
MARKOV-STYLE STATE MACHINES

Nathaniel Hamovitz, Ron Kibel, Rianna Alers
University of California Santa Barbara

MARKOV-STYLE STATE MACHINES

Nathaniel Hamovitz, Ron Kibel, Rianna Alers
University of California Santa Barbara

Reinforcement Learning

Reinforcement learning (RL) is a technique for training an agent to act
favourably in an arbitrary environment. Environments consist of states, actions,
observations, and rewards. The agent’s job is to choose actions that maximize
the total reward.
There are many approaches to solving this task. The agent can try to predict the
long-term consequences of its actions and maximize its long-term benefits (value-
based approach). It can also try to learn the environment itself (model-based
approach). Here we will look at what is known as a policy-based approach to
RL, which refers to optimizing the sequence of actions we take to maximize our
current and future rewards.

Markov Models

These models come in different variants, with different tradeoffs. The following
four classes of models are all "stochastic, discrete state, discrete time" [1] finite
state machines with Markovian dynamics – that is, the next state depends only on
the current state and the action. We restrict our discussion here to MDPs (Markov
Decision Processes) and POMDPs (Partially Observable Markov Decision
Processes), but you may be familiar with other Markovian processes:

States Completely Observable? Control over State Transitions?

NO YES

YES Markov Chain MDPs

NO Hidden Markov Model POMDPs

MDPs and POMDPs

Both MDPs and POMDPs are especially helpful in the RL setting because they
can represent the relationship between the agent and the environment.

• In an MDP, we assume the environment is fully observable. As such, the
states fully capture all relevant information for decision-making (state transi-
tions contain Pa(s | s′), the probability that taking action a at time t in state s
will lead us to state s′ at time t + 1).

• We can generalize an MDP into a POMDP by assuming that the environment
is only partially observable. This implies that states in our model only capture
part of the true environment—observations give us information that are only
partially informative, which makes it more challenging! We thus need to in-
troduce what is known as the belief state, which is a probability distribution
over all states encoding how closely a state resembles the true environment
[3].

Formally, a POMDP is a tuple of the following items:

• S, a set of states

• A, a set of actions

• P (st | a, st−1), state-action transition probabilities

• R : S × A → R, state-action reward function

• O, a set of observations

• P (o | s), conditional observation probabilities

• γ ∈ [0, 1), the discount factor

Diagram of a POMDP

Adaptive State Aggregation for MDPs

MDPs can be solved by iterating the operator

Ts(V) = min
a∈A

(
r(s, a) + γ ·P⊤

s,aV
)
.

Value iteration is simple and guarantees convergence, but is computationally expen-
sive. For large state spaces solving an MDP with this technique becomes infeasible!
We can use state aggregation to reduce these costs by dynamically grouping states
with similar cost-to-go values [2].

This algorithm alternates between two phases: a global update phase and an aggre-
gated update phase. The global update phase performs value iteration on S and the
aggregated update phase groups together states with similar cost-to-go values.
We need both phases because the aggregated update phase will require updated
knowledge of V* to perform aggregation. In the following algorithms, Ai reference our
state-aggregation and Bi reference global iterations.

Value Iteration

We must use some form of value-iteration to obtain a value function for our aggre-
gation. We observe an algorithm using a pre-specified aggregation where W is the
value function generated by the mega-states and Ṽ is the incuced value function. In
the following algorithm αt is the step size of the learning algorithm (αt = 1 recovers
the formula for value iteration). This has been proven to converge and our alterations
maintain a similar convergence bound [2].

Algorithm 1 Random Value Iteration with Aggregation
Input: P, r, γ,Φ, {αt}∞t=1

Initialize W0 = 0
for t = 1, . . . , n do

for j = 1, . . . , K do
Sample state s uniformly from set Sj

Wt+1(j) = (1− αt)Wt(j) + αtTsV(Wt)
end for

end for
Output: Ṽn

State Aggregation

Divide the state space S into K subsets and view these subsets as mega-states. The
value function generated by each mega-state can be used to find the optimal value
V ∗. The algorithm is below:

Algorithm 2 Value-based Aggregation [2]
Input: ε, V = (V (1), ..., V (|S|))T
b1 = mins∈|S| V (s), b2 = maxs∈|S| V (s),∆ = (b2 − b1)/ε
for i = 1, ...,∆ do

Ŝi = {s|V (s) ∈ [b1 + (i− 1)ϵ, b1 + iϵ)}
Ŵ (i) = bi + (i− 1

2)ε
end for
Return {Si}Ki=1 and W

Adaptive State Aggregation Algorithm

Combining the two techniques above, we get the following algorithm where Ai are our
state-aggregation and Bi are our global iterations.
This method is separate from other aggregation techniques because it learns the cost-
to-go values continuously, which aggregation methods need to generate mega-states.

Algorithm 3 Value Iteration with Adaptive Aggregation [2]
Input: P, r, ε, γ, {αt}∞t=1, {Ai}∞i=1, {Bi}∞i=1

Initialize W0 = 0, V1 = 0, tsa = 1
for t = 1, . . . , n do

if t ∈ Bi then
if t = min{Bi} then

Vt−1 = Ṽ(Wt−1)
end if
for j = 1, . . . , |S| do

State Vt(j) = TjVt−1

end for
else

Find current i s.t. t ∈ Ai

if t = min{Ai} then
Run our Value-based Aggregation algorithm with input ε, Vt−1

Set the {Si}Ki=1 and Wt to be the output of our Algorithm
end if
for j = 1, ..., K do

Sample state s uniformly from set Sj

Wt(j) = (1− αtsa)Wt−1(j) + αtsaTsṼ(Wt−1)
end for
tsa = tsa + 1

end if
end for
if n ∈ Bi then return Vn

end if
return Ṽ(Wn)

Acknowledgements

We are grateful to Charles Kulick for his mentorship and guidance.

References

[1] Anthony R. Cassandra. POMDP FAQ. URL: https://pomdp.org/faq.html.

[2] Guanting Chen et al. “An Adaptive State Aggregation Algorithm for Markov Decision Processes”.
In: (2021). arXiv: 2107.11053 [cs.LG].

[3] Milos Hauskrecht. “Value-Function Approximations for Partially Observable Markov Decision Pro-
cesses”. In: Journal of Artificial Intelligence Research 13 (Aug. 2000).

