DIAGONAL CYCLES AND ANTICYCLOTOMIC IWASAWA THEORY OF
MODULAR FORMS

FRANCESC CASTELLA AND KIM TUAN DO

ABSTRACT. We construct a new anticyclotomic Euler system (in the sense of Jetchev—Nekovai—Skinner)
for the Galois representation Vy , attached to a newform f of weight k > 2 twisted by an anticyclotomic
Hecke character x. We then show some arithmetic applications of the constructed Euler system, including
new results on the Bloch—Kato conjecture in ranks zero and one, and a divisibility towards the Iwasawa—
Greenberg main conjecture for Vy ..

In particular, in the case where the base-change of f to our imaginary quadratic field has root number
+1 and x has higher weight (which implies that the complex L-function L(Vy 4, s) vanishes at the center),
our results show that the Bloch-Kato Selmer group of V; , is nonzero, and if a certain distinguished class
K, is nonzero, then the Selmer group is one-dimensional. Such applications to the Bloch-Kato conjecture
for Vy , were left wide open by the earlier approaches using Heegner cycles and/or Beilinson-Flach classes.
Our construction is based instead on a generalisation of the Gross—Kudla—Schoen diagonal cycles.
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INTRODUCTION

Let f =" ang" € Si(To(Ny)) be an elliptic newform of even weight k > 2, and let p t 6N be a
prime. Let K/Q be an imaginary quadratic field in which p splits. Let L be a number field containing K
and the Fourier coefficients of f, and let B be a prime of L above p at which f is ordinary, i.e. vg(a,) = 0.
Let x be an anticyclotomic Hecke character of K, and consider the conjugate self-dual Gx = Gal(Q/K)-
representation

Vi = Vi —k/2)@x7!,
where va is the contragredient of Deligne’s B-adic Galois representation associated to f.

We prove, among other results, the following applications to the Bloch-Kato conjecture for V¢ ,: Under
mild hypothesis on f and y, the nonvanishing of the Rankin-Selberg L-function L(f/K, x, s) at the center
s = k/2 implies that the dimension of the associated Bloch-Kato Selmer group is 0; and when this central
L-value vanishes, the nonvanishing of a distinguished class x , implies that the dimension of the associated
Bloch—Kato Selmer group is 1. These results are applications of the main contribution of this paper, which
is the construction of a new anticyclotomic Euler system for V.

Our construction is based on a generalisation of the diagonal cycles introduced by Gross-Kudla [GK92]

and Gross—Schoen [GS95], and studied more recently by Darmon—Rotger and Bertolini-Seveso—Venerucci
(see [BDRT22]).

0.1. Main results. Assume that the discriminant Dg of K satisfies (D, Ny) = 1. Write Ny = NTN~
with N (resp. N7) divisible only by primes that are split (resp. inert) in K, and assume that

(0.1) N~ is squarefree.

Denote by v(IN ™) the number of prime factors of N—, and assume also that

(0.2) x has conductor cOg with (¢,pNy) = 1.

Under hypotheses (0.1) and (0.2), it is known that the sign e(f, x) in the functional equation for L(f/K, x, s)
(relating its values at s and k — s) depends only on the global root number of the base-change of f to K,
given by

(1K) = ~(=1)" ™),
and the infinity type (—7,7) of x. According to these, the values of ¢(f, ) are as in the following table!:

1Because L(f/K, X, s) = L(f/K, X, s), where x€ is the composition of y with the action of complex conjugation, without
loss of generality we may assume j > 0.
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(/K = —1 [ (f/K) = +1
0<j<k/2 —1 +1
> k/2 1 1

0.1.1. The Fuler system. Throughout the remainder of this Introduction, assume that f and K satisfy the
following hypotheses:

(h1) f is ordinary and non-Eisenstein at 3;

(h2) p = pp splits in K;

(h3) p1 hk, where hi is the class number of K.
For every positive integer n, let K[n| be the maximal p-subextension of the ring class field of K of conductor
n. Denote by A the set of squarefree products of primes [ C Ok split in K with £ = Nk q(l) prime to p.
Theorem A (Theorem2.3.2). There exists a family of cohomology classes

Zfyomr € H (K [mp"], Ty )
indexed by the ideals m € N with m = Nk q(m) coprime to p and r > 0, where Ty is a certain G i -stable
O-lattice inside Vy ., such that
COT K [mpr+1]/ K [mpr] (Zf.x;mr+1) = Zf x.m,r

for allr > 0, and for every split prime | of Ok of norm ¢ with (¢, mp) = 1 we have the tame norm relation

COrKmepr)/ K mpr) (f xmir) = PUFY0b1) 21 5 m.
where Pi(X) = det(1 — Frob(X | V}/, (1)), and Froby is the geometric Frobenius.

The system of classes of Theorem A defines an anticyclotomic Euler system in the sense of Jetchev—
Nekovéai-Skinner [JNS] for the conjugate self-dual representation Vy . Significantly extending Kolyvagin’s
methods, the general theory developed in op. cit. provides a machinery that bounds Selmer groups for
conjugate self-dual representations V' from the input of a non-trivial anticyclotomic Euler system for
V. The Selmer group being bounded depends on the local condition at p satisfied by the Euler system
classes, and by varying certain elements in the construction of z¢ m , we produce in fact two different
anticyclotomic Euler systems for Vy ,, differing by their local conditions at the primes above p.

To describe this, recall that by B-ordinarity of f, the Galois representation va restricted to a decom-
position group Gq, C Gq fits into a short exact sequence

0=V, T =V -V =0,
where va’i ~ Lg, with the Gq,-action on va’7 given by the unramified character sending the arithmetic
Frobenius Frob];1 to ay, the unit root of 22 — a,x + p*~1. Put

VE =V 1 -k2)@x

Then more generally, we construct:

e An anticyclotomic Euler system {z?ﬁﬁf‘i}mr with the local condition at the primes w|p defined
by
He (K [mp"lu, Vi) = ker (H' (K[mp|u, Vi) = H' (K[mp"luw, Vi ))-
e An anticyclotomic Euler system {z;eif;fr}mqp for the local condition at the primes w|p defined by
HY (K [mp'), Vi) if wlp,
0 if wlp.

Using the Panchiskin condition, it can be shown that at least one of these classes land in the Bloch—-Kato
Selmer group Selgk (K [mp"], V},y), namely the class

rel,str e
e TEY)
Kfoxmr =

z;f;j;;{‘i if0<j<k/2
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0.1.2. Applications to the Bloch-Kato conjecture in rank 1. Put

Kfx = Corgi)/i (Ffy,(1),0) € Selpk (K, Vy,y)

From the general Euler system machinery of [JNS] applied to the construction of Theorem A we deduce
in particular the following result. Let O be the ring of integers of Ly. We say that f has big image if for a
certain Galois stable O-lattice T C V/, the image of Gq in Autp(7}) contains a conjugate of SLa(Zy).

Theorem B (Theorem 5.7.1). Let f € Si(To(Ny)) be a newform and x an anticyclotomic Hecke character
of K as above of infinity type (—j, 7). Assume that

e(f/K)=4+1 and j>k/2,

which implies L(f /K, x,k/2) = 0. Assume also that p > k—2, py is p-distinguished, and f has big image.
Then

dimLm SGIBK([{7 Vf,x) Z 1.

Moreover, if the class Ky is nonzero, then
Selpk (K, Vi) = Lo - Kf.x-

By the Gross—Zagier formula for the modified diagonal cycles introduced in [GK92, GS95] (a special case
of the arithmetic Gan—Gross—Prasad conjecture for SO(3) x SO(4)) proved by Yuan—Zhang—Zhang [YZZ] in
certain cases, the non-triviality of ky , is expected to be governed by the nonvanishing of L'(f/K, x, k/2),
and hence Theorem B provides strong evidence towards the Bloch-Kato conjecture for Vy, in analytic
rank 1.

Our methods also yield an analogue of Theorem B in the “indefinite case” ¢(f/K) = —1and 0 < j < k/2
(indeed, for N~ =1 this follows immediately from Theorem 6.6.1), but in this case such result can also be
obtained from the Euler system of (generalised) Heegner cycles [Nek92, CH18a].

0.1.3. Applications to the Bloch—Kato conjecture in rank 0. We now turn our attention to the cases where
e(f,x) = +1, so the central value L(f/K,x, k/2) is expected to be generically nonzero. Put

o [Em ik,
Kfxmr =

z}f’;’iﬁ;r if0<j<k/2

and '{/f,x = COTg1y/ K(Ka}% (1)70). Building on the reciprocity law for diagonal cycles by Bertolini—Seveso—
Venerucci [BSV22], we show that the class «’; | is non-crystalline at p precisely when L(f/K,x,k/2) # 0.
Together with the machinery of [JNS] applied to the anticyclotomic Euler system of Theorem A extending
”;‘,x’ we thus deduce in particular the following cases of the Bloch-Kato conjecture in analytic rank 0.

Theorem C (Theorem 5.5.1). Let f € Si(T'o(Ny)) be a newform and x an anticyclotomic Hecke character
of K as above. Assume that e(f/K)=+1 and p >k — 2. Then

L(f/K7X7k/2)7é0 - SelBK(K7Vf,X):07
and hence the Bloch-Kato conjecture holds in this case.

Note that the nonvanishing of L(f/K, x, k/2) implies that €(f, x) = +1, and so without loss of generality,
the character x in Theorem C may be assumed to have infinity type (—7, j) with 0 < j < k/2. Similarly as in
the rank 1 case, our methods also yield an analogue of Theorem C in the indefinite case (see Theorem 6.5.1).

Finally, we note that results also include the proof of a divisibility towards the anticyclotomic Iwasawa
Main Conjecture for V; ., giving in particular a new proof of the main result of [BD05] (see Theorem 5.6.1).
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0.2. Relation to previous works. Starting with the landmark results by Gross—Zagier and Kolyvagin
[GZ86, Kol88] (see also [BDI0]), and followed by their vast generalisations by Zhang [Zha97], Tian [Tia03],
Nekovai [Nek07], Yuan—Zhang—Zhang [YZZ13] and others, the Euler system of Heegner points and Heegner
cycles has been a key ingredient in the study of the arithmetic of V., under the Heegner hypothesis

e(f/K)=—-1.

Classical Heegner cycles account for the cases where the anticyclotomic character x has finite order (i.e.,
j = 0), but using their new variant by Bertolini-Darmon—Prasanna [BDP13], one obtains classes controlling
the arithmetic of Selgk (K, Vy,y) in the following cases:

(1%* quadrant) e(f/K)=-1, 0<j<k/2

In another major advance, Bertolini-Darmon [BD05] exploited congruences between modular forms on
different quaternion algebras and the Cerednik—Drinfeld theory of interchange of invariants to realise the
Galois representation (on finite quotients of) T, in the torsion of the Jacobian of certain Shimura curves.
This allowed them to still use the Heegner point construction in situations where ¢(f/K) = +1. Together
with the extension to higher weights by Chida—Hsieh [CH15], these methods yielded a proof of many cases
of the Bloch—Kato conjecture in analytic rank 0 when

(274 quadrant) e(f/K)=41, 0<j<k/2

under a certain “level-raising” hypothesis. More recently, the Euler system of Beilinson—Flach classes con-
structed by Lei-Loeffler—Zerbes [LLZ14, LLZ15] and Kings—Loeffler—Zerbes [KLZ17, KLZ20] (inspired in
part by earlier results of Bertolini-Darmon—Rotger [BDR15a, BDR15b]) provided an alternative approach
to similar rank 0 results under some hypotheses (among other applications).

On the other hand, exploiting the variation of (generalised) Heegner cycles in p-adic families, the first
author and Hsieh [CH18a, Cas20], and more recently Kobayashi [Kob]|, obtained results on the Bloch-Kato
conjecture for V; ., in rank 0 in the cases

(3*4 quadrant) e(f/K)=—1, j>k/2.
Contrastingly, in the cases where
(4" quadrant) e(f/K)=+1, j>k/2,

the conjectures of Beilinson-Bloch and Bloch-Kato predict the existence of non-trivial classes in Selpk (K, V7,y)
coming from geometry (since €(f, x) = —1 and therefore L(f/K, x, k/2) = 0), but the construction of such
classes seems to fall outside of all the aforementioned methods.

The anticyclotomic Euler system constructed in this paper allows us to fill this gap, while also providing
a new approach to the aforementioned results in other cases:

e(f/K) =—1 e(f/K) =+1
15% quadrant 274" quadrant
0 <j<k/2|[Kol88], [Tia03], [Nek07], etc. | [BDO5], [CH15], [KLZ17], etc.
Theorem 6.6.1 Theorem 5.5.1
3'1 quadrant 4% quadrant
j>k/2 [CH18a], [Cas20], [Kob], etc. -
Theorem 6.5.1 Theorem 5.7.1

In future work, we intend to generalise our construction to totally real fields, a setting in which one finds
even more cases where the arithmetic of Rankin—Selberg convolutions falls outside the scope of Heegner
cycles and/or Beilinson—Flach classes.



6 F.CASTELLA AND K.T.DO

0.3. Acknowledgements. The present article grew out of the second author’s PhD thesis [Do22], super-
vised by Christopher Skinner. Both authors would like to thank him for stimulating this collaboration,
for his guidance and optimism. We would like to thank Raul Alonso, Haruzo Hida, and Oscar Rivero for
helpful exchanges related to various aspects of this work.

During the preparation of this paper, the first author was partially supported by the NSF grants DMS-
1946136 and DMS-2101458.

Part 1. The Euler system
1. PRELIMINARIES

1.1. Modular curves and Hecke operators. We give a precise description of the modular curves and
Hecke operators that will appear in our construction. The main references for this section are [Kat04, §2],
[BSV22, §2], and [ACR21, §2], where more details can be found.

1.1.1. Modular curves. Let M, N,u,v be positive integers such that M + N > 5. Define Y (M, N) to be
the affine modular curve over Z[1/M N| representing the functor

isomorphism classes of triples (F, P, Q) where E is an elliptic curve over S,
S+ ¢ P, Q are sections of E over S such that M - P = N - = 0; and the map
Z/MZ x Z/NZ — E, sending (a,b) — a- P +b-Q is injective
for Z[1/M N]-schemes S. More generally, define the affine modular curve Y (M (u), N (v)) over Z[1/M Nuv]
representing the functor
isomorphism classes of quintuples (F, P, Q, C, D) where (E, P, Q) is as above,
P € C is a cyclic subgroup of F of order Mu,

Q@ € D is a cyclic subgroup of E of order Nv such that
C is complementary to Q and D is complementary to P

S —

for Z[1/M Nuv]-schemes S. When either u = 1 or v = 1, we drop them from the notation.
Let H be the Poincaré upper half-plane and define the modular group:

(1 0 M Mu
M (u), N(v)) = {7 € SLy(Z) such that v = <O 1) mod (Nv N )} .
The Riemann surface Y (M, N)(C) admits a complex uniformisation:

(Z/MZ)* x T(M,N)\H = Y (M, N)(C)
(m, 2) — (C/Z+Zz,mz/M,1/N),

and similarly for Y (M (u), N(v))(C).
Let ¢ be a prime. There is an isomorphism of Z[1/¢M N]-schemes:

e Y(M,N(0)) — Y(M((),N)
(E,P,Q,C) + (E/NC,P+NC,t=Y(Q)NC+NC,((~(Z-P+NC)/NC)),

which under the complex uniformisation is induced by the map (m, z) — (m, £ - z).

1.1.2. Degeneracy maps. We have the natural degeneracy maps
Y (M, Nt) -2~ Y(M,N(¢)) —2> Y (M, N)
@ei
Y (ME,N) "y (M(0), N) -2~ Y (M, N),
where uy(FE,P,Q)=(E,P,{-Q,Z-Q), v(E,P,Q,C) = (E, P,Q), and fis, Uy are defined similarly. Put
pry :=wvpoug: Y(M,N{) = Y (M,N),
(E,P,Q)— (E,P,{-Q)
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and
prp:=po@popuy:Y(M,Nl)—Y(M,N)

On the complex upper half plane H, the map pr; (resp. pr,) is induced by the identity (resp. multiplication
by ¢). Moreover, py, fi¢, Ve, Vg, pry, pr, are all finite étale morphisms of Z[1/M N{]-schemes.

1.1.3. Relative Tate modules and Hecke operators. Let S be a Z[1/M N{p]-scheme where p is a fixed prime.
For each Z[1/M N/{p]-scheme X, denote the base change Xg = X Xz amnep S. Notate A = Ax to be
either the locally constant sheaf Z/p™Z(j) or the locally constant p-adic sheaf Z,(j) on X for some fixed
j€Zand m>1.

For the ease of notation, we may write - for M (u), N(v) (i.e. Y(:) = Y (M (u), N(v))). Denote by E()
the universal elliptic curve over Y (-). Then one obtains a natural degree ¢ isogeny of universal elliptic
curves under the base change by p; E(M(¢),N) = Y (M,N¥)):

At E(M,N(0)) = o, (E(M({),N).

Denote by v. : E(-)s — Y(+)s the structure map. We also use vy, 7y and A\, for the base change to S of the
corresponding degeneracy maps. Set:

T.(A) = R'v..Z,(1) ®z, A and 7*(A) = Homa(Z.(A), A)

where R%v., is the ¢-th right derivative of v., : E(-)¢y — Y(-)s,. When A = Z,,, this gives the relative Tate
module of the universal elliptic curve, in which case we will drop the Z,, from the notation.
Fix an integer r > 0. The (perfect) cup product pairing combined with the relative trace

T. @z, T. — R*v.Z,(2) 2 Z,(1)
allows us to identify .7 (—1) with .7*. Put
Z4(A) = Tsymy Z(4), S (A) = Symw'y 7 (A),

where Tsym}, M is the R-submodule of the symmetric tensors in M®”, Symm, M is the maximal symmetric
quotient of M®", and M is any finite free module over a profinite Z,-algebra R. When the level is clear,
we shall simplify the notations, e.g. writing:

(1~1) XT(A) = gM(u),N(v),r(A), gr = gr(zp)v yT(A) = y]VI(u),N(v),r(A)v yr = yr(zp)-
Let .#7 be either .Z .(A) or .. (A). Then there are natural isomorphisms of sheaves
Vi(FunN) = Funey U Fun)=Fuen
and these induce pullback maps
Hi (Y (M, N())s: Zarney) < He(Y (M, N)s, iy n) = He (Y (M(0), N)s, Fhs(0),n)
and traces
Hy (Y (M, N())s, Zarne) — He(Y (M, N)s, F iy ) ¢ He(Y (M0, N)s, Fh0).)-
The finite étale isogeny A; induces morphisms
Aex gZ?\LN(Z) - w?(ﬁ%mw), VE @Z(%M,N) - 9?\/{,1\7(5)
and this allows us to define a pushforward
D= pex 0 A s Hy (Y (M, N(0)s, Z i n(ey) = Ha (Y (M), N)s, Fpey,n)
and a pullback
@) = N oy Hy(Y(M(),N)s, Zirey,n) = Hi(Y(M,N())s: Fhr v (e))-
The Hecke operator Ty and the dual Hecke operator T acting on HE (Y (M, N)s, Z} ) are defined by

Ty = 0 Ppoov), T, :=uvpo®) ov.



8 F.CASTELLA AND K.T.DO

Remark 1.1.1. Note the relations
deg(e)Te = pry, o pry, deg(ue)T; = pry, o pry,

as follow immediately from the definitions.
For d € (Z/M NZ)*, the diamond operator {(d) on Y (-) is defined in terms of moduli by
(E,P,Q,C,D) = (Eadil P,dQ»CaD)

This is also a unique diamond operator (d) on the universal elliptic curve making the following diagram
cartesian:

E()s @, E()s ,

i i i

Y()s — =Y ()s
and this induces automorphisms (d) = (d)* and (d)’ = (d). on H} (Y (-)s,Z.).
For any profinite Z,-algebra R and finite free R-module M, the evaluation map induces a perfect pairing
TsymryM @ SymmpM™ — R,
where M* = Hompg (M, Z,). This gives a perfect pairing %, ®z, ., — Z,, and therefore a cup product
()t Hy (Y (g, Z(1) @z, Hi (Y (g ) = HE(Y (Vg Zp(1)) = Zy,

which is perfect after inverting p. Moreover, the Hecke operators Ty, Ty, (d), (d)’ induce endomorphisms on
the compactly supported cohomology groups Hélw(Y(-)a, <), and by construction, (T, T;) and ((d), (d)")

are adjoint pairs under (-,-). The Eichler-Shimura isomorphism [Shi94]
HY (Vi(N)g Z,) 92, C = My 45(N,C) & 5,5(N. O)
commutes with the action of the Hecke operators on both sides.

1.2. Galois representations associated to newforms. Let f = 220:1 anq™ be a normalised newform
of weight k > 2, level I';(Ny), and nebentype xs. Let p{ Ny be a prime. Fix embeddings io : Q — C
and i, : Q < Q,. Let L/Q be a finite extension containing all values i3 !(a,) and i o xy. Let B be
the prime of L above p with respect to i,. Then Eichler-Shimura and Deligne construct a p-adic Galois
representation associated to f:

prp : Gq = GLa(Lyp)
which is unramified outside pNy, and characterised by the property for all finite primes £ { pNy,

trace(psp (Froby)) = ip(ar),  det(psp(Frobe)) =iy (x s (O)1°),

where Froby is the geometric Frobenius. Moreover, pr g is known to be irreducible [Rib77], hence absolutely
irreducible since the image of the complex conjugation has eigenvalues 1 and —1.

1.2.1. Geometric realisations. The representation ps g can be realised geometrically as the largest subspace
Vf of
He (Y1 (Nf)gq 7 k—2) © Lp
on which T} acts as multiplication by ay for all £+ Nyp and (d)’ = (d). acts as multiplication by xf(d) for
all d € (Z/N;Z)*. If N is any multiple of Ny, then the above subspace with Ny replaced by N gives rise
to a representation Vy(IN) isomorphic (non-canonically) to a finite number of copies of V5.
The dual va = Hom(V}, L) can be interpreted as the maximal quotient of

He (Yi(Nf)g Lr-2(1)) @ Ly

on which the dual Hecke operator T, acts as multiplication by a, for all £ { Nyp and (d) = (d)
multiplication by xf(d) for all d € (Z/N¢Z)*.

* acts as
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Let O be the ring of integers of L. In this paper we shall be mostly working with VfV and the Gq-stable
O-lattice TY C V' defined as the image of Hj (Y1(Ny)g, ZL1-2(1)) ® O in V.

1.2.2. The p-ordinary case. If f is ordinary at p, i.e. ip(a,) € O, then the restriction of Vy to Gq, C Gq
is reducible, fitting into and exact sequence of Ly [Gq,]-modules

0=V5 =V =V, =0

with dimp,, Vfi = 1, and which the Gq, -action on the subspace Vf+ given by the unramified character
sending Frob, to a,, the unit root of 2% — a,z + x;(p)p*~!. By duality, we also obtain an exact sequence

for va restricted to Gq,
V.4 v V,—
(1.2) 0=V T =2 V=V =0

with va’+ ~ (Vi)Y - k)(Xfl), and with the Gq,-action on the quotient va’7 given by the unramified
character sending arithmetic Frobenius Frob,, ' to ap.

1.3. Patched CM Hecke modules. In this section, after explaining our conventions on Hecke characters,
we recall the construction of certain patched CM Hecke modules from [LLZ15].

1.3.1. Hecke characters and theta series. Let K be an imaginary quadratic field in which

p = pp splits,
with p the prime of K above p induced by i, : Q — Qp. We say that a Hecke character ¢ : Ax /K> — C*
has infinity type (a,b) € Z2 if 1o (T0o) = 2%, 2% . Then ¥(z)23225> is a ray class character, hence it takes
value in a finite extension L/K. For B|p the prime of L above p induced by i,, we define the p-adic avatar
Yy of 9 as follows. Denote by reck : Ay — G2 the geometrically normalised Artin reciprocity map. For
g € Gk, we take x € A% such that reck (z) = g|ka» and define

U (g) = ip 0 i (Y (2)a 1z )rgas.
Since there should be no confusion, in the following we shall also use ¥ to denote its p-adic avatar.

Let ¢ be a Hecke character of K of infinity type (—1,0), conductor f, taking values in a finite extension
L/K. The theta series attached to 1 is

b= Y w(a)g" <2 € STy (Ny), xyex)
(Chf):l

where Ny = Ng,q(f)disc(K/Q), xy is the unique Dirichlet character modulo Ng,q(f) such that ¥((n)) =
nxy(n) for all n € Z with (n, Ng/q(f)) = 1, and e is the quadratic Dirichlet character attached to K.
The cuspform 6y is new of level Ny, if § is the conductor of 9, and its 3-adic representation satisfies

Vo, 2IndZLy(¥), V), =IndZLyp(y").

1.3.2. Hecke algebras and norm maps. Let n C Ok be an ideal divisible by §f. Put N = Ny /q(n)disc(K/Q).
Let K[n] be the ray class field of K with conductor n, and let H, be the ray class group of K modulo
n. Let K(n) be the largest p-subextension of K contained in K[n], so Gal(K(n)/K) & HP is the largest
p-power quotient of H,. For an ideal £ of K coprime to n, let [€] be the class of £ in H,,.

Proposition 1.3.1 ([LLZ15, Prop. 3.2.1]). Let T'(N) be the subalgebra of Endz(H'(Y1(N)(C),Z)) gen-
erated by (d)’ and T} for all primes {. There exists a homomorphism ¢, : T'(N) — O[H,] defined by

(1) =Y [0w(),

[
On((d)") = xu(d)ex (d)[(d)],
where the sum is over the ideals | C O with [{n and Nk /q(l) = £.
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For n’ = nl, with [ a prime ideal and (n',p) = 1, put N’ = Ng,q(n')disc(K/Q). Following [LLZ15,
§3.3], we consider the norm maps

N OIHP) @1 (nnyezy 00 HA V(N g Zp(1)) = O[HP| @030z, Ha(Yi(N)g: Zp(1)

defined by the following formulae:
e If [ | n then
'/\[1“11, =1 ® prl*;

e If [{n is split or ramified in K, then

/ Dt
Nrrtl :1®pr1*_%)“®pr&k;
e If [{nis inert in K, say [ = (£), then
/ YO
Ny =1@pr, — 7z ©Plus

and we extend the definition of N:’ to any pair of ideals n | n’ by composition.

Notation 1.3.2. Let ¢ be a character character of K of infinity type (—1,0) and conductor f. We say that
1 satisfies Condition # if either (p,f) =1, or p | f, p1f, and

z/J|OIx( Z w (mod*P),
where w is the Teichmiiller character.

Since we assume that p splits in K, by Proposition 5.1.2 and Remark 5.1.3 in [LLZ15], if Condition &
holds, then for any ideal n C Ok divisible by f and with (n,p) = 1, the maximal ideal of T'(N) defined by
the kernel of the composite map

T/(N) 2% O[H,] 2% 0 — 0/,
where ¢, is the map from Proposition 1.3.1, is non-Eisenstein, p-ordinary, and p-distinguished.

Theorem 1.3.3. Let A be the set of ideals m C Ok with (m,p) = 1, and put A; = {fm: m € A}. Suppose
Y satisfies Condition &. Then there is a family of Gq-equivariant isomorphisms of O[H,(lp)]—modules

va : OIHP| @1 (3)02, 0, HE(V(N)g: Zp(1)) —> TndF | O(vy")

indexed by n € Ajs, such that for any n,n’ € As with n | v’ the following diagram commutes:

OLHY| @1/(x1)92,y 00 HE (V1 (N') g Zp(1)) —2> Tnd R O(th5")

’ /
Ny \L Norm}, i

OHY] @1 (xyw2y00 HE(V1(N)g, Zp(1) — o> TndF  O(v"),

’
where Normy, is the natural norm map.

Proof. This is a reformulation of Corollary 5.2.6 in [LLZ15] in the case where p splits in K. (]
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1.4. Diagonal classes. We sketch the construction of the diagonal classes in the triple product of modular
curves Y7 (V) using classical invariant theory, following Section 3 in [BSV22].

We recall some notation used in Section 1.1.3. Here, Y1(N) = Y1(N)q, E1(N) = E1(N)q the universal
elliptic curve over Y7 (N) together with the structural map v : E1(N) — Y1(N). The relative Tate module
of the universal elliptic curve is 7 = R'v,Z,(1), and its dual is * = Homgz_ (7, Z,). The cup product
pairing combined with the relative trace

T @z, T = R*0,.Z,(2) 2 Z,(1)
gives a perfect relative Weil pairing
<7>E1(N)p<x> T ®Zp T — Zp(l),

which allows .7 (—1) to be identified with .7*.

For A either the locally constant sheaf Z/p™Z(j) or the locally constant p-adic sheaf Z,(j) on Xg; for

some fixed m > 1 and m, j € Z, recall that

Z.(A) = Tsymy, 7(4),  F(A) = Symny 77 (A),
where given any finite free module M over a profinite Z,-algebra R, TsympM is the R- submodule of the
symmetric tensors in M®", and Symm’, M is the maximal symmetric quotient of M®".

For a fixed geometric point 7 : Spec(Q) — Y1 (NN), denote by G,, = ' (Y1 (N),n) the fundamental group
of Y1 (V) with base point n. The stalk of 7 at 1, denoted .7, is a free Z,-module of rank 2, equipped
with a continuous action of G,. Fix a choice of Z,-module isomorphism ¢ : 9, = Z, & Z, such that
(T, Y) By (V)00 = C(7) A((y) (where we identify A’ Z2 with Z,, via (1,0) A (0,1) = 1). One then obtains a
continuous group homomorphism:

Pn - gn — Autzp(%) = GLQ(ZP)
By [FK88, Prop A 1.8], the category of locally constant p-adic sheaves on Y;(N)g is equivalent to the
category of p-adic representations of G, via the map # — %,. Using p,, one can associate with every
continuous representation of GLa(Z,) over a free finite Z,-module M a smooth sheaf M on Y;(N) such
that MS* = M.

Let S;(A) be the set of 2-variable homogeneous polynomials of degree ¢ in A[x1, 23] equipped with the
action of GLo(Z,) by gP(x1,22) = P((z1,x2) - g) for all g € GL2(Z,) and P € S;(A). Its A-linear dual
L;(A) is also equipped with a GLy(Z,)-action by g7(P(z1,22)) = 7(9 ' P(z1,22)) for all g € GLa(Zy),
P e S;(A), and 7 € L;(A). As sheaves on Y7(N)q, one has

Li(A)% = Z;(A) and S;(A)* =.7;(A).

Hence 9, = Ly(Z,) and Z,(1), = /\2%7 > det™'. This implies that for any j € Z, and any p-adic
representation M of GLa(Zy):
(1.3) H°(GLy(Z,), M @ det ™) — H(G,, M @ det ™) = H% (Y1 (N), M*(j)).
Assumption 1.1. Let r = (rq, 7, r3) such that r; € Zso, (r1 +re+1r3)/2 =1 € Z>g, and r; +1; > 1},
for all permutation (4, 7, k) of (1,2,3). We call this the balanced condition.

Under the Assumption 1.1, let

Sy = Sn (Zp) ®Zp Srz (Zp) ®Zp Sra(zp)
a GL2(Zjp)-representation, and let
S = Sft = yn(zp) ®Zp yrz (Z;D) ®Zp yrs (Zp)'

We identify Sy with the module of 6-variable polynomials Z,[z1, 2, y1, Y2, 21, 22] which is homogeneous of
degree r1, 72, and r3 in the variables (z1,22), (y1,92), and (21, 22) respectively. By the Clebsch-Gordan
decomposition of classical invariant theory, the following is a GLa(Z,,)-invariant of S, @ det™":

T T rT—r3 T T T—"T2 T—7T1
Deth :=det (*1 2 det (71 72 det (V1 %2 ,
Y1 Y2 Z1 22 21 22
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i.e. Detly € H(GL2(Z,), Sy @ det ") and denote its image under (1.3) as
(1.4) Detl, € HY (Y1(N),. 7 (r)).
Let pj : Y1(N)® — Y1(N) for j € {1,2,3} be the natural projections and denote
L) =01 1 (Lp) @z, p3 S vy (L) Pz, D5 s (L),
Wy = Hgt(Yl(N)%vy[r] (r+2)).

Because Y1(N)g is a smooth affine curve over Q, we have Hglt(Yl(N)%,Y[r] (r+2)) = 0. Hence by the

Hochschild—Serre spectral sequence,
HP(Q HY (Vi (N2, 71 (1 + 2)) = HET (Vi (N, 7 4 (1 + 2)
one obtains

HS : Hey (Yi(N)?, S (r +2)) = H'(Q, W)

If welet d : Y1(N) — Y1(N)? be the diagonal embedding, then there is a natural isomorphism d* .% ) 2 .7,
of smooth sheaves on Y;(N)g. As d is an embedding of codimension 2, there is a pushforward map

d. : HY(Yi(N), 72(r) = HL(Yi(N), 7 +2)),

and we define the class
(HS o d,)(Detly) € H'(Q,Wn ).

Dually, by the bilinear form det* : L;(Z,)®z, L;(Z,) — Z,®det ™" defined by det*(1@0) = @0 ((v1y2—
T2y1)") that becomes perfect after inverting p, we can define an isomorphism of GLz(Z,)-modules

S; . Si(Qp) = Li(Qp) oY detia

and so s; : .7;(Q,) = Zi(Q,) ® det’ by the above equivalence of categories. We then similarly define the
sheaves . on Y1(N) and £}, on Yi(N)?. Set

VN o= Hy(Vi(N)G L (2= 7)), Vive = Vne © Qe
Let sy = Sy, @ Sp, ® Sy, which gives an isomorphism Wy, — Vi r, and finally as in [BSV22] put
(1.5) KNr = (Sp« 0HS 0 d,)(Detly) € HY(Q, V).

As explained in detail in [loc. cit., §3.2], the class kn, is closely related to the p-adic étale Abel-Jacobi
image of the generalised Gross—Kudla—Schoen diagonal cycles on Kuga—Sato varieties studied in [DR14].

Proposition 1.4.1. For a prime number ¢ and a positive integer m, if (mé,pN) =1 then

(pri»m prj*? prk*)ﬁmé,r = (*)Hmyr

where

(4,5, k) *

(¢,1,1) (0 —1)(Ty,1,1)
(1,4,1) (0 —1)(1,Tp, 1)
(1,1,0) (0 —1)(1,1,Ty)
(1,6,0) | ¢~ (£ —1)(Ty,1,1)
(€,1,0) | (£ —1)(1,T},1)
(€,0,1) | £r—"3(£—1)(1,1,T7)

If (¢,m) = 1 then we also have

Proof. See equations (174) and (176) in [BSV22]. O
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2. MAIN THEOREMS

In this section, for a newform f and two Hecke characters 11,9 of an imaginary quadratic field K,
using the results from [BSV22] and [LLZ15] recalled in the preceding section, we construct a family of
cohomology classes for f ® 1119 defined over ring class field extensions of K, and prove that they satisfy
the norm relations of an anticyclotomic Euler system.

The construction is in two steps: we first give the construction and the proof of the tame norm relations
in the case where (f,0y,,60y,) have weights (2,2,2); then using the variation of diagonal cycle classes in
Hida families we extend the construction to more general weights and deduce the proof of the wild norm
relations.

Throughout this section we consider the following set-up. We let f € Si(T'o(Ns)) be a newform of
weight k& > 2, K/Q an imaginary quadratic field of discriminant prime to Ny, and 1,92 (not necessarily
primitive) Hecke characters of K of infinity type (1 — k1,0), (1 — k2,0), with k1, ko > 1, and modulus f1, fa,
respectively. Denote by

owi € Sk, (Nwmxflh:)
the associated theta series, where Ny, = N/ q(fi) - disc(K/Q) and xg, is the Dirichlet character modulo

Nk q(fi) defined by ¥;((n)) = n*~xy, (n) for all integers n prime to Ny ,q(fi) (i = 1,2). We assume the
self-duality condition

(2.1) X Xy = 1.

In particular, since k is even by hypothesis, condition (2.1) implies that k1 = ko (mod 2).

Let L/K be a finite extension containing the Fourier coefficients of f, ,,, and 6y,. Let p > 5 be a
prime that splits in K and such that (p, NyNy, Ny,) = 1, and let B|p be the primes of L/K above p
determined by a fixed embedding i, : Q— Qp. Finally, let Ly be the completion of L at 3, and denote
by O the ring of integers of Lep.

2.1. Construction in weight (2,2,2). Suppose in this subsection that k = k; = ky = 2. Let N =
lem(Ny, Ny, , Ny,) and for every positive integer m put
Y(m) :=Y(1,Nm) = Y1(Nm).
When m = 1, we drop it from the notation, so Y := Y;(N). We begin with the cohomology class
(2.2) Riy) = S« 0 HS 0 du(Detly,,,) € H'(Q, H3 (Y (m)g, Z,(2))
in the notations of Section 1.4, where r = (0,0, 0), and put

LR € B (QuHE (Vg x Y ()3 Z,(2)),

mxr )

R = (pr

where, writing m =[], ¢; as a product of (not necessarily distinct) primes, pr,,, is the composition of the

pushforward by the degeneracy maps pr, .

Applying the Kiinneth decomposition theorem (see e.g. [Mil80, Thm. 22.4]) together with the natural

degeneracy maps Y (m) — Y1 (Ny,m) (i = 1,2), the class 72 s projected to

(2.3) R € HY(Q, Hiy (Y, Zy(1) @ Hy (Y1 (Ny,m)g, Zp(1)) © H (Yi(Ny,m)g Zp(1))(~1)).
Now we fix a test vector f € Sy(N)[f]. The maps used in the construction 7% are compatible with
correspondences, and so after tensoring with O the above process gives rise to a class

e
R vam € HH(QTY @ HA(Yi(Nyym)gs Zp(1) @1 vy, m) OLHT)]
® H, (Vi (Ny,m)g, Zp(1)) @y my OLH[ A,
where the labeled tensor products are with respect to the Hecke algebra homomorphisms

Sym T (Nyym) = O[HN], gy T (Nyym) — O[H ]

m*
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of Proposition 1.3.1, and we used our chosen f to take the image under the projection Hélt(Ya, Z,(1)) — TJ)’
in the first factor.

Since p splits in K and is coprime to f;f2, Condition # is satisfied for both 1, and 1. Therefore by
the isomorphisms from Proposition 1.3.3:

Vfim * Hélt(}fl(N¢1m)67 Z;D(l)) ®T'(N,¢,1m) O[Hf(fgrzl] = Indf%(flm)o(wl_l)a
Vi + HE (Vi (Nyym) g, Zo(1)) @1, ymy OLH "] = Ind Oy ),
the class k;i)blﬂbmm defines an element in
H'(Q, T} @0 Indg ;) O(¥1 ") @0 Indg ;. O(43 ) (1)),
which under the maps induced by Hj w — Hy and Hj,m — Hi is naturally projected to a class

~(5
B am € HHQTY ©0 A0, [HY] @0 mdFO, 1 [HE](~1)).

2.1.1. Projection to ring class groups. Directly from the definitions of the class groups involved, we deduce
the commutative diagram with exact rows

O x O — (O /m)* x (O /M)* —— Hp X Hfg — Hy x H —>1

.| | |

Of ——— (O /mOK)* H,, H, 1,

where the unlabelled vertical arrow is given by the restriction map

o+ (0]Kp, 0l R )-

In particular, when p t 6hg, where hg := |H;| is the class number of K, taking p-primary parts this map
induces an isomorphism

(2.4) HEP) = HP x Hg’).

Given an integer n > 0, let H|[n| be the ring class group of K of conductor n, so H[n] ~ Pic(O,,) under
the Artin reciprocity map, where O,, = Z + nOk is the order of K of conductor n. Let H|[n]®) be the
maximal p-power quotient of H[n], and denote by K[n] be the maximal p-extension inside the ring class
field of K of conductor n, so H[n]®?) = Gal(K[n]/K).

Proposition 2.1.1. Suppose p 1 6hx and m is an ideal of O of norm m divisible only by primes that
are split in K. Then, identifying H,gf) with H,E?) X H(ﬁp) as in (2.4), we have an exact sequence

1— (Z/mZ)®) 25 HP x HIP) T8 Fm]®) — 1,

where the map A sends a + ([a], [a]) for every integer a coprime to m. Moreover, if (£) = Il is a prime
that splits in K and is coprime to m, the projection wa sends

[1] x [l] = Froby
where Froby is the Frobenius element of | in H[m]®.

Proof. The first part is clear from the above discussion together with the commutative diagram with exact
rOwS

O —— (Ok/mOk)* Hp, H, 1
Ok /2" — (O /mOk)* /(Z/mZ)* Him] H, 1,

where the vertical arrows are given by the natural projections. The second part follows from the functo-
riality properties of Frobenii. O
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Under the hypotheses in Proposition 2.1.1, we can consider the image of & il f v/n bo,m under the composite
map

mdR0, 1 [HY)] ©0 ndR0,, - [HD]%Indgow;lw;l[ng)xHD]

m m

éa
s
RO, 1, -1 [H[m] @),
where the horizontal arrow is the map determined by ¢1 ® ¢o — £(1 ® o) with £(d1 ® ¢2)(g) = d1(g1) ®
d2(g2) if g = (g1,92) € H(p) X Hg})7 resulting in the class
6
By i € H'(Q T} ©0 ARO, 1y [H[m]P)(-1)).

Definition 2.1.2. Suppose p t 6hg splits in K and m is an ideal of Ok of norm m divisible only by primes
that split in K. Then we define

Efﬂl’lﬂllmm € H* (K[m]a T}/(d)l_lwgl)(*l))
to be the image of '{E‘i)bl,wz,m under the isomorphism
H'Y(Q, T} ®0 dR0,, 1,1 [Hm|)(=1)) = H' (K[m], T} (¥1 3 1)(~1))
given by Shapiro’s lemma.
We finish this section by recording the following observation for our later use.

Lemma 2.1.3. The following diagram is commutative:

mdR0, 1 [HY)] ©0 MdRO, 1 [HL] —— Wd RO, -1, [H[mI]P)]

m

lNorm"”@Normm[ iNorm””
mdRO, 1 [HY] ©0 Md RO, [HY] ——> Wnd RO, 1 [H[m] V)],
where the horizonal arrows are given by the composition Ea in (2.5).

Proof. This is clear from the explicit description of the maps involved. (|

2.2. Proof of the tame norm relations. Let m be an ideal of norm m for which we have the class
£ b1 0,m as in Definition 2.1.2.

Proposition 2.2.1. Let [ be a prime split in K of norm £ coprime to mp. Then

o7 ) = (6= 1) (an() — 2020 1y gy - 1 2080 @ . )

#0200 0 1)) Ry )

Proof. In the notations of Theorem 1.3.3, for any n = jm € A; put

H' (¢, fm) := Hg (Y1(Nym)g, Zp(1)) @1 (5, m) O[Hf(r?}'

Then from Theorem 1.3.3 and Lemma 2.1.3 we have the following commutative diagram:
HY(Q,TY @ H' (¢1, fiml) @ H' (¢g, foml)) —— H' (K[ml], Ty (11 '1b5 1) (1))
(26) ll@.f\f‘:’:[@./\f‘:” iNormml

HY(Q,TY @ H'(¢1, im) @ H' (1ha, fom)) — H' (K[m], T) (7 "4b; ) (~1)),
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where the horizontal arrows are given by the maps induced by the composition
Vs m/ _
H (1, fim') =25 nd @ O ~ dR0, 1 [HP),] — Wd RO, [HY)]

and likewise for H! (19, fom’), together with the composition §A in (2.5).
Now, tracing through the definitions we compute:

(1 ®le Nm[)( (2))

= LN @ NT) (Pree, 1, D (E))

= (T 1, D) (Pre, @ N @ NE)(RL)
[ NH[r

= (prm*v ]-v ]-) (pré* X(]- & Pry, — I(EM ] ® pr[*) X (1 ® Pry, — w2(€)[] & prZ*)) (’%S%)
[ n[e

= (prm*, ]-7 1) ((prf*a Pryiy, prl*) - wl(g)[ ] (prf*’ Plyy;s prl*) - w2(€)[ } (prf*a Priy, pr[*)

+ 21080 0 )0 pre) ) (2D

Together with Proposition 1.4.1, we thus obtain
- N i
(AR @ NN = (€= Do 1.1 ((@12.0) - 2 1,177 - 7, 208

1 V4
+ 020 g e+ ) ) e40)
= (£ — 1) <(T2, ]., 1) - wl(é[)[[] (13 1aTé) - (LTé’ ]‘)wQ(;)H
+ 2020 1 mye+ 1) )
and from this it follows that
(1@ N2 @ NT)ESY, g )
= (0= 1 (a9~ 2 a0+ 1201 - 2000 + 10 OH 200
+ OO e+ )6, 4,
(0 1)( (f) - 77/11([);)2([)([” < (1) — 7/11([);’2([)([i] x 1)

+ -0 2080 0@ 1, o, 0

In light of the commutative diagram (2.6), this yields the result.

O

Remark 2.2.2. The appearance of the factor (¢ — 1) in Proposition 2.2.1 can be traced back to the
relations deg(ue)Ty = pry, o pry and deg(ue)T, = pry, o prj, i.e., it is caused by the degeneracy map . In

the next subsection we shall get rid of this extra factor.

Remark 2.2.3. We want to emphasize that Proposition 2.2.1 is the key result for the construction of our
anticyclotomic Euler system for T}/(wflz/gl)(—l). Indeed, with the factor (¢ — 1) stripped out, the term
in the right-hand side of Proposition 2.2.1 can be massaged to agree with the local Euler factor at [ of the

Galois representation [va(wl_lwgl)(fl)]v(l) = Ty (¢192)(2), giving the correct norm relations.
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2.2.1. Removing the extra factor (¢ — 1). Adapting some ideas from [DR17, §1.4], we now introduce a
modification of the classes K¢y, 4,,m for which we can prove an analogue of Proposition 2.2.1 without the
extra factor (¢ — 1).

We begin by noting that for any prime £ { N the degeneracy maps pry,pr, : Y1(N¢) — Y1(N) can be
factored as

Y1(NY) Y1(NY)
Y(1,N({)) o Y1(N) Y(1,N({)) —— Yi(N),

where 7, and 7y are a non-Galois coverings of degree £+ 1, and we recall that uy is a cyclic Galois covering
of degree ¢ — 1.
Denote by
Dy, = {{{d),{d)) : d € (Z/NmZ)*, d=1 (mod N)}
the set of diamond operators acting diagonally on Y;(Nm)?2. Set
Wi(Nm) = (Y1(Nm) x Y1(Nm))/D,,,
and denote by d,, : Y1(Nm)? — Wi(Nm) the natural projection map, which is an étale morphism of
degree ¢p(m) = |(Z/mZ)*|.
Let &%) be as in (2.2), and denote by
k) € HY(Q, HE (Y (1,N(m))g x Wi(Nm)g, Z,)(2))
the image of (fms, 1, 1)(/?;5,11)) under the natural map induced by d,,; thus the class k) is defined by the
relation

(2.7) (Hms, dm*)’%g) = ¢(m)K”ETlL)

Proposition 2.2.4. For a prime number £ and a positive integer m such that (m,€) =1 and (mé,pN) =1,

we have

(7Ti*7 prj*v prk*)nfi; = (*)K/g)v

where
(4,7, k) * (i, 4, k) *
(67171) (va]-v]-) (K,l,f) (LTé’l)
(1,6,1) | (1,Te,1) | (£,¢,1) | (1,1,T})
(1,1,0) | (1,1,Tp) | (1,1,1) | (¢+1)
(1,6,0) | (T7,1,1) | (£,,0) | (£+1)

Proof. Directly from the definitions we find

~(1 ~
(e i) (DY gy DY1 s PE1 )RS = (70ws DY1a D1 ) (s o)D)

= ¢(m£) (ﬂ-e*a Prix, prl*)’ig)a

while on the other hand, from Proposition 1.4.1 and (2.7) we have

(Homes Do) (DX gy D11 PU)RE) = (s o) (€ — 1) (T2, 1, 1))

= p(m) (£ — 1)(Ty, 1, 1))

Since ¢p(ml) = (£ — 1)¢(m) under our assumptions, this shows the result in the case (i,7,k) = (¢,1,1)
and the other cases are shown in the same manner. O

Now we want to proceed as above to obtain from the new kW) a construction of classes satisfying the

correct norm relations (i.e., without the factor £ —1). This requires a careful study of the étale cohomology
of the quotient Y (1, N(m)) x W1 (Nm).
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We begin with the Hochschild-Serre spectral sequence:
EP? = Hp(Dm,Hfl (Y(l,N(m))6 X Yl(Nm)%7 Zp)) = H?'HZ(Y(LN(m))G x Wi(Nm)s Zp).

ét,c ét,c Q>
This yields the exact sequence

* d0.3
(2.8) E— H W), pos &y p22

ét,c

(v (1, N(m))g x Wi(Nm)g, Z,)

where E is naturally identified with a subquotient of Ey* @ E3'. Thus we see that the difference between
the two middle pieces are classes coming from H§, (Y (1, N(m))g x Y1 (Nm)%, Z,) with 0 < ¢ < 2. From
the Kiinneth decomposition, each of these classes will have a factor from either H, gt)c(Y(l7 N(m))g, Zp) or
HY, .(Yi(Nm)g, Zy), and so they will be annihilated after localisation at a non-Eisenstein ideal Z of Ty,
therefore obtaining an isomorphism

D

3
H; e

ét,c

(1.d;,)
(Y (1, N(m)g x Wi(Nm)g, Zyp) ; — H},

T et,c(Y(L N(m))a X H(Nm)%7 ZP))

after localizing (2.8) at Z. By Poincaré duality, from (2.8) we obtain a map

(

(2.9) HE (Y (1, N(m))g x Wi(Nm)g, Zy) Lodme) HE (Y (1, N(m))g X Yl(Nm)%, Z,))

Dy,
whose kernel and cokernel will also be annihilated by localization at a non-Eisenstein ideal Z. Additionally,
we recall the following lemma:

Lemma 2.2.5. For I a non-Fisenstein mazimal ideal of Ty, we have natural isomorphisms
H(Yi(N)g: Zp)z = H' (X1(N)g: Zp)z = H' (Y1(N)g, Zp)1.
Proof. Immediate from the Manin-Drinfeld theorem (see e.g. [LLZ14, Prop. 4.1.3]). O

Hence from (2.9), Lemma 2.2.5, and the Kiinneth decomposition, it follows that after localization at a
non-Eisenstein maximal ideal Z we get a natural map

(1,d,,%)
E—

(210)  H3(Y(L, N(m))g x Wi(Nm)g. Zy)z HL (Y (L N(m))g, Zy)2®

H (Y (Nm)a, Zy)1 ®p,, He (Y1 (Nm)a, Zy))z.

Next, for 1 a Hecke character of K of conductor f and m an ideal of K of norm m coprime to p divisible
only by primes that split in K, we let Zjy, be the kernel of the composite map

N 2 OlHjm] 2% 0 — O/%.
By [LLZ15, Prop 5.1.2], the maximal ideal Z, is non-Eisenstein, p-ordinary and p-distinguished. At a
later step, we shall look at the module

OLHR) & (62,60 Hor(Vi(N M), Zy (1)),
and it is clear that the map from H}, (Y1 (N m)q: Zp(1)) to this module factors through completion at Zjy.

€
Moreover, assuming that f is non-Eisenstein modulo 8 (i.e. T}/ is residually irreducible), we can choose
an auxiliary prime ¢ { Nmp with 1+ ¢ — a,(f) € Z; and 1;’;37;;(%

element after localization at Zjn that fixes the f-isotypic component we are interested in.

¢ Zm, hence defining an invertible

Now we put ng) = (s, 1, 1)/17%), and define
KSZ) € H' (Q7 Hélt (Y(l, N(m))67 ZP)I ® Hét(yl (Nw1m)67 Z;D)I @D, Hélt(yl(NdJQm)67 Z;D)I(_l))7
with Z = Zj, to be the image of n,(ﬁ) under the map (2.10) composed with the natural degeneracy maps
Note that taking Dﬁ,’f)—coinvariants (where D,gf) denotes the p-part of D,,) is compatible with the
diagonal map & in (2.5), since by Theorem 1.3.1 for ((d),(d)) € D® we have o ((d)) x dm({d)') =
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[d] x [d] € Héfj) X Hg)7 and this is in the kernel of wao. Thus applying to Iim) the same process we used

above to go from 75 to the class K f 1 4bo,m Of Definition 2.1.2 we obtain

Kfapr,pa,m € ' (K[mLT}/(wl_l'l/}Z_l)(*l))

Proposition 2.2.6. Suppose f is non-Eisenstein modulo P. Let m be an ideal of Ok of norm m divisible
only by primes split in K, and let | be a prime split in K of norm £ coprime to mp. Then

Norm s mt) = (e~ 2020 g ) — 20220

002080 (0 1)) (o, )

Proof. After the above discussion, the same calculation as in the proof of Proposition 2.2.1 applies, replac-
ing the use of Proposition 1.4.1 by Proposition 2.2.4. (I

Thus we arrive at the following theorem:

Theorem 2.2.7. Suppose p t 6hx and f is non-Fisenstein modulo B. Let m run over the ideals of Ok
divisible only by primes that are split in K with m = N q(m) coprime to p. Then there exists a collection
of cohomology classes

Zf b1 ha,m € H' (K[m]7 T}/(zp;lz/)gl)(—l))
such that for every split prime | of Ok of norm £ with (£, mp) = 1 we have the norm relation

K[m
ety 21 2, mt) = PFrobu) (25,5, .,

where Pi(X) = det(1 — X - Froby | Ty (¢112)(2)).

Norm

Proof. Denote by @ the factor appearing in the right-hand side of Proposition 2.2.6. Recalling that [[] x []
corresponds to Frob; € H[m] (P) yunder the map ma of Proposition 2.1.1, we find the following congruences
as endomorphisms of H'(K[m], Ty (7 '¢;")(—1)):

= P12 (N([1] x [1]) - Q
= —ar o010 1) + 220
= P(Frob;) (mod ¢—1),

using the relation ¢192((€)) = Xy, Xus ()02 = €% and the fact that [¢] x [{] is in the kernel of ma for the
second congruence. Therefore, by Lemma 9.6.1 and 9.6.3 in [Rub00], the existence of classes 27, yo,m
satisfying the stated norm relations follows from Proposition 2.2.6.

< )2+ 222D gy )

Remark 2.2.8. Similar to what we did for [ a split prime of K, when [ = ({) is inert in K, we also obtain
such a norm relation like in Theorem 2.2.7. Remember that in this case, we push forward from level N¢?
to level N. First, note that the norm map from Proposition 1.3.1 is then given by

. 0
MO =1y, YOO

Second, to calculate (1 @ N™ @ NI (K )) just like in Proposition 2.2.1, we use the table in Proposition
1.4.1 together with

(Prgs, Proe, prye)(Te, 1, &G = {(T2,1,1) — (€ + 1)((6), 1, 1) }w2),
(DTgss Dy o) (1, 1L, THRE) = {(1,1,T12) — (€ + 1)(1, 1, (0))} (2,

and arrive at

Norm{rf (7, m) = (€ = 1 (a2 = (€41 -

D0 4+ 0% 1) (65, )
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Instead of Proposition 2.1.1, we use the following exact sequence
1 — H,, 2 H, x H, — H, — 1,

combining with the quotient H,, — H[m], which makes [¢] x [¢] acting trivially on the cohomology class.
After removing the extra factor (¢ — 1) and multiplying with —1 on the RHS factor, we obtain the correct
Euler factor modulo ¢2 — 1:

Pi(Froby) = 2 4+ 20 — as(f)%

Note that ({ + 1)/ = ({+ 1) =(?>+ ¢ =1+ /L (mod £2 — 1) and the twist 11 (£)1(£)/{? = 1.

2.3. Construction for general weights and wild norm relations. Keeping the setting introduced
at the beginning of §2, we now extend the construction of the preceding subsection to arbitrary weights
k > 1 and k1,kp > 1, and prove that the resulting classes Ky, 4,,m also satisfy the wild norm relations
(i.e., they are universal norms for the anticyclotomic Z,-extension of K). In this subsection, we assume
in addition that

(2.11) p = pp splits in K,
with p the prime of K above p induced by our fixed embedding ), : Qp — Qp, and that
(2.12) p 'i' hK,

where hg is the class number of K.

Let I'y, the Galois group of the unique Z,-extension of K unramified outside p, and let 1y be the unique
Hecke character of K of infinity type (—1,0), conductor p, and whose PB-adic avatar factors through I'y. (As
noted in [BL18, §3.2.1], the uniqueness of )y is a consequence of our assumption (2.12).) The characters
11, fixed at the beginning of this section can be uniquely written as

k;—1
Vi = &by,

where §; is a ray class character of K of conductor dividing f;p. Viewing 1y and &; as characters on Hj,po
(noting that T', is a quotient the latter group), we consider the formal g-expansion

0, ()= > &tola)alg"/a® e A,q],

(a,fip)=1
where A, = O[I'p]. Identifying 'y, with I' = 1 4 pZ,, via the (geometrically normalised) local Artin map,
inducing an identification A, ~ O[T'], then 6, is the Hida family passing through 6y,, in the sense that
the specialisation of @¢, at weight k; and trivial character recovers the ordinary p-stabilization of 6, (see
§4.1.1 below for our conventions regarding Hida families).
In the following, we let f be the Hida family associated to f, and

(g,h) = (0¢,,0c,)
be the CM Hida families associated to 1 and 1, respectively. We also use k¢, k4, and xj, to denote the
Dirichlet characters modulo p giving the p-part of the tame characters of f, g, and h, respectively.
Let A = Z,[T']. For each i € Z/(p — 1)Z denote by r; : Z7 — A* the character z — w'(2)[(z)], where
w:ZX — Z7 is the reduction map composed with the Teichmiiller lift, and (z) = zw™"(2) € 1+ pZ,,.
Set T = Z) x Zy, T" = pZ, x Z,’. Let my be the maximal ideal of A, denote by Cont(Z,, A) the

A-module of continuous functions on Z, with values in A, and put x = k; for some i € Z/(p — 1)Z. We
consider the A-modules

A ={f:T—A|f(1,2) € Cont(Zy,A) and f(a-t) =k(a)- f(t) forallae Z), t € T},
A, ={f:T = AJ f(pz,1) € Cont(Zy,A) and f(a-t) = (a) - f(t) for alla € Z), t € T'}
equipped with the my-adic topology, and set
D, = Homeont, A (As, A), D), = Homeong,a (A, A)
equipped with the weak-* topology.



DIAGONAL CYCLES AND ANTICYCLOTOMIC IWASAWA THEORY OF MODULAR FORMS 21

As in [BSV22, Eq. (81))], the evaluation A, ®a D,, — A gives rise to a A-module homomorphism
& H'(T', A.) — Homy (H) (T, Dy), A).

Similarly, the determinant map det : TxT" — Z defined by det((x1, x2), (y1,¥2)) = T1y2—r2y1, composed
with r; : Z) — A gives rise to

¢ : Hompy (HY(T, Dy,),A) — HY(T, D) (k).
Then for any weight k = r + 2 > 2 with kK =4 (mod p — 1) we have specialization maps
Pr - Hl(FaAfc) - Hét(Yav yr)a Pr - Hl(valls) - Hélt(Yaa g?”)
fitting into the commutative diagram

H'(T, A,) Gioki H'(T',D.)(—;)

Hét(ydv r) = Hét(Ya, Z)(=r).

To ease notation, set Y (m, p) = Y (1, Nm(p)) and denote by I'(m, p) the associated congruence subgroup.
Adopting the notations from [BSV22, §8.1] (but working the modules of continuous functions A;, and their
duals D;, as above, rather than the analogous spaces of locally analytic functions considered in [BSV22]),
we denote by
(2.13) k) € HY(Q, H' (T(m,p), D}, ) @0 H' (T'(m,p), D}, )®oH' (T'(m,p), D}, )(2 — K}gn))

g

the image of the element Detf\,%)p € Hgt(Y(m,p),A;f ® Ay, @ Ay, (—K}gp)) defined in [BSV22, §8.1]
under the composition

HY, (Y (m,p), AL, © Ay, © Ay, (—K3gn)
Loy HA (Y (mp)?, AL R A, B Ay, (—Kgn) © Zy(2))
25 HY(Q, HE (Y (m, p)%, Al KA, BAL )2+ Kgn))
s HY(Q, HY (T (m, p), AL, )0 HH(T(m, p), Ag, )00 H (T(m, p), As, ) (2 + K1)
LB, HN(Q, HY (T (m, p), A, @0 H (T(m, p), Ax, oo H (T(m, p), Ae, )2 + K gn))
2oty /HY(Q, HY(D(m, p), D, )0 H (T(m, p), D )0 H (T (m.p), Dy, )(2 = Kgn))

where s ggp is the tensor of the compositions (; 0 §; for i = Ky, kg, kp.
As we did in §2.2.1, replacing the second and third copies of Y (m, p) in the above construction by the
quotient (Y (m,p) x Y(m,p))/Dy,, where D,, is the group of diamond operators, we obtain the class

(2.14) ki € H'(Q,H'(T'(m,p), D}, )00 H' (T(m, p), D}, ) @0, H' (T'(m, ), Dk, )(2 = Kjgn))

determined by the relation d)(m)mg) = (M, dm*)k%), where T'(m, p) = I'(1, N(mp)), and we put

(2.15) k2 = (T, 1, )Y,

Proposition 2.3.1. For a prime number £ and a positive integer m with (mf,pN) =1 we have
(7'('7;*, Py, prk*)’q’srllz = (*)H$)7

where
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(4,5, ) *
(£,1,1) (Ty,1,1)
(1,4,1) (1,Te, 1)
(1,1,0) (1,1,Ty)
(L6,0) | K5gn(O)r3(0)H(T7,1,1)
(6, 1,0) | Krgn(Org(0)~1(1,T;, 1)
(& ﬁ’ 1) H;"gh g)ﬁtL(E)_l(L 15 é)
If we also have that (¢,m) =1 then
(4,4, k) *
(1,1,1) (£+1)

Proof. With m; replaced by pr; and the classes nﬁ}) replaced by Fa,(ﬁ), the stated relations with an extra

factor of £ — 1 follow immediately from equations (174) and (176) in [BSV22] (adding the prime £ to the

level, rather than p). The stated relations for n&}) then follow in the same way as in Proposition 2.2.4. [

Assume that
§iho Z w (mod*P)

for i = 1,2. Then for every r > 0 Condition # holds, and so by Theorem 1.3.3, for every ideal m of norm
m coprime to p the Hecke algebra homomorphism

Gsimpr = T(1, Ny,mp")" — O[Hj,mpr]
associated to &g induces an isomorphism
Vimpr ¢ Hgy (N (NlllimpT)G’ Z,(1)) ® O[Hf(f?n)qpr] = Ind%fimp»«)o((&wo)_l)

€

safisfying the natural compatibility as r varies. On the other hand, as noted in [BSV22, p.38], from a
slight variant of Lemma 6.8 in [GS93] we obtain a Gg-module isomorphisms

(2.16) H'(D(1, Ny,m(p)), Dy, )(1) == e; lim H, (Y1(Ny,mp" ), Zp(1)).

Therefore combining (2.16) with the inverse limit of the isomorphisms v, - We obtain the Gq-equivariant
isomorphisms

Vimpee : H(D(1, Ny,m(p)), Dy.,) @ O[H o] = Tnd @ AL (&ito) 7).

fimp®
Composing these with the natural degeneracy maps from level I'(m,p) to level I'(1, Ny, m(p)) and the
projection H, f(pn)v, — H,gf’ )7 we then obtain Gg-equivariant maps
Hl(r(m,p), D;I) ® O[[Hf(lprzlpoo]] - Indgo(&d)o)’l [Hmp)][[rpﬂa
H' (D(m,p), Dy,,) ® O[H o] = WdR O,y [H [T 1.

fompee m

(2.17)

Similarly as in §2.1, the maps used in the construction of the class nﬁ?) in (2.15) are compatible under

correspondences. Hence after tensoring with O[H (p) ] and O[H (p) ] using the maps @5, mpr and ¢, mpr,

fimp” fomp”
respectively, and letting r — oo, the same construction gives rise to a class

3 A
Ko gom € H'(QH'(T(LN(p)), D), S0 (H' (D(m.p), Dy,) © O[H!,,])
oip,)(H' (T(m,p), Dy,) & OLHL )2 = Kign)-
Now let f be a level-N test vector for f, and consider the associated specialization map

(2.18) wp: HY(D(1, N(p), Dy, )(1) = T .
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Then taking the image of F-',wl 4».m under the natural maps induced by (2.17) and (2.18) we obtain

4 a 7 *
Ko € HY(Q.TY ©0 (AR O(¢, o)+ [H e S0pn,, (AR O ey ) D (-1 = K7gn))
which after specializing the third factor to weight ko, i.e. taking the projection

Oy oy R ITp] = Oy s (Y],
and applying the diagonal map & in (2.5) finally gives rise to the class
(219) &9 4w € HY Q. TY (1 - k/2) @0 IndR, Ao (¥r 1y kTR0 26 1) (1 = (hy + §2)/2)).

Here, we identify I'” = Gal(K_ /K) with the anti-diagonal in (1 + pZ,) x (1 + pZ,) ~ (’)gp X OKP via
the geometric normalised Artin map, and define

Kac : T = ZY,  ((L+p) ™2, (1+p)"?) = (1+p),
Rae : T = A (L+p) 72, (14p)"?) = [(1+p)].
Then, for T an O-lattice inside a G g-representation V', by Shapiro’s lemma we have
H' (K, Téolo(ky!)) ~ Hiy, (K[p™).T),
where H}, (K [p>=],T) := lim I YK[p"], T) with limit under the corestriction maps. Thus in the following

we shall view the class K/gi)[)l $oom 111 (2.19) as an Iwasawa cohomology class

(2.20) K e € Hiy (K[mp™], TY (1= k/2) @ by g tele T2 02 (1 — (ko + k2) /2))

for the self-dual representation T} (1 — k/2) twisted by the Hecke character ¢y Lipg INT=(Ritk2)/2 - which
is anticyclotomic and of infinity type ((k1 + k2)/2 — 1, —(k1 + k2)/2 + 1). For the ease of notation, put

(2.21) Troppe =TY (1= k/2) @ o7 "hy (1 — (ky + k2)/2).

Thus we arrive at the following key result.

Theorem 2.3.2. Suppose pt 6hx and f is non-Fisenstein modulo B. Let m run over the ideals of O
divisible only by primes that are split in K with m = N q(m) coprime to p. Then there exists a collection
of Twasawa cohomology classes

Zf 1o € Hiy (K[mp™], Ty, )
such that for every split prime | of Ok of norm £ with (£,mp) = 1 we have the norm relation

K[mt
Normigi (2., s mi) = Pi(Frobu) (2., s m),

where P((X) = det(1 — X - Froby | (Tf,p,,p,) " (1)).

Proof. This follows from a direct adaptation of the proof of Theorem 2.2.7. The only difference is that
this time we also invoke [Rub00, Thm 6.3.5] to go from a collection of Iwasawa cohomology classes for the
twist

TY (1= k/2) @ ¢y 'y Rl TR0 2 (1 — (b + ko) /2) = Ty © TR/

with the stated norm relations, to a similar collection of cohomology classes for Ty, v, - 0

3. ANTICYCLOTOMIC EULER SYSTEMS

In this section we show that the system of classes constructed in Theorem 2.3.2 (and a variant thereof)
land in certain Selmer groups defined in the style of Greenberg [Gre94]. As a result, our classes form an
anticyclotomic Euler system in the sense of Jetchev—Nekovai—Skinner [JNS]. We then record the bounds
on different Selmer groups that follow by applying their machinery to our construction.

Throughout we let f € Si(I'o(Ny)) be a p-ordinary newform of weight & > 2 with pt Ny, and K/Q be
an imaginary quadratic field of discriminant prime to Ny in which p = pp splits.
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3.1. Selmer groups. Let x be an anticyclotomic Hecke character of K of infinity type (—7,j) for some
j >0, and consider the conjugate self-dual G i-representation

Vi =V/1—-k/2)@x "
Given a prime v of K above p and a Gk, -stable subspace .Z} (Vi) C Vi, we put Z, (Vi) =
Vi Z5 (Vi)
Definition 3.1.1. Let L be a finite extension of K, and fix # = { % (Vy,y) }u|p. The associated Greenberg
Selmer group Selgz (L, Vy ) is defined by

H'(Lu, Vi) }

Selg (L, Vi) == ker{Hl(L, Vf,x)—>HH1 TuVin)
w F\Hwy VILX

where w runs over the finite primes of L, and the local conditions are given by
1 ker{Hl(Lw,VﬁX) — Hl(Lgr,VﬁX)} if wip,
Hg(Lu” Vf7X) =
ker{Hl(Lw, Vi) = Hl(Lw,fv_(Vf,X))} ifw|ov]|p.

Given any lattice T, C Vy,, we let HY(Ly, Ty,) be the inverse image of H (L, Vy,) under the
natural map H'(Ly,Tf,y) = H'(Ly, V¢, ), and define Sel (L, Ty.,) in the same manner; and given any
Z,-extension Lo, = J,, L, of L, we put

Selg(Loo, TﬁX) = @Selg(Ln, Tf7X)7

with limit with respect to corestriction, and also put Sel# (Lo, Vy,y) := Selz (Lo, Tty ) ®2z, Qp (Which is
independent of the chosen T ).
We shall be particularly interested in the following two instances of these definitions:
o The relazed-strict Selmer group Selvel str (L, V.5 ) obtained by taking

\% if v=np,
7 v+ (Vix) = I ‘j
o 0 if v=p.
e The ordinary Selmer group Selord,ora(L, V,y). Since f is p-ordinary, upon restriction to Gq, C Gq
the Galois representation va fits into a short exact sequence
0=V =5V -V =0
with va’i one-dimensional, and with the Gq,-action on va’_ being unramified (see §1.2.2). Then
Selord,ord (L, Vi, ) is the Greenberg Selmer group defined by
(3.1) FEWVia) = Vi = VP (= kf2) o X!
for all v | p.
Following [BK90], we also define the Selmer group Selgk (L, Vy.,) by

H'(Ly, Vi)
Sl (L. Ve ) = ket V(L. 1V 2wy Vi)
elgk (L, Vix) er{ (L, f’X)%rw[H}(vavfyx) ’

where as before w runs over the finite primes of L, and the local conditions are given by
ker{ H' (L., Vi) = H' (LY, Vi )} if w1 p,

HY(Ly, Vi) =
£l Vi) {ker{Hl(vaf,X)—>H1(Lw,vf,X®BcriS)} if w | p,

with Bis being Fontaine’s crystalline period ring. The local conditions H} (L, Tfy) C HY (Ly, T,) are
then defined by propagation.

For our later convenience, we now recall the well-known relation between these different Selmer groups.
Here we shall adopt the convention that the p-adic cyclotomic character has Hodge—Tate weight —1. Thus,
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since x has infinity type (—j,7) (see §1.3.1 for our convention regarding infinity types), the p-adic avatar
of x has Hodge—Tate weight j at p and —j at p.

Lemma 3.1.2. For any finite extension L of K we have
Selrel,str (L, Vi) if 5> k/2,

Selgk (L, V) =
pic(L Vi) {selordmd(L,vﬁx) if0<j<k/2.

Proof. Combining the results of [Nek00, (3.1)-(3.2)] and [F1a90, Lem. 2, p. 125], for every prime w|v|p of
L/K/Q we have
H (L, Vi) = im{H"(Ly, Fily (V1)) = H' (Lw, Vi) },
where Fill (V;,) C V., is a G, -stable subspace (assuming it exists) such that the Hodge Tate weights
of Fil, (V},,) (vesp. Vj/Fily(V},)) are all < 0 (resp. > 0).
Now, the Hodge-Tate weights of Vfo and Vi = Vix / Vf-‘:—X at the primes of K above p are given by:

+ p—
Vf,x Vf-x
HT weight at p | —j — k/2 | —j — 1 —k/2
HT weight at p | j—k/2 | j—1+k/2

and so we find that Fil, (V) = Vy. and Filg(Vy ) = 0 when j > k/2, and Fily (Vy,,) = Filg(Vyy) = V7,
when 0 < j < k/2, yielding the equalities in the lemma. O

For Ay, :=Homg, (T}, tip>), and a choice of Galois stable subspaces .7# = {7 (V} 1) }o|p, we define
the associated dual Selmer group Selg-(L, Ay ) by

H'(Ly, A
Selg (L, Ag) = ker{Hl(L,AﬁX) -T11 l(fx)}

Hg.(Luw, Afx)
where HL. (Ly, A is the orthogonal complement of H% (L, T under local Tate duality
F Iix F fix
Hl(vaTﬁX) X Hl(vaAﬁx) - QP/ZP'

In particular, we find that:

e The dual Selmer group of Selyerstr(L, T,y ) consists of classes that are unramified outside p and
have the strict (resp. relaxed) condition at the primes wlp (resp. w|p); we shall denote this by
Selstr,rel(La Af,x)-

e The dual Selmer group of Selora,orda(L, T,y) consists of classes that are unramified outside p, and
land in the image of the natural map

HY (Lo, .0 (Apy)) = H (L, Agx), S (Agx) = Homg, (F, (Tf\), prp= ),
for w|v|p; we shall denote this by Selord,ora (L, Af,y)-

3.2. Local conditions at p. Let 11,12 be Hecke characters of K of infinity type (1 — k1,0), (1 — k2, 0)
with k;, k2 > 1, and whose central characters satisfy xy, Xy, = 1.
By Theorem 2.3.2 we have classes
Zfprp € Hllw(K[mpoo]7 Tfawlawz)’
where Ty, 4, = T/ (1 — k/2) ® Yyt (1 — (ky + k2)/2). Replacing the map € in (2.5) by the map

1@ 2 = £9(d1 @ d2) with £5(d1 @ ¢2)(g) = $1(g1) ® $5(g2) for g = (g1,92) € HY x HEL, the same
construction gives rise to classes

chywl)wz € Hllw(K[mpoo]’ Tf,d)l,d);')’

where Tt 4, ys = T} (1-k/2) @17 1y ©(1— (k1 +k2)/2)), satisfying the same norm-compatibility relations
as in Theorem 2.3.2.
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Proposition 3.2.1. For all ideals m of Ok divisible only by primes split in K with m = Nk q(m) coprime
to p, the classes zf .y, y,m of Theorem 2.3.2 satisfy

Zf 1 o € Selrel,ste (K[mp™], Trpy )
and similarly °zf ., pym € Selord,ord (K [mp™], Tf,wl,wg)-

Proof. We shall adopt some of the notations introduced later in Section4. Let f,g = 0¢,(S1), h = 6¢,(52)
be the Hida families associated to f, 8y, ,0,,, respectively. By [BSV22, Cor.8.2], after projection to vt

the class £ in (2.14) lands in the balanced Selmer group Sel®™(Q, V1) (see Definition 4.2.2). Using that
the big Galois representations associated to g and h are both induced from K, upon restriction to G the
triple tensor product V1 specialised to f decomposes as

(3.2) Vi lew = (TY (1= k/2) @ 71671 0%) @ (TY (1 — k/2) ® &7 1 050),

and as in the proof of Proposition 5.3.1, from Shapiro’s lemma we find that the local condition ﬁ;al(VTQO)
cutting out the specialised balanced Selmer group at p corresponds to

Fy(Vhylew) = (T (1= k/2) @ 6716 0yp0) @ (177 (1= k/2) @ €716, W),
a ,+ —1l¢é—c —c
TP (Vh,law) = {0} @ (T)7 (1 k/2) @ €716 “Vy°).
Since the diagonal map &a in (2.5) (resp. its twisted variant £%) has the effect of projecting onto the
first (resp. second) direct summand in (3.2), this shows that the classes Zf .y, y,m (T€SP. SZf .y po,m)

satisfy the relaxed-strict (resp. ordinary-ordinary) condition at the primes above p. On the other hand,
at the primes w t p, because Vy .y, 4, is conjugate self-dual and pure of weight —1, we see that

HO(K[mpr]w’Vf7¢17¢2) = HQ(K[mpT]UJ7Vf,¢1,¢2) =0

for all 7, and therefore H*(K[mp"]w, Vi, 4,) = 0 by Tate’s local Euler characteristic formula. This shows
that H' (K [mp"w, T, 4,) is torsion, and as a result the inclusion

1080 (2,1 2m) € U H (K [mp" ), Tt s )
.

follows automatically. Similarly, we see that the classes “z y, 4, m are unramifed outside p, and since we
have shown that they are ordinary at the primes above p, the result follows. (I

3.3. Applying the general machinery. We give some direct arithmetic applications that follow by
applying to our construction the general Euler system machinery of Jetchev—Nekovai—Skinner [JNS]. Later
in the paper, by exploiting the relation between our Euler system classes and special values of complex
and p-adic L-functions, we shall deduce from these results applications to the Bloch—Kato conjecture and
the anticyclotomic Iwasawa main conjecture.

For every ideal m C Ok as in Theorem 2.3.2, denote by

Zf apy paom € Selrel ste (K [m], Ty )

the image of z¢ y, v, m under the projection Selrel st (K [mp™], Tt py o) — Selrelstr (K [m], Ty, 40 ), and
put

21 i COTR /K (2f,0,0,1) € Selret st (B Ty 00 )-
Similarly, projecting to K[m] the class °zj y, 4, m define

czfﬂhﬂlu,m € Selord’ord(K[m}v Tf’¢1~,¢’2)7

and put “zy,y, .y, = COTK(1)/ K (“Zf,01,02,1)-



DIAGONAL CYCLES AND ANTICYCLOTOMIC IWASAWA THEORY OF MODULAR FORMS 27

3.3.1. Rank one results.

Theorem 3.3.1. Assume that f is not of CM-type and is non-Fisenstein at B, and that p{ hk.
(D) If zp gy 00 # 0, then Selielsir (I, Vi g, p,) 5 one-dimensional.
(IT) If ©zf 4, o 7 0, then Selord,ord (K, Vi p, pg) is one-dimensional.

Proof. Denote by N the set of squarefree products of primes [ of Ok split in K and with £ = Ny ,q([)
coprime to p. By Theorem 2.3.2 and Proposition 3.2.1, the system of classes

(33) {Zfawl,wmm € SeerLStr(K[m]’Tfa'/’l,w‘z) rme N}

forms an anticyclotomic Euler system in the sense of Jetchev—Nekovai—Skinner [JNS] for the relaxed-strict
Greenberg Selmer group. Hence from their general results the one-dimensionality of Selye ser (5, Vi iy i)
follows from the nonvanishing of zf y, ., provided the G'x-representation V' = Vy 4, ., satisfies the follow-
ing hypotheses:

(i) V is absolutely irreducible;
(ii) There is an element o € G fixing K[1]K (pp=, (O5%)/?™ ) such that V/(c—1)V is one-dimensional;
(iii) There is an element v € G fixing K[1]K (ppe, (O5)1/P7) such that V=1 = 0.
Since we assume that f is not of CM-type, hypotheses (i)—(iii) follow easily from Momose’s big image
results [Mom81] as in [LLZ15, Prop. 7.1.4], whence the first part of the theorem; the proof of the second
part is the same. O

3.3.2. Iwasawa-theoretic results. Denote by K the anticyclotomic Z,-extension K [p>°]/K, and put Aj; =
Z,[Gal(K /K)]. Let z ¢y, y,,1 be the Ap-adic class of Theorem 2.3.2 of conductor m = (1), and put

Zfapy py += COTK(1) /K (Zfapy pa,1) € Selrelser (Koo, Thpy pa)s

where the inclusion follows from Proposition 3.2.1. Similarly, put
“Zf e 7= COTK )/ K (CZf01.02,1) € Selord,ord (Koo, T ug)-

Notation 3.3.2. As in [LLZ15, §7.1], we shall say that f has big image at B if the image of Gq in Auto(T}')
contains a conjugate of SLa(Zp).

We also note that, by a theorem of Ribet [Rib85], if f is not of CM-type then it has big image for all
but finitely many primes of L.
Put

Kstrel(Ksos Afpyv0) = Homgz, (ling Selser, et (K, Afn ), Qp/Zp)
and likewise for Xod ora (K5, Af,w1,w§)~
The next result can be seen as a divisibility towards an anticyclotomic Iwasawa main conjecture ‘without
L-functions’.
Theorem 3.3.3. Assume that f is not of CM-type and it has big image at B, and that pt hi.

(I) If 2§, p, is non-torsion, then X rel (Ko, Afpr ) and Selrel str (K, Thapy ws) both have A -
rank one, and we have the divisibility

Selrel,str(Ko_oa Tfﬂblﬂbz) ) ?

char , - (Xstrre1 (Koo, A )tors) D char _<
A str,re s LA f by ,1ho Jtors A —
K = i Ak 2w,

in Aj.
(I1) If 2y, 4, is non-torsion, then Xord,ord (K55 Ay pg) and Selord ord (K5, Ty wg) both have Ay -
rank one, and we have the divisibility

Selord,ord(Kgoa Tfﬂ/)lﬂffg) ) 2

CharA;( (Xord,ord (K<>_o7 Af,1/;1,1/;§)tors) = CharA;( ( A;( “CZf o

in Ag.
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Here, in both (I) and (II), the subscript tors denotes the Ay -torsion submodule.

Proof. With notations as in the proof of Theorem 3.3.1, by Theorem 2.3.2 and Proposition 3.2.1 the system
of classes

(3.4) {Zf7¢17w27m c Selrel’str(K[mpooL Tf7w17¢,2) rme N}

forms a Aj-adic anticyclotomic Euler system in the sense of Jetchev—Nekovai—Skinner for the relaxed-
strict Selmer group, and so the non-torsionness of z¢ ., ., implies the conclusions in part (I) of the theorem
provided the G'g-module T' = T’ 4, 4, satisfies the following hypotheses:
(i) T := T /BT is absolutely irreducible;
(ii) There is an element o € G fixing K[1]K (ppe, (O)YP”) such that T/(oc — 1)T is free of rank 1
over O;
(iii) There is an element v € G fixing K[1]K (ppe, (O5)*/P™) and acting as multiplication by a scalar
ay # 1 on T
but these follow easily from the assumption that f has big image at B (see [LLZ15, Prop. 7.1.6]). This
shows part (I) of the theorem, and part (II) follows in the same manner. O
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Part 2. Applications
4. PRELIMINARIES

In this section we briefly review the unbalanced triple product p-adic L-function constructed in [Hsi21],
their associated Selmer groups, and the explicit construction of certain CM Hida families. We also recall
from [BSV22] the explicit reciprocity law for diagonal classes, and Greenberg’s formulation of the Iwasawa
main conjecture for triple products following [ACR21].

4.1. Triple product p-adic L-function.

4.1.1. Hida families. Let I be a normal domain finite flat over
A:=O[1+pZ,],

where O is the ring of integers of a finite extension of Q,. For a positive integer N prime p and a Dirichlet
character x : (Z/NpZ)* — O*, we denote by S°(N, x,I) C I[¢] the space of ordinary I-adic cusp forms
of tame level N and branch character x as defined in [Hsi21, §3.1].

Denote by %H* C Spec ]I(Qp) the set of arithmetic points of I, consisting of the ring homomorphisms
Q:1— Qp such that Q|14pz, is given by z — zFe~Leq(z) for some kg € Zxs called the weight of Q and
€Q(2) € ppee. As in [Hsi2l, §3.1], we say that f = a,(f)¢" € S°(N,x,I) is a primitive Hida family
if for every Q € %;‘ the specialization fg gives the g-expansion of an ordinary p-stabilised newform of
weight kg and tame conductor IN. Attached to such f we let X¢%s be the set of ring homomorphisms Q as
above with kg € Z>1 such that fg is the g-expansion of a classical modular form (thus X¢' contains X;).

For f a primitive Hida family of tame level IV, we let

Pf: GQ — AutH(Vf) o~ GLQ(]I)

denote the associated Galois representation, which here we take to be the dual of that in [Hsi21, §3.2]; in
particular, the determinant of pg is x1-€cyc in the notations of loc. cit., where €.y, is the p-adic cyclotomic
character. By [Wil88, Thm. 2.2.2], restricted to Gq, the Galois representation Vy fits into a short exact
sequence
+ —
0=V = Ve = Ve =0,

where the quotient Vg is free of rank one over I, with the Gq,-action given by the unramified character

sending an arithmetic Frobenius Frob,, Y to ap(f).
Denote by T(N,I) the Hecke algebra acting on €, S°(N,x,I), where x runs over the characters of
(Z/NpZ)*. Associated with f there is a I-algebra homomorphism

Ag i T(N,I) — T
factoring through a local component Ty,. Following [Hid88a] define the congruence ideal C(f) of f by
C(f) := A¢(Annt, (ker Af)) C L

If the residual representation pg is absolutely irreducible and p-distinguished, it follows from the results
of [Wil95] and [Hid88a] that C'(f) is generated by a nonzero element 7y € L.

4.1.2. Triple products of Hida families. Let
(f,9.h) € S°(Ng,xr,If) x 5°(Ng; xg,1g) X S?(Np, Xn,1n)
be a triple of primitive Hida families with
(4.1) XfXgXn = w** for some a € Z,
where w is the Teichmiiller character. Put
R =1;®0l;&0lh,

which is a finite extension of the three-variable Iwasawa algebra AQp AR A.
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Let %}g C SpecR(Q,,) be the weight space of R given by
Xh = {Q = (Q0, Q1,Q2) € X, x X{® x X kg, + kg, + kg, = 0 (mod 2)}.
This can be written as the disjoint union X;” = Xpl 1 %l{ U X7 U Xk, where
X ={Q € X}, : kg, + ko, + ko, > 2k, for all i =0,1,2}

is the set of balanced weights, where each weight k¢, is smaller than the sum of the other two, and
2L ={Qexk ¢ koy > ko, +ha.},
XL ={Qex) : ko, > ko +ka.},
XL ={Qex) ¢ kg, > koot ),

are the set of f- (resp. g-, h-) unbalanced weights.
Let V = Vf®@Vg®@Vh be the triple tensor product Galois representation attached to (f, g, h). Write
the determinant of V in the form det V = X?e.y. (note that this is possible by (4.1)), and put

(4.2) vVi=vex!
which is a self-dual twist of V. Define the rank four Gq, -invariant subspace Zf (V') c V1 by
(4.3) FIV = VI®oVe®oVh @ X7,
and for any @ = (Qo, Q1,Q2) € .’{fz denote by ffpf (Vg) C VZ) the corresponding specialisations.

For a rational prime ¢, let 54(VI?) be the epsilon factor attached to the local representation VJC[?‘GQe
(see [Tat79, p.21]), and assume that N
(4.4) for some Q € %fa, we have Eg(VTQ) = +1 for all prime factors £ of Ny NyNp,.

As explained in [Hsi21, §1.2], it is known that condition (4.4) is independent of @, and it implies that the
sign in the functional equation for the triple product L-function (with center at s = 0)

L(V.s)
is +1 (resp. —1) for all Q € XL UxL UXE (resp. Q € xhh.

Theorem 4.1.1. Let (f, g, h) be a triple of primitive Hida families satisfying conditions (4.1) and (4.4).
Assume in addition that:

o gcd(Ny, Ny, Ny) is square-free,

o the residual representation py is absolutely irreducible and p-distinguished,

and fix a generator ng of the congruence ideal of f. Then there exists a unique element
£ (f.g,h) €R
such that for all Q = (Qo, Q1,Q2) € }f{z of weight (ko, k1, ko) with eg, = 1 we have

(& (f,9.0)(Q)° =T 0 Y0 vy, 1] a+ay?
S T A -

where:
° Fvg (0) = FC(CQ)F(;(CQ-F 2— k1 — k2)FC(CQ+ 1-— kl)Fc(cQ—i— 1 — k), with

cQ = (ko + k1 + k2 —2)/2
and I'c(s) = 2(2m)~°T'(s);
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o (g, is the canonical period

o 2 — —
(ay/ Tyl 15 7o v,y (1  Xj(p)p™ 1) (1 X p)p™ 2)
2 2 )
ano aQO aQO

with f&, € Sk, (T'o(Ny)) the newform of conductor Ny associated with fq,, X/f the prime-to-p part

Qan =

of xr, and ag, the specialisation of a,(f) € X at Qo;
o & ("ff(VT )) is the modified p-Euler factor

E(F (V) = L] (V)0 g—
PR (T (VD) Ly (VL FL (V)00 Ly(V],0)

and Yexe is an explicitly defined subset of the prime factors of NyNyNy,, [Hsi2l, p. 416].

Proof. This is Theorem A in [Hsi21], which in fact proves a more general interpolation formula. O

Remark 4.1.2. The construction of the p-adic L-function pr’nf (f,g,h) is based on the p-adic Rankin—
Selberg method of Hida [Hid88b], and the proof of the above exact interpolation formula relies on a suitable

choice ( f*.g* h*) of level-N test vectors for (f,g,h). In general, for any choice ( f.g. ) of level-N test
vectors, Hida’s method produces an element

gg(f, g, fl) S Frac(Hf)®ng®OHh,

and by virtue of the proof of Jacquet’s conjecture by Harris-Kudla [HK91], for any @ € Xé one can find
(f,g, ’ul) such that

LI (f,9.R)(Q) #£0 < L(V},0)#0.
In particular, if the central L-value L(Vg,O) is nonzero, then £}/ f(f,4,h) # 0. (In the above notation,
we have .iﬂpf’nf (f,g,h) =ns ~.$pf(f*,§*, h*).)

4.2. Triple product Selmer groups. Let VI = V ® X~ be the self-dual twist of the Galois represen-
tation associated to a triple of primitive Hida families (f, g, h) satisfying (4.1).

Definition 4.2.1. Put
TPV = (Ve Vf oV +VieV,e Vi + VoV, oV, ox ™,
and define the balanced local condition H} ;(Q,, V') by
Hllaal(QpavT) = im(Hl(Qpa 9}1})&1(\[1‘)) - Hl(QP7VT))

Similarly, put 35[{ (VT) = (V;' ®Vy ®Vh) ® X1, and define the f-unbalanced local condition H}(Qp, VT)
by
H}(Qp, V1) :=im(H'(Q,, # (V1) = H'(Q,, VT)).

It is easy to see that the maps appearing in these definitions are injective, and in the following we shall
use this to identify H3(Qp, V1) with HY(Q,, .Z,; (VT)) for ? € {bal, f}.

Definition 4.2.2. Let ? € {bal, f}, and define the Selmer group Sel’(Q, V1) by

Sel’(Q, VT := ker{Hl(Q,VT) i 81”\” HH oy }
P vp

We call Sel®®(Q, V) (resp. Sel¥ (Q, V1)) the balanced (vesp. f-unbalanced) Selmer group.
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Let AT = Homz, (VT, pp) and for ? € {bal, f} define H}(Q,, AT) C H'(Q,, AT) to be the orthogonal
complement of H}(Q,, VT) under the local Tate duality

Hl(Q;vaT) X Hl(vaAT) = Qp/Zy.
Similarly as above, we then define the balanced and f-unbalanced Selmer groups with coefficients in A'
by
? Ty . 1 T QP’ nr T
Sel’(Q, AT) := ker{H (Q,AT) — Qp,AT xgﬂ (Q™, A }
and let X7(Q,A') = Homzp(Sel?(Q, A"),Q,/Z,) denote the Pontryagin dual of Sel’(Q, A').
4.3. Diagonal classes. We continue to denote by (f, g, h) a triple of primitive Hida families as in §4.1.1
satisfying (4.1), and put N = lem(Ny, Ny, Np,). Let
(4.5) x(f.g,h) € HY(Q, VI(N))
be the big diagonal class constructed in [BSV22, §8.1], where VT(N) is a free R-module isomorphic to

finitely many copies of VT. (Note that this is essentially the class "4 in (2.13) with m = 1.) The definition
of the Selmer groups in §4.2 extends immediately to VT(V), and by Corollary 8.2 in loc. cit. one knows
that (f,g, h) € Sel™(Q, VI(N)).

o Fa(V) = Vi@V @oVf @ X~ c Vi
Then clearly Z3(VT) C Z)*(VT), with quotient given by
(4.6) Fr V) ZiVH 2 Vit e VIt e VI
where
VIR = Vi @0V, @0V @ X7
(4.7) VI = VoV oV @ X7,
VI = V@0V, &0V, @ X7
4.3.1. Reciprocity law. Assume that the congruence ideal C(f) C Iy is principal, generated by the nonzero

ng € Iy. As explained in [BSV22, §7.3], one can deduce from results in [KLZ17] the construction of an
injective three-variable p-adic regulator map with pseudo-null cokernel

(4.8) Log™ : H'(Q,, V§") = R

characterised by the property that for all 3 € HI(QP,ngch) and all points @ = (Qo, Q1,Q2) € f{fz of
weight (ko, k1, k2) with eg, =1 (i =0, 1,2) we have
—1
LOgnf (3)(Q) _ (p _ 1)04Q (1 . BanQlaCh) (1 . aQOﬁQlﬁQ2)
Nfo, ’ pe pe

(—1)°Q@ o | if :{bal
(cq ko)l < 08,(3Q): Nfq, ® Weq, ®Wh92>dR’ if Qe

(ko —cq —1)!- <exp;(3g),77f% ® wgg, ® Whe, >dR, if Q € %{z

Here, cqg = (ko + k1 + kg —2)/2 is as in Theorem 4.1.1, aq, denotes the specialisation of a,(f) at Qo,

we put fo, = X (p)p*o !
place of f.
Denote by res,(k(f,g,h))s the image of x(f, g, h) under natural map

aQ ,and (ag,,Bq,) (resp. (aqg,,Bq,)) are defined likewise with g (resp. h) in

resy

(4.9) Sel”(Q, V1) =% HY(Q,, (V1)) = HY(Q,, Zp/(VT) /.73 (V1)) = HY(Q,, V™)

arising from the restriction at p and the projection onto the first direct summand in (4.6).
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Theorem 4.3.1. Let (f,g,h) be a triple of primitive Hida families as in Theorem 4.1.1. Then

Log" (resy(n(f,9.h))g) = £ (f.9.h).
Proof. This is Theorem A in [BSV22] (see also [DR22, Thm. 10]). O
Remark 4.3.2. The map Log™ in (4.8) depends on a choice of level-N test vectors (f, g, k), and implictly

in the above statements we took the triple (f*, g, 71*) constructed in [Hsi21]. For any triple (f, g, h), one
deduces from [KLZ17] the existence of a p-adic regulator map

h A A
Log .5 HY(Q,, V§") = Frac(ly)®ol,@ol

characterised by a similar interpolation property, and the explictly reciprocity law of Theorem 4.3.1 applies
more generally to give

Log(f,gjl) (resp(’{’(.f7 g, h))f) = gpf(f, g, il),
where fpf(fv,f], ﬁ) is as in Remark4.1.2.

4.3.2. Iwasawa—Greenberg main conjectures. Let (f, g, h) be a triple of primitive Hida families as in The-
orem 4.1.1, and assume that the associated ring R is regular. As explained in [ACR21, §7.3], the following
result can be seen as the equivalence between two different formulation of the Iwasawa main conjecture in
the style of Greenberg [Gre94] for the p-adic deformation V.

Proposition 4.3.3. The following statements (1) and (II) are equivalent:
Q) fpf’nf (f,g,h) is nonzero, the modules Self(Q,VT) and X¥(Q, A") are both R-torsion, and
charg (X7(Q, AN) = (£](f.9.h)?)
in R®z, Qp.
(I1) &(f,g,h) is not R-torsion, the modules Selbal(Q, V1) and XP*(Q, A1) have both R-rank one, and
Selbal(Q,V*>>2
R - K;(.fv g9, h)

in R ®z, Qp, where the subscript tors denotes the R-torsion submodule.

charp (Xbal (Q, AT)tors) = charg (

Proof. This follows from Theorem 4.3.1 and global duality in the same way as [ACR21, Thm. 7.15]. See
[Lai22] for the details in the stated level of generality. O

4.4. CM Hida families. We conclude this section with the explicit construction of certain CM Hida
families, following the exposition in [Hsi21, §8.1]. Let K be an imaginary quadratic field of discriminant
—Dg < 0, and suppose that p = pp splits in K, with p the prime of K above p induced by our fixed
embedding 1, : Q = Q,,.

Let K be the Zz—extension of K, and denote by K~ the maximal subfield of K., unramified outside
p. Put

Iy = Gal(K/K) ~ Z2, Iy = Gal(Kpe /K) ~ Zy.

For every ideal ¢ C Ok we denote by K¢ the ray class field of K of conductor ¢ (so in particular Ky
is the maximal Z-extension of K inside K [p>]). Denote by Art, the restriction of the Artin map to K,
with geometric normalisation. Then Art, induces an embedding 1 + pZ, — T'y, where we identified Z;
and Op via ,. Write I} = Arty (1 + pZy)|k, and put [y : I}] = '

Fix a topological generator v, € I', with ’yﬁ'b = Artp(1+4p)|K, , and for each variable S let Ug : ' —
O[S]* be the universal character given by

Ug(o) = (14 8)1),
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(@)

where I(0) € Z, is such that o[k, = 'yé Upon possibly enlarging O, assume that it contains an

element v with v?* =1+ p. Assume that ¢ is prime-to-p, and for any finite order character £ : Gxg — O*
of conductor dividing ¢ put

05(5)((1) = Z f(ou)\l/;L(1+5),1(0a)qNK/Q(a) € O[[S]][[q]],
(a,pc)=1

where o, € Gal(K[cp™]/K) is the Artin symbol of a. Then 0,(S) is a Hida family defined over O[S] of
tame level Nk q(¢)Dg and tame character (£ o ¥ )exw ™!, where ¥ : G?Qb — G2 is the transfer map and
ex is the quadratic character corresponding to K/Q.

5. DEFINITE CASE

In this section we deduce our applications to the Bloch—Kato conjecture and the Iwasawa main conjecture
for anticyclotomic twists of f/K in the case where e(f/K) = +1.

5.1. Anticyclotomic p-adic L-functions. Let f € Si(I'o(pNy)) be a p-ordinary p-stabilised newform of
weight k = 2r > 2, and tame level N, defined over O, and denote by a = a,(f) € O* the U,-eigenvalue
of f. Assume that f is p-old, and let f° € Si(T'o(INs)) be the newform associated with f. Write

Ny=NTN—
with N (resp. N7) divisible only by primes which are split (resp. inert) in K, and fix an ideal ™ C O
with Og /Nt ~ Z/NTZ.
Let I'" be the Galois group of the anticyclotomic Z,-extension K.,/K. By definition, the map o

l(alfc\Kpoo) factor through I'", and we let «y_ be the topological generator of I'”™ mapping to 1 under the
resulting isomorphism I'™ ~ Z,,. As usual, we identity the anticyclotomic Iwasawa algebra

A :=0[I'"]

with the one-variable power series ring O[W7] via v_ — 14+ W. For any prime-to-p ideal a of K, let o, be
the image of a in the Galois group of the ray class field K[p®]/K under the Artin reciprocity map.

Theorem 5.1.1. Let x be a ring class character of conductor cOg with values in O, and suppose:

(i) (pNy,cDk) =1,
(ii) N~ is the squarefree product of an odd number of primes.

Then there exists a unique element GED(]‘/K, X)(W) € O[W] such that for every character ¢ of T~ of
infinity type (j,—7) with 0 < j < r and conductor p", we have

(2r—1)n L(f°, ,
SRR (/K )(00) — 1P = Bt T £y 10 - G e/ Dicxolom) -2
where:
A= ap(H) T X (0) (1 = e (flp" xo(P) if n=0,
°5p(f,x¢)—{1 P

o Qpo y- =277 ||f0||1%0(Nf) -77;’}\[7 is the Gross period of f° (see [Hsi2l, p.524]),
o uig = |0%]/2, and g, € {£1} is the local root number of f° at p.

Proof. This is Theorem A in [CH18b] (see also [Hunl7, Thm. A]), extending and refining a construction
in [BDY6] in weight 2. O
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5.2. Factorisation of triple product p-adic L-functions. Let f € Sy, (pNy) be a p-stabilised newform
as in §5.1, and suppose the residual representation ps satisfies:

(5.1) py is absolutely irreducible and p-distinguished.

By Hida theory, f is the specialisation of a unique primitive Hida family f € S°(N¢,I) at an arithmetic
point Qp € %H* of weight 27. Let f1,f2 C Ok be ideals coprime to p/Ny, and let &1, &2 be ray class characters
of K of conductors dividing f1, f2, respectively. Let x¢, be the central character of §; (i = 1,2). We assume
that

(5.2) Xer Xex = 1,
and let
(5.3) g1 = 0¢,(S1) € O[S1][g], g2 = 0¢,(S2) € O[S:][4]

be the CM Hida families attached to & and &, respectively.
The triple (f, g1, g2) satisfies conditions (4.1) and (4.4) and the associated f-unbalanced triple product

p-adic L-function fpf’"f (f,g1,92) is an element in R = [©0O[S1]@00O[Ss] =~ I[Si, S2]); in the following
we let

(5.4) L (1.91,92) € O[Sy, 5]
denote its image under the natural map I[Sy, S2] — O[S, S2] defined by Qg. Denote by ¢ the non-trivial
automorphism of K/Q, and for a Hecke character ¢ put ¢°(o) := ¢(coc).

Proposition 5.2.1. Assume (5.1), (5.2), and that N~ is the squarefree product of an odd number of
primes. Set

Wi=v A +8)Y20+5)Y2 -1, Wy =(1+8)2(1+8,)" 2 1.
Then

L (£.91,92)(S1.52) = £w - OP (f/ K, £16) (W) - O3 (f/ K. £465) (W) - ﬁ

where w is a unit in O[S1, Sa].
Proof. This is an immediate extension of Proposition 8.1 in [Hsi21], where the case & = & Lis treated. [

5.3. Selmer group decompositions. As in §5.2, suppose f is the Hida family passing through a p-
ordinary p-stabilised newform f € Si(pNy) of weight k = 2r > 2 (so fo, = f), and

(9,h) = (91,92) = (0,(51), ¢, (52))

are CM Hida families as in (5.3).
Write VTQO for the specialisation of V1 at Qq. Let va be the Galois representation associated to f,
and recall that det(V}') = e2r~1 in our conventions. Setting T; = v (1 +5;) — 1 (i = 1,2), we have

cyc

det(Vg,, ® Vay,) = V1, ¥r, 0¥, and so
. - -r —1/24,—1/2
Vh, =T} @ (e, r,) © (IndRe; ' Wr,) @ byl (U7, 205 2 0 7))
~ (T} (1 - ) @ Ind3e 6 W) @ (TY (1 - r) © Ind e 165 0e),

where T} is a Gq-stable O-lattice inside V}’, and we put

(5.5)

Wi =v 1+ 802 (148) 2 =1, Wa = (1+5)%(145) /% -1
as in Proposition 5.2.1. In particular, we get
(5.6) Hl(Q,VgO) ~HY K, TY(1-7r) @& & 00 ) @ HY(K, T (1 —r) @ &71¢°0°)

by Shapiro’s lemma.
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Proposition 5.3.1. Under (5.6), the balanced Selmer group Selbal(Q,Vgo) decomposes as
Sel”™ (Q, V) = Selyet,str (K, T (1 — 1) ® &7 65 011-°) @ Selordora (K, TY (1 — 1) @ &5 1650 1°),
and the f-unbalanced Selmer group Self(Q, Vgo) decomposes as
Sel’ (Q, V) ~ Selord.ord (K, TY (1 = 7) @ & 165 1 W1-%) @ Selord,ora (K, TY (1 = 7) @ &1 65 “W3;.).
Proof. From (5.5) we see that the balanced local condition is given by
Ty (Vh) = (TY(1-r) @& ) @ (T (1 —r) @ 67160, °)
& (T (1 -1 ® Qgvy,).
Put {7220 =(T/(1-r e §f1£2_1\11‘1/[71°) O (T/1-r)® 51_152_‘:\11‘147;), so by (5.5) we have
(5.8) H'(Q, V) ~H' (K, V], ),
and from (5.7) we obtain
FyVE,) = (T (1= @6 ) & (T (1 =r) @ 616 ),
F ~ {0} ST/ (1 —r) @& 6 Vs,

and this yields the claimed description of Selbal(Q, VI;)O). On the other hand, we similarly find that the
f-balanced local condition is given by

FIVh) = (T (1= @66 050) & (T (1 - r) @ 6716 0y).
FIVh) = (T (1 -r) &G Uy @ (T (1L -r) @ &6 °0,0),

from where the claimed description of Sel (Q, VZQO) follows. O

(5.7)

As a consequence we also obtain the following decomposition for the Selmer groups with coefficients in
A‘LQO = Homg, (VZ207 Hpee ), mirroring in the case of Self (Q, AZ?O) the factorisation of p-adic L-functions in
Proposition 5.2.1.

Corollary 5.3.2. The balanced Selmer group Selbal(Q,Ago) decomposes as
Selbal(Qa AIQO) = Selstr,rcl(Ka Af (7") (24 5152\11({;[711) 57 Selord,ord(Ka Af (T’) (24 5155\:[}(1;[;21)3
where Ay(r) = Homg, (T (1 — 1), pip=); and the f-unbalanced Selmer group Self (Q, Al ) decomposes as
Sel’ (Q, A}, ) ~ Selord,ord (K, Af(r) ® £16U5,")  Seloraora (K, Ay (r) ® £€5T5)).
Proof. This is immediate from Proposition 5.3.1 and local Tate duality. ]
5.4. Explicit reciprocity law. With the same setting as in §5.3, put
V=V, ®ofs,.s1 OLS1, S21/(51 = $2)
(so in the quotient the weights of the CM Hida families g and h move in tandem), and denote by
(5.9) x(f.gh) € H(Q,VT)

the resulting restriction of the three-variable big diagonal class x(f, g, h) in (4.5). (Here we are implicitly
choosing level-N test vectors (f,g,h), where N = lem(Ny, Ng/q(fi1f2) D) to project the classes from

VT(N) to VT.) Similarly, we denote by fpf’w (f,gh) the image of (5.4) in the quotient O[S1, S2]/(S1—S2).
Since x(f,gh) € Selbal(Q,VT) as a consequence of [BSV22, Cor. 8.2], we can write

(510) K’(f?ﬂ) = (Kl(f7ﬂ)a’€2(fv@))

according to the decomposition from Proposition 5.3.1; in particular, we have

(5.11) k1(f,gh) € Selersir (K, T (1 — 1) @ &7 1651 0y0©),
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where W7 = v~ (1 + Sl) —1.

Similarly as in §4.1.1, denote by X%[[Wﬂ the set of ring homomorphisms @ € Spec(O[W1])(Q,) with
Q(W1) = Co(1 + p)ke=t — 1 for some (g € pp~ and kg € Z>1, and for any O[W;]-module M denote
by Mg the corresponding specialisation. Write T}/ o= T}/ /T}/ "+ where the Gq,-action is given by
the unramified character sending an arithmetic Frobenius to a,(f). Then it is easy to see that for any
Qe %%S[[Wl]] the Bloch-Kato dual exponential and logarithm maps give rise to L((g)-isomorphisms

expy : HU(Kp, T} 7 (L= 1) @676 Wi ®)g = L(Cq), ifl1<ko<r,
log, : H' (K, T/~ (1 =) @ &6, 1 0y%)g = L(Co), i kg >,

where L is the field of fractions of O.
Denote by p; : T/ (1 —r1) — T}/’7(1 — r) the natural projection.

(5.12)

Theorem 5.4.1. There is an injective O[W1]-module homomorphism with pseudo-null cokernel
L HN Ky, T (1= 1) @ 671610y, ) = O[]

such that for any 3 € H! (Kp7T}/’_(1 -7 ® fflfgllll%,;lc) and Q € %%HW]] we have

cq - expy(3q) if1<kq<r,

cQ logp(BQ) Zf k’Q >,

where cq is an explicit nonzero constant. Moreover, we have the explicit reciprocity law
L (py (resy(m1(£.gh))) (W1) = £ (£.gh) (1),

where S1 =v(1+Wp) — 1.

Proof. In terms of (5.5), we find that .Z3(V') = T}/’Jr(l -7 ® {152\11%,[?, which together with (5.7) gives
the decomposition

FyU VY FZ3V) = (T (1 - 1) @ &7 1 Ty °)
(T (=) @& °00) @ (T (1 - 1) @ Q&R

4" (3)e ={

with the terms in the direct sum corresponding to V?h, V{Lg , and Vgh in (4.6), respectively. Here the
subscript W5 denotes the quotient by Ws, noting that O[S1, S2]/(S1 — S2) ~ O[Wy, Wa]/(Wa).

Thus we find that under the first isomorphism of Proposition 5.3.1, the composite map in (4.9) corre-
sponds to the projection onto Selye str (K, va(l - ® 51_152_1\111_‘:) composed with the natural map

Selrel,str (£, va(l - ® 51—152—1\11‘1/[7:) — Hl(vaTf (1-r® fflﬁgl‘l’ylzﬁc)

P B (K, TV (1 - 1) 0 6 6 ),
and so under the corresponding isomorphisms we have
resy(r(f,gh))s = py (resy (r1(f, gh))) € H'(Qy, V™) & H' (K, Ty~ (1 — 1) @ &6 10y °).

Finally, the construction of an 7 is deduced from a specialization of the three-variable p-adic regulator
map Log™ in §4.3 by the same argument as in [ACR21, Prop. 7.3], and the associated explicit reciprocity
law then follows from Theorem 4.3.1. (]

Remark 5.4.2. Without the need to assume condition (5.1) on gy, for any choice of level-N test vectors
( f , 34, }VL) the same argument as in the proof of Theorem 5.4.1 gives an equality

Ly 1oy (07 (resy (51 (£, gh) (W) = 25 (F, gh)(S)),

where 92” (F.gh) and Z (f, gh) are specilisation of the map Log(f 9 and the p-adic L-function ff(f, g, ;L)

in Remark4 3.2 and Remark 4.1.2, respectively.
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5.5. On the Bloch—Kato conjecture in rank 0. In this section we deduce our first applications to the
Bloch—Kato conjecture in analytic rank zero for the twisted Gi-representation

Vi =V/(1-re Xt
Denote by K. the ring class field of K of conductor c. If x is a Hecke character of conductor cOf, then its
p-adic avatar is a locally algebraic character of Gal(Kpe /K). The Galois group I'™ = Gal(K /K) of the

anticyclotomic Zy-extension of K is the maximal Z,-free quotient of Gal(Kp~/K). Fix a (non-canonical)
splitting

(5.13) Gal(K peo /K) ~ A xT'7,

where A, is the torsion subgroup of Gal(K,p~/K). Note that every character of A, can be viewed as the
p-adic avatar of a ring class character of K of conductor dividing cp®Og for sufficiently large s. If x is as
above, we then write x = x¢ - Xw according to the decomposition (5.13).

Theorem 5.5.1. Let f € Sp(To(pNy)) be a p-ordinary p-stabilised newform of weigh k = 2r > 2 which is
old at p, and let x be anticyclotomic Hecke character of conductor cOk and infinity type (—j,7) for some
j > 0. Assume that:

N~ is a square-free product of an odd number of primes;

py is absolutely irreducible;

(pr,CDK) = 1,‘

p>k—2;

p1thi, the class number of K;

Xt has conductor prime-to-p.

Then
L(f/K,x,r) #0 == Selpk(K, V) =0,

and hence the Bloch-Kato conjecture for Vi, holds in analytic rank zero.

Proof. We begin by noting that under our hypotheses the modular form f is not of CM-type (since N~ > 1)
and the sign in the functional equation of L(f/K, x,s) is —1 for j > r, so without loss of generality below
we assume that 0 < j <.

Write x: = a/a® with a a ray class character of K of conductor f C O prime-to-p (note that this is
possible by e.g. [DR17, Lem. 6.9] or [Hid06b, Lem. 5.31] and our assumption on x:). Now, we fix a prime
¢ # p split in K, and for an auxiliary ring class character 8 (to be further specified below) of ¢-power
conductor we consider the setting of §5.2 with the CM Hida families

g=0(51), h=0¢(5),
where
&= Pa, &=p"la""
Then the decomposition (5.5) of the associated Vgo specialised to S1 = Sy yields

(5.14) Vi (TY(1-1)® Indgxt_lllf%,;lc) o(Ty1l-re md¥s5-2,

where Wi = v~!(1+5;) — 1. Denoting by @ the specialization W — ((1+p)? —1 (¢ € ppe) corresponding
t0 Xuw, it follows that
L(V},0) = L(f/K, x,7) - L(f /K, 8%, 7).
By [CH18b, Thm. D], the character 8 may be chose so that G)II?D(]”/K7 $%)(0) is nonzero, and for such
choice of 8 by Theorem 5.4.1 (see also Remark 5.4.2) we then have

L(f/K,x,r) #0 = resp(ra(f,gh)q) # 0.

By construction, the class x1(f, @)Q € Selyel str (£, Vf,x) is the base class of the anticyclotomic Euler
System
{2101 05.m € Selerser (K [m], Ty ) : m € N}
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of (3.3), with (¢, =) the Hecke characters associated with (gs,, hs,). Hence by Theorem 3.3.1 we deduce
that the Selmer group Selyer st (K, Vf,y) is one-dimensional, spanned by

Zf o = COTR ]/ K (Zf 41 ,12,(1)) = B1(f, gh)q-

Since also res, (25, ) # 0, the vanishing of Selord orda (K, V) then follows by a standard argument using
Poitou—Tate duality (see e.g. [CH18a, Thm. 7.9]). Since by Lemma 3.1.2 for 0 < j < r the latter group is
the same as Selgk (K, Vy,y ), this yields the result. ]

5.6. On the Iwasawa main conjecture. Our next application is a divisibility in the anticyclotomic
Iwasawa main conjecture for modular forms in the definite setting. For an eigenform f of weight k = 2r > 2
and trivial nebentypus and x an anticyclotomic character, put
Ajf = Homg, (T}/(l -7 ® X_17/,Lpoo).
Theorem 5.6.1. Let the hypotheses be as in Theorem 5.5.1, and assume in addition that:
o pyr is p-distinguished;
e f has big image (see 3.53.2).
Then Selord,ord (K5, Ay ) s cotorsion over Ay, and we have the divisibility
char,— (Selord,ord (Ko, Af.x)") D (0,7 (f/K. X))
m A;{ Rz, Q,.
Proof. Proceeding as in the proof of Theorem 5.5.1 we obtain the decomposition (5.14), which by Propo-
sition 5.2.1 translates into the factorisation
) ’]7 o
(5.15) LS, gh)(50) = - O (/K x) (W) - 0P (/1 82)(0) - 1
where Wi = v~1(1 +5;) = 1, and from Proposition 5.3.1 we have
(516) Self(Q7 AT) = Selord,ord(Ko_O; Af (T) & X) D Selord,ord(K7 Af (T) ® BQ)u

where AT = Homz (VT f1pe).

By Theorem 5.1.1 and [CH18b, Thm. D], the auxiliary ring class character 8 may be chosen so that
OpP(f/K, 3?)(0) # 0. Moreover, by Vatsal’s nonvanishing results [Vat03] and their extension to higher
weights by Chida-Hsieh [CH18b], the p-adic L-function ©5P(f/K, x¢)(W1) is nonzero. Hence from (5.15)
and Theorem 5.4.1 it follows that the class

k1(f, gh) € Selrersee (K, Ty (1 — 1) @ &1¢5 1 04©)

is non-torsion over O[W;]. Since by construction 1 (f, gh) is the base class of the Aj-adic anticyclotomic
Euler system

{Zfﬂl}lﬂl}’z,m S Selrcl,str(K[mpoo], Tf,X) rme N}

in (3.4), with (¢1,%2) the Hecke characters corresponding to (gs,,hs,), the result follows immediately
from Theorem 3.3.3 applied to

(5.17) Zfx 1= COLK[1)/ K (Zf,1,90,(1)) = K1(f, gh),

the equivalence in Proposition 4.3.3, and the Selmer group decomposition (5.16), using that by the rank 0
cases of the Bloch—Kato conjecture established in Theorem 5.5.1, the nonvanishing of L(f/K, 82,r) implies
that Selord,ora (K, Af(r) @ £?) is finite. O

Remark 5.6.2. A divisibility in the anticyclotomic Iwsawa Main Conjecture for V¢, was first obtained
by Bertolini-Darmon [BD05] in weight & = 2 and by Chida—Hsieh [CH15] in higher weights using Heegner
points and level-raising congruences. Our proof of Theorem 5.6.1 is completely different from theirs, and
in particular it dispenses with any “level-raising” hypothesis.
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5.7. On the Bloch—Kato conjecture in rank 1. The arguments in the proof of Theorem 5.6.1 give the
following result towards the Bloch—Kato conjecture in rank 1.

Theorem 5.7.1. Let the hypotheses be as in Theorem 5.5.1, and assume in addition that:
o pr is p-distinguished;
e [ has big image.
If j > r (which implies L(f/K,x,r) = 0), then
dimpz, Selpk (K, Vi) > 1.
Moreover, there exists a class zf, € Selgk (K, V) such that

Zfx 75 0 — dimLm SelBK(K, Vf’X) =1.

Proof. The proof of Theorem 5.6.1 shows the non-torsionness of the class z¢,,, € Selyel str (K, T,y ), which
is the base of a A -adic anticyclotomic Euler systems as in (5.17) for the relaxed-strict Selmer group. By
Theorem 3.3.3, it follows that Selyelstr (K, T,y ) has Ajp-rank 1. Since by (a straighforward variation of)
Mazur’s control theorem the natural map

(5.18) Selrel,str (K o , Tf,x)/(’Y— — 1)Selrerstr (K Tf,x) - Selrel,str(Kv Tf»x)

is injective with finite cokernel, we conclude that Sel,el str (K, Tf,y ) has positive O-rank, and by Lemma 3.1.2
the first part of the theorem follows.

On the other hand, letting z¢, € Selyelstr(K, T,y ) be the image of zy, under the projection (5.18),
the last claim in the result follows from Theorem 3.3.1. O

Remark 5.7.2. From the Euler system of Beilinson—Flach elements constructed by Lei—Loefller—Zerbes
and Kings—Loeffler—Zerbes [LLZ14, KLZ17] attached to the Rankin—Selberg convolution of f and a suitable
¢-series, one can produce a class BFy, € H!(K,V},). As shown in [LLZ15] and [BL18], this class forms
the basis of an anticyclotomic Euler system for V% ., but not for the correct local conditions at p. Indeed,
with notations as in the proof of Theorem 5.5.1, it follows from the explicit reciprocity law of [KLZ17] that,
for j > r, the class BKy , lands in Selyel str (K, V.5 ) = Selpk (K, V) precisely when the p-adic L-value
O5P(f/K, x:)(C(1 4+ p)? — 1) vanishes (see [Cas17, Thm.2.4], [BL18, Thm.3.11]). However, since j > r
is outside the range of interpolation of @ED (f/K, xt), such vanishing is not a consequence of the forced
vanishing of L(f/K, x, ), and Theorem 5.7.1 seems to fall outside the scope of these classes. (On the other
hand, it also seems to fall outside the scope of Heegner cycles, since the squarefree integer N~ is assumed
to have an odd number of prime factors, so Heegner cycles are not directly available, and the level-raising
techniques of Bertolini-Darmon [BD05] are only known to yield results towards the Bloch-Kato conjecture
in rank 0, see e.g. [LV10].)

6. INDEFINITE CASE

In this section we deduce our applications to the Bloch—Kato conjecture and the Iwasawa main conjecture
for anticyclotomic twists of f/K when ¢(f/K) = —1.

Since the nonvanishing results we shall need from [Hsil4] are currently only available in the literature
under the classical Heegner hypothesis, in the following we shall restrict to this case, but note that with the
required extension of [Hsil4] at hand (see [Burl7, Mag] for progress in this direction), our results directly
extend to the general indefinite case.

6.1. Anticyclotomic p-adic L-functions. Let f € S;(I'g(pNys)) be a p-ordinary p-stabilised newform
as in §5.1 (in particular, f is old at p) where k = 2r > 2, and let K be an imaginary quadratic field of
discriminant —Dyg < 0 in which p = pp splits. Assume that K satisfies the classical Heegner hypothesis:

(6.1) every prime ¢| Ny splits in K,
and fix an ideal M1 C O with O /M~ Z/N;Z.
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Recall that I'~ denotes the Galois group of the anticyclotomic Z,-extension of K, and A = O[] is
the associated Iwasawa algebra. Let Q, and Qx be CM periods attached to K as in [CH18a, §2.5], and
put

A" = Ax ®Z;r,
where Z," is the completion of the ring of integers of the maximal unramified extension of Q. Similarly
as before, we shall often identify A" with the one-variable power series ring Z3'[W] via vy — 1+ W
for a fixed topological generator y_ € I'".

Theorem 6.1.1. Let x be an O-valued ring class character of conductor cOx with (pNy,cDg) = 1. Then

there exists a unique element ZPBDP (f/K,x) € Zy'[W] such that every character ¢ of T of infinity type

(4, —j) with j > r and conductor p", we have

s _ 9 D+ NG+ 1-r)sn)
QY 4(2m) 241/ D7

ngDP(f/K’ X)(Qb(’}/_) - 1) : ep(fv X¢) : L(f/K7 X(ba 7‘),

where

(1= apxoEp~" +x6(P)?p )" ifn=0,

(3, xpPp) 2 else,

with (%, Xp®p) the local e-factor in [CH18a, p.570] attached to the component at p of x¢. Moreover,
XPBDP(f/IQ X) is a nonzero element of A" .

ep(va(b) = {

Proof. This is a reformulation of results contained in [CH18a, §3]. In particular, since (Ny, Dg) = 1 by
hypothesis (6.1), the nonvanishing of prDP (f/K, x) follows from [CH18a, Thm. 3.9]. O

Remark 6.1.2. The CM period Qi € C* in Theorem 6.1.1 agrees with that in [BDP13, (5.1.16)], but is
different from the period Qo defined in [dS87, p.66] and [HT93, (4.4b)]. In fact, one has

Qoo =27 - QK.
In terms of Q, the interpolation formula in Theorem 6.1.1 reads
s _ O T+ )0( +1- o)
Q3 4(2m)1-20 /D

This is the form of the interpolation that we shall use later.

ZLYPP (/K x)(¢(v-) — 1) cep(f,x0) - L(f/ K, x9,7).

6.2. Factorisation of triple product p-adic L-function. As in §5.2, we now let f € S°(Ny,I) be the
primitive Hida family associated to f; so f specialises to f at an arithmetic point Qg € .'{;' of weight 2r,
and consider a pair of CM Hida families

(6.2) (9,h) = (g1,92) = (0, (51), 0¢,(52)) € O[S1][4] x O[S:][4]

similar to (5.3).
The triple product p-adic L-function of relevance in this section is the g-unbalanced 27" (f, g, h),
which is an element in R = [®0O[S1]®0O[S2] ~ I[S1, S2]. In the following we let

gg?mg(.ﬂgv h’) € O[[Sh SQ]]
be the image of 27" (f, g, h) under the map I[Sy, So] — O[S1, S2] given by Qo : T — O.

6.2.1. Anticyclotomic Katz p-adic L-function. Before we can state and prove the main result of this section,
we need to recall the interpolation property of the Katz p-adic L-functions [Kat78], following the exposition
in [dS87].

Fix an ideal ¢ C Ok prime-to-p stable under the action of complex conjugation, and denote by Z(c) the
ray class group of K of conductor ¢p> (so Z(c) ~ Gal(K[cp™]/K)).
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Theorem 6.2.1. There exists an element L33 € O[Z(c)|QZL" such that for every character & of Z(c)

of infinity type (k,j) with k > —j > 0 satisfies
Qk—J VD
— 27_ T(k) - ( K
Qs 2
Moreover, we have the functional equation
LRae(6) = LK (€N,

where the equality is up to a p-adic unit.

K () ) (L= (1 - £F)) - L(EL0).

Proof. Our E,Iii‘tz corresponds to the measure denoted u(cp) in [dS87, Thm. 11.4.14]. The stated func-
tional equation is given in [dS87, Thm. I1.6.4]. O

Let T'; be the maximal torsion-free subgroup of Z(c), and fix a (non-canonical) splitting
Z(¢c) ~ A x T,
with A, a finite group and I', ~ Zg. For ¢’[¢ the natural projection Z(¢) — Z(¢') takes A, to Ay, inducing
an isomorphism I'c = I'. Thus in the following we shall identify T'. with T'x := ['(1). Since p > 2, the
action of complex conjugation c splits
g ~TF x I
with T ~ Z,, and where c sends 7y € I't to y*!. Then of course I'™ is identified with the Galois group
Gal(K 3 /K) of the anticyclotomic Z,-extension of K.
Suppose 7 is a Hecke character of K of conductor dividing ¢p>°. Viewing 1 as a character on Z(c) ~

A, x Tk, we put 7 := n|a,, and denote by Eff%tz’* the image of £;%" under the composite map

O[Z(c)|RZy — O[T ]RZY — AR,

where the first arrow is the natural projection defined by 7, and the second is given by v + °~! for
v € k. Put also 7~ := 7°~ L.
Lemma 6.2.2. Let £ be a ray class character of K such that €~ has conductor ¢ prime-to-p. Assume that:
(i) ¢ is only divisible by primes that are split in K;
(ii) A, has order prime-to-p;
(iii) £~ has order at least 3.
Then the congruence ideal of the CM Hida family 0¢(S) is generated by
hie | pxats, -
WK p.&~

)

where hi = |Pic(Ok)| and wx = |OF|.

Proof. As explained in [ACR22, Prop. 4.6], this is a consequence of the proof of the anticyclotomic Iwasawa
main conjecture for Hecke characters by Hida—Tilouine [HT93, HT94] and Hida [Hid0Ga). O

6.2.2. The factorisation result. We shall work with the following integral normalisation of the triple prod-
uct p-adic L-function of Theorem 4.1.1.

Definition 6.2.3. Put X
Z3(f.g.h):=2"(f,g.h),

b . KA 4o the generator of C(g) given by Lemma 6.2.2.

where 7y = wn L

Note that &; can be replaced by a twist &; - ¢ o N for a Dirichlet character ¢ without changing f_f , and
thus in the following we may assume that &; satisfies the following minimality hypotheses:

(6.3) the conductor of &; is minimal among Dirichlet twists.
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The following is an analogue of Proposition 5.2.1 in the indefinite setting. Note that a variant of this
result first appeared in the work of Darmon-Lauder—Rotger (see [DLR15, Thm. 3.9]), but unfortunately
the formulation of their result is not well-suited for our Iwasawa-theoretic purposes in this paper (see also
the more recent [BCS23, §8] for a factorisation result closer to ours).

Proposition 6.2.4. Assume that &; satisfies the conditions in Lemma 6.2.2. Put

Wi=v ' (1+8)Y2(1+8)2 -1, W= (1+8)"Y2(1+8) 2 -1.
Then

Z9(f,9.h)(51,8:) = £w - LPPV(f/ K, &16)(Wh) - L7P0 (F/ K, 665) (W),

where w 1s a unit.

Proof. Let ki, ks be integers with k; = ko (mod 2) and ky > ko 4 27. Set S; = v(1 +p)¥~1 —1 (i = 1,2),
so the corresponding specialisations of W; are given by

Wy =(1 _|_p)(k1+k2—2)/2 -1, We=(1 +p)(k1—k2)/2,

and denote by Vg the specialisation of VT at Q = (Qo, S1, S2). Putting T; = v 1(1+.5;) — 1 for the ease
of notation, we have

det(T} @ Vgp, @ Vgr,) = cove "+ (§1&¥1,VUp, 0 V) = etrt - (U, U, 0 7)),

cyc cyc
using that the central characters of £&; and &; are inverses of each other for the second equality, and so
Vi = Tf ® (IndR&; ) © (IndR6, ') © < (W7, #0720 )

~ (Tf (1-7) @ IndRe &1 0h0) @ (TY (1 - r) @ IndFe; &5 °0°).

Thus we find that the completed L-value appearing in the interpolation formula of Theorem 4.1.1 is given
by

(6.4)

(b 4= P(g 4 )P (Bg (Bt 1)
24 . (27)2k ’
X L(f/K?€1£2\P([i];lla T) ' L(f/Kaglfg\I/%;zla T)v
and similarly the modified Euler factor decomposes as
c— S\ T c— =5 —1\2
ENFI(VE)) = (1 - ap(e1&¥5 ) (B)p " + (L&95,)(F)p )
x(1 - ap(QE T EP T + (G (B

Moreover, letting X; be the prime-to-p part of the nebentypus character of gr,, we have

. T _
(6.5) FVTQ(O) L(Vg’ 0) =

(6.6)

ki1—1 k1—2

Xy (p)p Xg(P)P
(1 Rz (ﬁ)2) (1 & (p)?

and therefore the canonical period g, in Theorem 4.1.1 associated with ny is given by

)= (- & o) (1 - & wh () ),

9%, 1%, e e

(6.7) Qgy, = (—2v/=D) 1. = (1= &5 o)) (1 — &5 UE (o)),

ng
where C' = Ng/q(f1)Dx and we note that here Yy, consists of the primes ¢ | C' inert in K.
On the other hand, since g1, has weight k1, from Hida’s formula for the adjoint L-value [HT93, Thm. 7.1]

(using that &; satisfies the minimality condition (6.3)) and Dirichlet’s class number formula we obtain

D? 21h
o 12 _ K K l—c,;yc—1 -1
H9T1||Fo(c) =I(k1) - 92k1 rhitl wr/Dr “L(& v 1) H (I+q¢7).

qE€Xexc
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The character §%‘°\I/°_1N’1 has infinity type (k1,2 — k1), and so for k; > 2 it lies in the range of
interpolation of EK‘“Z Noting that L(&]~ N2 IN-10) = I( %_C\Il%l_l, 1), from the above formula for this
value and in Theorem 6.2.1 we thus obtain

z2/¢l—ce—1ng— Q 2k1—2 k-2, 93k1—3
e () 2
> VDk
_ —c c— —e _ o WK
X (1= €M (p) (1= & 0 (p)p ™) - ”ng”lQ“o(C) e

Moreover, by the functional equation for Katz’s p-adic L-function and the definition of 1y we have the
relation

(6.8)

hi

Katz l—cyc—1
\IJ N™
el H

*
p Mgy, >

where ~,, denotes equality up to a p-adic unit, and so from (6.7) and (6.8) we arrive at

1 Q, \*"7? (27)%k -2
(6-9) Np 7p . 7k"‘1'
Qng QOO vV —DK !

Finally, note that the characters £;1&o \I/“i;ll and 5155\1/;;;21 in the right-hand side of (6.5) are both anticy-
clotomic, and of infinity type ((k1+k2)/2—1, —(k1+k2)/2+1) and ((k1 — k2)/2, (k2 —k1)/2), respectively,
and so for k1 > ko + 27 they are in the range of interpolation for XPBDP (f/K,&1&) and XPBDP(f/IQ £1&5),
respectively. Thus substituting (6.5), (6.6), and (6.9) into the interpolation formula for £7(f,g,h) in
Theorem 4.1.1 and comparing with Theorem 6.1.1 we finally arrive at

Z3(f,9,h)(S1,52)% ~p Dkl“ - ZyPP(FIK, §6)(Wh)? - LY (F/ K, €165)(Wa)?,

and this yiels the proof of the result. O

6.3. Selmer group decomposition. We keep the setting in §6.2, so in particular f € Ss,.(pNy) is the
specialisation of f at Qg € %]?' , and write Vgo for the corresponding specialisation of V1.
As in the proof of Proposition 6.2.4, setting T; = v=1(1+5;) — 1 (i = 1,2) we have

Vi, =T ® (Ind3e 0,) © (Ind3e; ' Or,) @ ey (0,202 0 9)
~ (TY (1 - r) © IndRe; 16 " 0y°) @ (T (1 - r) © IndRer 6 0y.°),
where T} is a Gq-stable O-lattice inside V}’, and we put
Wi =v 14+ S)Y2(1+ S)? =1, Wo=(1+8)"3(1+S2) "2 -1
In particular, we get
(6.11) H(Q, V) = HYK.TY (1 - 1) @ & 16 Wi®) @ HY (K, T (1 1) © 67650 h)

by Shapiro’s lemma.

(6.10)

Proposition 6.3.1. Under (6.11), the balanced Selmer group Selbal(Q,VgO) decomposes as
Sel”™(Q, vgo) ~ Selyerstr (K, Ty (1 = 1) ® & 7651 04) @ Selora,ora (K, T (1 — 1) @ &77165 W 3,9),
and the g-unbalanced Selmer group Sel?(Q, VTQO) decomposes as
Sel?(Q, V) 2 Selrer st (B, T (1= 1) @ €171 65 1 W4 ©) @ Selrer st (K, T (1= 1) @ €17 165 W 4°).

Proof. The proof of the decomposition for Selbal(Q, Vgo) is the same as in Proposition 5.3.1, so we focus
on Selg(Q,Vgo). Put

Vi, = (T (1—r) &' ) e (TY (1 - 1) @ &7 °0),
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so by Shapiro’s lemma we have N
HY(Q, V) ~ HY(K, V).
A direct computation shows that the g-unbalanced local condition is given by
FEVE,) =T} @& Ur, @ (&' Un, 6 °V5,) @ eyl (g, 0 0 7))
= (T{ (1= @& 6 0y0) @ (T (1 - 1) © &6 “Uy).
Therefore, we have N N N
Tn (VTQO) = VTQO’ Th (VIQO) =0,
and this yields the stated decomposition for Sel?(Q, Vi o) |

Corollary 6.3.2. The balanced Selmer group Selbal(Q,AIQO) decomposes as
Sel”™(Q, AL, ) ~ Selur vt (K, Af(r) ® &1&¥5") @ Selord,ora (K, Af(r) ® E1€595,1),
where Ay(r) = Homg, (TY (1 —r), tp=); and the g-unbalanced Selmer group Sel?(Q, Ago) decomposes as
Sel(Q, A, ) ~ Selyyr el (K, Ap(r) @ £16U5") @ Selgurret (K, Ap(r) ® €55,
Proof. As in Corollary 5.3.2, this is immediate from Proposition 6.3.1 and local Tate duality. O
6.4. Explicit reciprocity law. In the setting of §6.3, we now put
VT = VZQO ®O|IS1,52]] O[[Sl7 SQ]]/(VQ(I + 52)_1 - 1)7
and let

(612) K(f).q’hVQ—l) € Hl(QaVT)

be the resulting restriction of the three-variable big diagonal class k(f,g,h) in (4.5), where h,2_; is the
weight one theta series obtained by specialising h = 0¢,(S2) at So = v — 1.
Since k(f, g, hy2_1) € Sel®™(Q, V1), we can write

(613) K:(fa g, hvz—l) = (Hl(fvgv hv2—1)7 K/Z(fvga hvz—l))
according to the decomposition from Proposition 6.3.1; in particular, we have
k2(f, g, hy2_1) € Selord,ora (K, T}/(l -r® g;lggcqj%};c%

where W = (145;)Y/2—1. Similarly as in §5.4, for any O[W]-module M we denote by My its specialisation
at Q € X%S[[W]]. Then, if @ has weight kg > 1, it is easy to see that the Bloch-Kato dual exponential and
logarithm maps give rise to L({g)-isomorphisms

expy : H (K, T (1= 1) @ §716°0 %) g = L(g),
locg : H' (K3, T/ (1 — 1) @ &6, °05%) g — L(Cq),
according to whether kg > 2r or 1 < kg < 2r, respectively.

(6.14)

Theorem 6.4.1. Let ng be a generator of the congruence ideal of g. There is an injective O[W]-module
homomorphism with pseudo-null cokernel

Lo H (K, T (1 - 1) @ 6716905 ) = O[W]

such that for any 3 € Hl(Kﬁ,T}/’Jr(l - ® 51—152—0\:[/11/170) and @Q € i’gsf[w]] we have

cg - expi(3q) if kg > 2r,
B (3)g=1q ¢ PIY T
cq -logy(3q) i 1<kq<2r,

where cq s an explicit nonzero constant. Moreover, we have the explicit reciprocity law

B (respa(1,9, b)) = L0119, M)(1+ W) 1,37~ 1),
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Proof. In terms of the direct sum decomposition in (6.10) we have
FyVh = (T (L= @ 6716 0y °) @ (T T (1 - 1) @ (6776 "Wy ° + £1E5 05 )
as Gq,-representations, while a direct computation shows that ES(VT) = va"+(1 — ) ® &G
From these we obtain
Fy VO TV = (T~ (1= r) @676 ) @ (T (1 —r) @ 6716 0y )
& (T (1) @ Q&g ),

with the terms in the direct sum corresponding to Vgh, Vig , and V_{;h in (4.6), respectively, where h =
hy2_;. Thus we find that the composite map in (4.9)

Sel”(Q, V1) — HY(Q,, Vi)

corresponds under the isomorphism of Proposition 6.3.1 to the projection onto Selord ora (X, va(l - ®
€7 1€, 90 ) composed with the restriction map

Selord,ora (K, TY (1 —7) @ &6 90y, ©) = HY(K, T/ (1—r) @& 00 °).
In particular, under the corresponding identifications it follows that

resp(m(f, g, hv2—1))g = TIesp (/{2(.]07 g, hv2—1))
€ HY(Qp, V™) ~ H' (K, T/ (1 — 1) @ &6, 903, °).
Finally, the construction of fﬁ"g is deduced from a specialisation of the three-variable p-adic regulator

map Log" in §4.3 (see [ACR21, Prop. 7.3]), and the associated explicit reciprocity law then follows from
Theorem 4.3.1. O

6.5. On the Bloch—Kato conjecture in rank 0. As another application of the Euler system construc-
tion in this paper, we can now deduce a result towards the Bloch—Kato conjecture for

Vin=V/(1l-r)e@x "

analogous to Theorem 5.5.1 but in the indefinite setting. Note that a similar result was obtained in [CH18a,
Thm. B] using the generalised Heegner cycles of Bertolini-Darmon—Prasanna.

Theorem 6.5.1. Let f € Sp(T'o(pNy)) be a p-ordinary p-stabilised newform of weigh k = 2r > 2 which is
old at p, and let x be anticyclotomic Hecke character of conductor cOk and infinity type (—j,7) for some
j > 0. Assume that:

every prime ¢ | Ny splits in K ;

(pr,CDK) = 1,‘

p1thi, the class number of K;

py is absolutely irreducible and p-distinguished;

Xt has conductor prime-to-p.

Assume in addition that f is not of CM type. Then
L(f/K,x,r)#0 = Selgk(K, Vi) =0,

and hence the Bloch-Kato conjecture for Vi, holds in analytic rank zero.

Proof. This follows by an argument similar to the proof of Theorem 5.5.1 after some modifications. Write
Xt = a/ac for a ray class character « as in the proof of that result, but now put

(6.15) & = Ba, & :=pa

with 8 an auxiliary ring class character of K (to be further specified below) of ¢-power conductor for a
prime £ # p split in K. Consider the setting of §6.2 with the CM Hida families

g =0 (51), h=0:(S).
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If (=7, j) denotes the infinity type of x, then y is the specialisation of &S, ! at W = (1 +p)? for some
¢ € pp, and letting VZ?O,X be the corresponding specialisation of VZQO at (S1,52) = (C2(1+p)¥ —1,v2-1)
from the decomposition (6.10) we obtain the factorisation

(6.16) LV, 1 0) = LU /K, B2x,7) - L(f/ K. x.7)-

By our assumption (6.1) on N, the sign in the functional equation of L(f/K,x,s) is —1 for 0 < j <r, so
without loss of generality we assume that j > r. Then the above (Qq, S1, S2) is in the range of interpolation
of Z2(f,g,h), and by [Hsil4, Thm. C] we may choose 3 as above so that L(f/K, B2x,r) # 0. Thus from
(6.16) and Theorem4.1.1 (see also Remark 4.1.2), with such choice of 8 we conclude that

L(f/K,x,1) 20 = Z3(f,4,h)(C(1+p)¥ —1,v* =1) #£0

for a suitable choice of test vectors (f,§, h). Denoting by @ the specialisation W — ¢2(1 + p)% — 1, from
Theorem 6.4.1 and Remark 4.3.2 we conclude that

L(f/KaX7T) #O - resﬁ(KQ(fagthQ—l)Q) #O

Since by construction ka(f, g, hyv2_1)g € Selord,ord (), Vs ) is the base class of the anticyclotomic Euler
system

{2101 2m € Selora,ora(K[m], Ty, ,05) + m € N}
as in the proof of Theorem 3.3.1, with (¢1,12) the Hecke characters corresponding to (gs,, hs,), by The-
orem 3.3.1 we deduce that Selord ora (K, V) is one-dimensional, spanned by

“2fx 1= ot K (C2f 00 ,1)) = K2(fr g, Rv2—1)q-

The vanishing of the Bloch-Kato Selmer group Selgk (K, Vf.y) = Selrel str (K, Vi) (see Lemma 3.1.2) now
follows from this and the nonvanishing of res(®zy, ) using global duality (cf. [CH18a, Thm. 7.9]). O

6.6. On the Iwasawa main conjecture. We conclude by giving an application to the Iwasawa—Greenberg
main conjecture for .,%BDP(f/K, X)- As before, we put

Ajy =Homg, (TY(1-71)® X e ).

Theorem 6.6.1. Let the hypotheses be an in Theorem 6.5.1, and assume in addition that f has big image.
Then Selsr vl (K, A y) is cotorsion over Ay, and we have the divisibility

charAI_( (Selstr,ml(K, Af,X)V) D (XPBDP(f/K, X))
mn A;{,ur Rz, Q.
Proof. Arguing as in the proof of Theorem 6.5.1 we get the factorisation
L(f.g, M)A+ W) = 1,v? = 1) = 2w - LPPV(f/K, B2)(W) - Z7PT (K, x)(W)
where the auxiliary ring class character 8 can be chosen, by virtue of [Hsil4, Thm. C], so that the factor
,,ZPBDP(f/K7 B?) is a unit in A" and conditions (i)-(iii) in Lemma6.2.2 hold. By Theorem 6.1.1 the
second factor .i”pBDP( f/K,x) is nonzero, from Theorem 6.4.1 we conclude that the resulting class
'%2(]‘-7.97 h’v2 - 1) S Selord,ord(K7 T}/(l - ’l”) ® gflgglqjil/[;C)

is non-torsion. Since by construction this class is the base of a A -adic anticyclotomic Euler system

{2 s 1 p0m € Selord,ord (K[mp™], Ty, pg) - m €N}

as in the proof of Theorem 3.3.3, the result follows from Theorem 3.3.3, Proposition 4.3.3, Proposition 6.3.1,
and Theorem 6.5.1. (]

Remark 6.6.2. Note that Theorem 6.6.1 also yields a proof of a divisibility towards the Perrin-Riou main
conjecture for generalised Heegner cycles formulated in [LV19] (see [BCK21, Thm. 5.2] for the argument),
removing some of the hypotheses in the main result of [LV19].
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