ± to γ±1. Then of course Γ− is identified with the Galois group
Gal(K−∞/K) of the anticyclotomic Zp-extension of K.

Suppose η is a Hecke character of K of conductor dividing cp∞. Viewing η as a character on Z(c) '
∆c × ΓK , we put η̄ := η|∆c

, and denote by LKatz,−
p,η̄ the image of LKatz

p,c under the composite map

OJZ(c)K⊗̂Zur
p → OJΓKK⊗̂Zur

p → Λ−,ur
K ,

where the first arrow is the natural projection defined by η̄, and the second is given by γ 7→ γc−1 for
γ ∈ ΓK . Put also η̄− := η̄c−1.

Lemma 6.2.2. Let ξ be a ray class character of K such that ξ̄− has conductor c prime-to-p. Assume that:

(i) c is only divisible by primes that are split in K;
(ii) ∆c has order prime-to-p;
(iii) ξ̄− has order at least 3.

Then the congruence ideal of the CM Hida family θξ(S) is generated by

hK
wK
· LKatz,−

p,ξ̄−
,

where hK = |Pic(OK)| and wK = |O×K |.

Proof. As explained in [ACR22, Prop. 4.6], this is a consequence of the proof of the anticyclotomic Iwasawa
main conjecture for Hecke characters by Hida–Tilouine [HT93, HT94] and Hida [Hid06a]. �

6.2.2. The factorisation result. We shall work with the following integral normalisation of the triple prod-
uct p-adic L-function of Theorem 4.1.1.

Definition 6.2.3. Put

L g
p (f , g,h) := L

g,η?g
p (f , g,h),

where η?g = hK
wK
· LKatz,−

p,ξ̄−
is the generator of C(g) given by Lemma 6.2.2.

Note that ξ1 can be replaced by a twist ξ1 · φ ◦N for a Dirichlet character φ without changing ξ̄−1 , and
thus in the following we may assume that ξ1 satisfies the following minimality hypotheses:

(6.3) the conductor of ξ1 is minimal among Dirichlet twists.
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The following is an analogue of Proposition 5.2.1 in the indefinite setting. Note that a variant of this
result first appeared in the work of Darmon–Lauder–Rotger (see [DLR15, Thm. 3.9]), but unfortunately
the formulation of their result is not well-suited for our Iwasawa-theoretic purposes in this paper (see also
the more recent [BCS23, §8] for a factorisation result closer to ours).

Proposition 6.2.4. Assume that ξ1 satisfies the conditions in Lemma 6.2.2. Put

W1 = v−1(1 + S1)1/2(1 + S2)1/2 − 1, W2 = (1 + S1)1/2(1 + S2)−1/2 − 1.

Then

L g
p (f, g,h)(S1, S2) = ±w ·L BDP

p (f/K, ξ1ξ2)(W1) ·L BDP
p (f/K, ξ1ξ

c
2)(W2),

where w is a unit.

Proof. Let k1, k2 be integers with k1 ≡ k2 (mod 2) and k1 ≥ k2 + 2r. Set Si = v(1 + p)ki−1 − 1 (i = 1, 2),
so the corresponding specialisations of Wi are given by

W1 = (1 + p)(k1+k2−2)/2 − 1, W2 = (1 + p)(k1−k2)/2,

and denote by V†Q the specialisation of V† at Q = (Q0, S1, S2). Putting Ti = v−1(1 + Si)− 1 for the ease

of notation, we have

det(T∨f ⊗ VgT1
⊗ VgT2

) = ε2r−1
cyc · (ξ1ξ2ΨT1

ΨT2
◦ V ) = ε2r−1

cyc · (ΨT1
ΨT2
◦ V ),

using that the central characters of ξ1 and ξ2 are inverses of each other for the second equality, and so

(6.4)
V†Q = T∨f ⊗ (IndQ

Kξ
−1
1 ΨT1)⊗ (IndQ

Kξ
−1
2 ΨT2)⊗ ε1−r

cyc (Ψ
−1/2
T1

Ψ
−1/2
T2

◦ V )

'
(
T∨f (1− r)⊗ IndQ

Kξ
−1
1 ξ−1

2 Ψ1−c
W1

)
⊕
(
T∨f (1− r)⊗ IndQ

Kξ
−1
1 ξ−c2 Ψ1−c

W2

)
.

Thus we find that the completed L-value appearing in the interpolation formula of Theorem 4.1.1 is given
by

(6.5)
ΓV†Q

(0) · L(V†Q, 0) =
Γ
(
k1+k2

2 + r − 1
)
Γ
(
k1−k2

2 − r + 1
)
Γ
(
k1+k2

2 − r
)
Γ
(
k1−k2

2 + r
)

24 · (2π)2k1
,

× L(f/K, ξ1ξ2Ψc−1
W1

, r) · L(f/K, ξ1ξ
c
2Ψc−1

W2
, r),

and similarly the modified Euler factor decomposes as

(6.6)
Ep(F g

p (V†Q)) =
(
1− ap(ξ1ξ2Ψc−1

W1
)(p̄)p−r + (ξ1ξ2Ψc−1

W2
)(p̄)2p−1

)2
×
(
1− ap(ξ1ξc2Ψc−1

W2
)(p̄)p−r + (ξ1ξ

c
2Ψc−1

W2
)(p̄)2p−1

)2
.

Moreover, letting χ′g be the prime-to-p part of the nebentypus character of gT1
, we have(

1−
χ′g(p)p

k1−1

ξ−1
1 ΨT1

(p̄)2

)(
1−

χ′g(p)p
k1−2

ξ−1
1 ΨT1

(p̄)2

)
=
(
1− ξc−1

1 Ψ1−c
T1

(p)
)(

1− ξc−1
1 Ψ1−c

T1
(p)p−1

)
,

and therefore the canonical period ΩgT1
in Theorem 4.1.1 associated with η?g is given by

(6.7) ΩgT1
= (−2

√
−1)k1+1 ·

‖g◦T1
‖2Γ0(C)

η?gT1

·
(
1− ξc−1

1 Ψ1−c
T1

(p)
)(

1− ξc−1
1 Ψ1−c

T1
(p)p−1

)
,

where C = NK/Q(f1)DK and we note that here Σexc consists of the primes q | C inert in K.
On the other hand, since gT1 has weight k1, from Hida’s formula for the adjoint L-value [HT93, Thm. 7.1]

(using that ξ1 satisfies the minimality condition (6.3)) and Dirichlet’s class number formula we obtain

‖g◦T1
‖2Γ0(C) = Γ(k1) · D2

K

22k1πk1+1
· 2πhK

wK
√
DK

· L(ξ1−c
1 Ψc−1

T1
, 1) ·

∏
q∈Σexc

(1 + q−1).
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The character ξ1−c
1 Ψc−1

T1
N−1 has infinity type (k1, 2 − k1), and so for k1 ≥ 2 it lies in the range of

interpolation of LKatz
p,f . Noting that L(ξ1−c

1 Ψc−1
T1

N−1, 0) = L(ξ1−c
1 Ψc−1

T1
, 1), from the above formula for this

value and in Theorem 6.2.1 we thus obtain

(6.8)
LKatz
p,f (ξ1−c

1 Ψc−1
T1

N−1) =

(
Ωp
Ω∞

)2k1−2

· π
2k1−2 · 23k1−3

√
DK

k1+1

×
(
1− ξc−1Ψ1−c

T1
(p)
)(

1− ξc−1
1 Ψ1−c

T1
(p)p−1

)
· ‖g◦T1

‖2Γ0(C) ·
wK
hK

.

Moreover, by the functional equation for Katz’s p-adic L-function and the definition of η?g we have the
relation

hK
wK
· LKatz

p,f (ξ1−c
1 Ψc−1

T1
N−1) ∼p η?gT1

,

where ∼p denotes equality up to a p-adic unit, and so from (6.7) and (6.8) we arrive at

(6.9)
1

ΩgT1

∼p
(

Ωp
Ω∞

)2k1−2

· (2π)2k1−2

√
−DK

k1+1
.

Finally, note that the characters ξ1ξ2Ψc−1
W1

and ξ1ξ
c
2Ψc−1

W2
in the right-hand side of (6.5) are both anticy-

clotomic, and of infinity type ((k1 +k2)/2−1,−(k1 +k2)/2+1) and ((k1−k2)/2, (k2−k1)/2), respectively,
and so for k1 ≥ k2 + 2r they are in the range of interpolation for L BDP

p (f/K, ξ1ξ2) and L BDP
p (f/K, ξ1ξ

c
2),

respectively. Thus substituting (6.5), (6.6), and (6.9) into the interpolation formula for L g
p (f, g,h) in

Theorem 4.1.1 and comparing with Theorem 6.1.1 we finally arrive at

L g
p (f, g,h)(S1, S2)2 ∼p

−1

Dk1+1
K

·L BDP
p (f/K, ξ1ξ2)(W1)2 ·L BDP

p (f/K, ξ1ξ
c
2)(W2)2,

and this yiels the proof of the result. �

6.3. Selmer group decomposition. We keep the setting in §6.2, so in particular f ∈ S2r(pNf ) is the

specialisation of f at Q0 ∈ X+
I , and write V†Q0

for the corresponding specialisation of V†.

As in the proof of Proposition 6.2.4, setting Ti = v−1(1 + Si)− 1 (i = 1, 2) we have

(6.10)
V†Q0

= T∨f ⊗ (IndQ
Kξ
−1
1 ΨT1

)⊗ (IndQ
Kξ
−1
2 ΨT2

)⊗ ε1−r
cyc (Ψ

−1/2
T1

Ψ
−1/2
T2

◦ V )

'
(
T∨f (1− r)⊗ IndQ

Kξ
−1
1 ξ−1

2 Ψ1−c
W1

)
⊕
(
T∨f (1− r)⊗ IndQ

Kξ
−1
1 ξ−c2 Ψ1−c

W2

)
,

where T∨f is a GQ-stable O-lattice inside V ∨f , and we put

W1 = v−1(1 + S1)1/2(1 + S2)1/2 − 1, W2 = (1 + S1)1/2(1 + S2)−1/2 − 1.

In particular, we get

(6.11) H1(Q,V†Q0
) ' H1(K,T∨f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)⊕H1(K,T∨f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W2

)

by Shapiro’s lemma.

Proposition 6.3.1. Under (6.11), the balanced Selmer group Selbal(Q,V†Q0
) decomposes as

Selbal(Q,V†Q0
) ' Selrel,str(K,T

∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)⊕ Selord,ord(K,T∨f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W2

),

and the g-unbalanced Selmer group Selg(Q,V†Q0
) decomposes as

Selg(Q,V†Q0
) ' Selrel,str(K,T

∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)⊕ Selrel,str(K,T

∨
f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W2

).

Proof. The proof of the decomposition for Selbal(Q,V†Q0
) is the same as in Proposition 5.3.1, so we focus

on Selg(Q,V†Q0
). Put

Ṽ†Q0
=
(
T∨f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1

)
⊕
(
T∨f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W2

)
,
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so by Shapiro’s lemma we have

H1(Q,V†Q0
) ' H1(K, Ṽ†Q0

).

A direct computation shows that the g-unbalanced local condition is given by

F g
p (V†Q0

) = T∨f ⊗ ξ−1
1 ΨT1

⊗
(
ξ−1
2 ΨT2

⊕ ξ−c2 Ψc
T2

)
⊗ ε1−r

cyc (Ψ
−1/2
T1

Ψ
−1/2
T2

◦ V )

=
(
T∨f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1

)
⊕
(
T∨f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W2

)
.

Therefore, we have

Fp(Ṽ†Q0
) = Ṽ†Q0

, Fp̄(Ṽ†Q0
) = 0,

and this yields the stated decomposition for Selg(Q,V†Q0
). �

Corollary 6.3.2. The balanced Selmer group Selbal(Q,A†Q0
) decomposes as

Selbal(Q,A†Q0
) ' Selstr,rel(K,Af (r)⊗ ξ1ξ2Ψc−1

W1
)⊕ Selord,ord(K,Af (r)⊗ ξ1ξc2Ψc−1

W2
),

where Af (r) = HomZp(T∨f (1− r), µp∞); and the g-unbalanced Selmer group Selg(Q,A†Q0
) decomposes as

Selg(Q,A†Q0
) ' Selstr,rel(K,Af (r)⊗ ξ1ξ2Ψc−1

W1
)⊕ Selstr,rel(K,Af (r)⊗ ξ1ξc2Ψc−1

W2
).

Proof. As in Corollary 5.3.2, this is immediate from Proposition 6.3.1 and local Tate duality. �

6.4. Explicit reciprocity law. In the setting of §6.3, we now put

V† = V†Q0
⊗OJS1,S2K OJS1, S2K/(v2(1 + S2)−1 − 1),

and let

(6.12) κ(f, g,hv2−1) ∈ H1(Q,V†)
be the resulting restriction of the three-variable big diagonal class κ(f , g,h) in (4.5), where hv2−1 is the
weight one theta series obtained by specialising h = θξ2(S2) at S2 = v2 − 1.

Since κ(f, g,hv2−1) ∈ Selbal(Q,V†), we can write

(6.13) κ(f, g,hv2−1) = (κ1(f, g,hv2−1), κ2(f, g,hv2−1))

according to the decomposition from Proposition 6.3.1; in particular, we have

κ2(f, g,hv2−1) ∈ Selord,ord(K,T∨f (1− r)⊗ ξ−1
1 ξ−c2 Ψ1−c

W ),

where W = (1+S1)1/2−1. Similarly as in §5.4, for anyOJW K-module M we denote by MQ its specialisation
at Q ∈ Xcls

OJW K. Then, if Q has weight kQ ≥ 1, it is easy to see that the Bloch–Kato dual exponential and

logarithm maps give rise to L(ζQ)-isomorphisms

(6.14)
exp∗p̄ : H1(Kp̄, T

∨,+
f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W )Q → L(ζQ),

locp̄ : H1(Kp̄, T
∨,+
f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W )Q → L(ζQ),

according to whether kQ > 2r or 1 ≤ kQ ≤ 2r, respectively.

Theorem 6.4.1. Let ηg be a generator of the congruence ideal of g. There is an injective OJW K-module
homomorphism with pseudo-null cokernel

L
ηg
p̄ : H1(Kp̄, T

∨,+
f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W )→ OJW K

such that for any Z ∈ H1(Kp̄, T
∨,+
f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W ) and Q ∈ Xcls

OJW K we have

L
ηg
p̄ (Z)Q =

{
cQ · exp∗p̄(ZQ) if kQ > 2r,

cQ · logp̄(ZQ) if 1 ≤ kQ ≤ 2r,

where cQ is an explicit nonzero constant. Moreover, we have the explicit reciprocity law

L
η?g
p̄

(
resp̄(κ2(f, g,hv2−1))

)
= L g

p (f, g,h)((1 +W )2 − 1,v2 − 1).
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Proof. In terms of the direct sum decomposition in (6.10) we have

F bal
p (V†) '

(
T∨f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W

)
⊕
(
T∨,+f (1− r)⊗ (ξ−1

1 ξ−c2 Ψ1−c
W + ξ1ξ

c
2Ψc−1

W )
)

as GQp
-representations, while a direct computation shows that F 3

p (V†) = T∨,+f (1 − r) ⊗ ξ−1
1 ξ−1

2 Ψ1−c
W .

From these we obtain

F bal
p (V†)/F 3

p (V†) '
(
T∨,−f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W

)
⊕
(
T∨,+f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W

)
⊕
(
T∨,+f (1− r)⊗ ξ1ξc2Ψc−1

W

)
,

with the terms in the direct sum corresponding to Vgh
f , Vfgh , and Vfhg in (4.6), respectively, where h =

hv2−1. Thus we find that the composite map in (4.9)

Selbal(Q,V†)→ H1(Qp,Vfhg )

corresponds under the isomorphism of Proposition 6.3.1 to the projection onto Selord,ord(K,T∨f (1 − r) ⊗
ξ−1
1 ξ−c2 Ψ1−c

W ) composed with the restriction map

Selord,ord(K,T∨f (1− r)⊗ ξ−1
1 ξ−c2 Ψ1−c

W )
resp̄−−→ H1(Kp̄, T

∨,+
f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W ).

In particular, under the corresponding identifications it follows that

resp(κ(f, g,hv2−1))g = resp̄(κ2(f, g,hv2−1))

∈ H1(Qp, V
fh
g ) ' H1(Kp̄, T

∨,+
f (1− r)⊗ ξ−1

1 ξ−c2 Ψ1−c
W ).

Finally, the construction of L
ηg
p̄ is deduced from a specialisation of the three-variable p-adic regulator

map Logηg in §4.3 (see [ACR21, Prop. 7.3]), and the associated explicit reciprocity law then follows from
Theorem 4.3.1. �

6.5. On the Bloch–Kato conjecture in rank 0. As another application of the Euler system construc-
tion in this paper, we can now deduce a result towards the Bloch–Kato conjecture for

Vf,χ = V ∨f (1− r)⊗ χ−1

analogous to Theorem 5.5.1 but in the indefinite setting. Note that a similar result was obtained in [CH18a,
Thm. B] using the generalised Heegner cycles of Bertolini–Darmon–Prasanna.

Theorem 6.5.1. Let f ∈ Sk(Γ0(pNf )) be a p-ordinary p-stabilised newform of weigh k = 2r ≥ 2 which is
old at p, and let χ be anticyclotomic Hecke character of conductor cOK and infinity type (−j, j) for some
j ≥ 0. Assume that:

• every prime ` | Nf splits in K;
• (pNf , cDK) = 1;
• p - hK , the class number of K;
• ρ̄f is absolutely irreducible and p-distinguished;
• χt has conductor prime-to-p.

Assume in addition that f is not of CM type. Then

L(f/K, χ, r) 6= 0 =⇒ SelBK(K,Vf,χ) = 0,

and hence the Bloch–Kato conjecture for Vf,χ holds in analytic rank zero.

Proof. This follows by an argument similar to the proof of Theorem 5.5.1 after some modifications. Write
χt = α/αc for a ray class character α as in the proof of that result, but now put

(6.15) ξ1 := βα, ξ2 := βα−1,

with β an auxiliary ring class character of K (to be further specified below) of `-power conductor for a
prime ` 6= p split in K. Consider the setting of §6.2 with the CM Hida families

g = θξ1(S1), h = θξ2(S2).
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If (−j, j) denotes the infinity type of χ, then χ is the specialisation of ξ1ξ
c
2Ψc−1

W at W = ζ(1 +p)j for some

ζ ∈ µp∞ , and letting V†Q0,χ
be the corresponding specialisation of V†Q0

at (S1, S2) = (ζ2(1+p)2j−1,v2−1)

from the decomposition (6.10) we obtain the factorisation

(6.16) L(V†Q0,χ
, 0) = L(f/K, β2χ, r) · L(f/K, χ, r).

By our assumption (6.1) on Nf , the sign in the functional equation of L(f/K, χ, s) is −1 for 0 ≤ j < r, so
without loss of generality we assume that j ≥ r. Then the above (Q0, S1, S2) is in the range of interpolation
of L g

p (f, g,h), and by [Hsi14, Thm. C] we may choose β as above so that L(f/K, β2χ, r) 6= 0. Thus from
(6.16) and Theorem 4.1.1 (see also Remark 4.1.2), with such choice of β we conclude that

L(f/K, χ, r) 6= 0 =⇒ L g
p (f̆ , ğ, h̆)(ζ2(1 + p)2j − 1,v2 − 1) 6= 0

for a suitable choice of test vectors (f̆ , ğ, h̆). Denoting by Q the specialisation W 7→ ζ2(1 + p)2j − 1, from
Theorem 6.4.1 and Remark 4.3.2 we conclude that

L(f/K, χ, r) 6= 0 =⇒ resp̄(κ2(f, g,hv2−1)Q) 6= 0.

Since by construction κ2(f, g,hv2−1)Q ∈ Selord,ord(K,Vf,χ) is the base class of the anticyclotomic Euler
system {

czf,ψ1,ψ2,m ∈ Selord,ord(K[m], Tf,ψ1,ψc
2
) : m ∈ N

}
as in the proof of Theorem 3.3.1, with (ψ1, ψ2) the Hecke characters corresponding to (gS1 ,hS2), by The-
orem 3.3.1 we deduce that Selord,ord(K,Vf,χ) is one-dimensional, spanned by

czf,χ := corK[1]/K(czf,ψ1,ψ2,(1)) = κ2(f, g,hv2−1)Q.

The vanishing of the Bloch–Kato Selmer group SelBK(K,Vf,χ) = Selrel,str(K,Vf,χ) (see Lemma 3.1.2) now
follows from this and the nonvanishing of resp̄(czf,χ) using global duality (cf. [CH18a, Thm. 7.9]). �

6.6. On the Iwasawa main conjecture. We conclude by giving an application to the Iwasawa–Greenberg
main conjecture for L BDP

p (f/K, χ). As before, we put

Af,χ = HomZp(T∨f (1− r)⊗ χ−1, µp∞).

Theorem 6.6.1. Let the hypotheses be an in Theorem 6.5.1, and assume in addition that f has big image.
Then Selstr,rel(K,Af,χ) is cotorsion over Λ−K , and we have the divisibility

charΛ−K

(
Selstr,rel(K,Af,χ)∨

)
⊃
(
L BDP

p (f/K, χ)
)

in Λ−,ur
K ⊗Zp Qp.

Proof. Arguing as in the proof of Theorem 6.5.1 we get the factorisation

L g
p (f, g,h)((1 +W )2 − 1,v2 − 1) = ±w ·L BDP

p (f/K, β2)(W ) ·L BDP
p (f/K, χ)(W )

where the auxiliary ring class character β can be chosen, by virtue of [Hsi14, Thm. C], so that the factor

L BDP
p (f/K, β2) is a unit in Λ−,ur

K and conditions (i)–(iii) in Lemma 6.2.2 hold. By Theorem 6.1.1 the

second factor L BDP
p (f/K, χ) is nonzero, from Theorem 6.4.1 we conclude that the resulting class

κ2(f, g,hv2 − 1) ∈ Selord,ord(K,T∨f (1− r)⊗ ξ−1
1 ξ−1

2 Ψ1−c
W )

is non-torsion. Since by construction this class is the base of a Λ−K-adic anticyclotomic Euler system{
czf,ψ1,ψ2,m ∈ Selord,ord(K[mp∞], Tf,ψ1,ψc

2
) : m ∈ N

}
as in the proof of Theorem 3.3.3, the result follows from Theorem 3.3.3, Proposition 4.3.3, Proposition 6.3.1,
and Theorem 6.5.1. �

Remark 6.6.2. Note that Theorem 6.6.1 also yields a proof of a divisibility towards the Perrin-Riou main
conjecture for generalised Heegner cycles formulated in [LV19] (see [BCK21, Thm. 5.2] for the argument),
removing some of the hypotheses in the main result of [LV19].
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