
Prime Numbers in RSA Cryptosystem
Sam Ream andWeimo Zhu, mentored by Charles Kulick
University of California, Santa Barbara - Directed Reading Program (DRP) 2024

Introduction

Throughout history, the need for secure communication has always been an im-

portant issue in various areas, such as private communication during war or credit

card encryption. Prior to 1970s, symmetric-key cryptosystems were mainly imple-

mented. Such cryptosystems required the sender and the receiver to agree on a

private key, which led to the difficulty of finding a secure line and exchanging keys

without being intercepted. Later, public-key cryptosystems (asymmetric cryptosys-

tems) were invented, where the sender and receiver could publicly agree on the

public key and set their own private keys. Without the need to send private keys,

public-key cryptosystems are much less vulnerable. The RSA cryptosystem is one

of the most famous public-key cryptosystems.

RSAAlgorithm

1. Receiver: Choose two distinct large prime numbers p and q.

2. Receiver: Compute n = pq and φ(n) = (p − 1)(q − 1).
3. Receiver: Choose an integer e such that gcd(e, φ(n)) = 1.
4. Receiver: Compute d such that de ≡ 1 (mod φ(n)).
5. Receiver: Send n, e publicly.

6. Sender: Send c ≡ me (mod n).
7. Receiver: Decrypt m ≡ cd (mod n).

In general, d is the private key, (n, e) are the public keys.

Significance of Prime Numbers

To attack RSA, the most straightforward way is to factor n. With n = pq, the
observer can compute φ(n) = (p − 1)(q − 1), and thus get the private key d. In
modern implementations of the RSA cipher, the prime numbers p and q chosen
to compute the encryption key n should be at least hundreds of digits long to
ensure security. However, up until now, there was no known factoring method for

the product of two hundreds-digit-length primes that could be done in a feasible

time frame. Therefore, the high security level of RSA cryptosystems relies on the

difficulty of factoring n to get p and q. In the following sections, we will introduce
methods to find large primes needed for decryption and also possible attacks on

factoring the product of two large primes.

References

[1] Evan Chen.

An Infinitely Large Napkin.

Evan Chen, 2023.

[2] Simon Rubinstein-Salzedo.

Cryptography.

Springer, 2018.

[3] Lawrence C. Washington Wade Trappe.

Introduction to Cryptography with Coding Theory.

Pearson, 2006.

Primality Testing

To choose our p and q, we need to find large, unique numbers and ensure their
primality. Instead of trying to factorize an integer x, we can use primality testing
to be more efficient.

In the following, wewill introduce two probabilistic primality tests, which determine

how likely it is that a given integer is prime.

Fermat Primality Test

Recall Fermat’s Little Theorem:

If p is a prime number and a is not divisible by p, then ap−1 ≡ 1 (mod p).
Implementing the contrapositive of Fermat’s Little Theorem, Fermat ”PrimalityTest”

is actually a ”Composite Test”. It concludes x is composite if there exists an integer
a such that gcd(x, a) = 1 and ax−1 6≡ 1 (mod x). While if ax−1 ≡ 1 (mod x), x is
probably prime.

Given that this is a probabilistic primality test, there are infinitely many cases where

this test fails. They are called Carmichael numbers or absolute pseudoprimes. For

example, the smallest Carmichael number is 561.

Miller-Rabin Primality Test

Compared to Fermat Primality Test, Miller-Rabin Primality Test is stronger and has

a lower probability in concluding a composite number as prime. It is currently used

in many RSA implementations.

The main idea:

1. Given n, an odd integer.

2. Write n − 1 = 2km, where m is odd now.

3. Choose a random positive integer a such that 1 < a < n − 1.
4. Compute b0 ≡ am (mod n).
5. If b0 ≡ ±1 (mod n), then stop the test and n is probably prime.
If not, continue the test and compute bi ≡ b2

i−1 (mod n).
6. If bi ≡ 1 (mod n), then n is composite.
If bi ≡ −1 (mod n), then n is probably prime.

7. Iterate until stopping or reaching bk−1.

If bk−1 6≡ −1 (mod n), then n is composite.
If not, then n is probably prime.

Scan this QR code for the Python implementation of

Miller-Rabin Primality Test.

For a given integer n and a choice of a, the probability
of Miller-Rabin Test failing and wrongly declaring that a

composite n is prime is at most 1
4. Thus, if this test is re-

peated for k times, the probability of failing is at most (1
4)

k.

Repeating 5 times with 5 different a, we can reduce the
probability of error to below 0.1%, which is usually accu-
rate enough.

Reconsider the Carmichael number n = 561. Then n − 1 = 560 = 24 × 35. Let a = 2.
Then:

b0 ≡ 235 ≡ 263 (mod 561)

b1 ≡ b0
2 ≡ 166 (mod 561)

b2 ≡ b1
2 ≡ 67 (mod 561)

b3 ≡ b2
2 ≡ 1 (mod 561)

Since b3 ≡ 1 (mod 561), 561 is correctly declared to be composite.

Factoring Attacks

The Birthday Attack

The motivation behind the birthday attack is the idea that, for example, if there are

23 people in a room, then there is about a 50% chance of two people sharing a

birthday and additionally that probability increases to about 70% with 30 people

in the room. In general, if there were n unique birthdays, it would take about√
2n log(2) people before we would expect a match.

The birthday attack uses this idea to find factors of n. It will take us about√
2n log(2) random numbers before we find a factor of n. The following algorithm

allows us to do this efficiently:

1. Choose a random polynomial f(x) that maps values Z/nZ ⇒ Z/nZ.
2. Let x = 2 and y = 2 (standard convention).
3. Replace x with f(x) and y with f(f(y)).

4. Compute d = gcd(|x − y|, n).
5. If d = 1, return to step 3. If d = n, then the algorithm fails, so we must restart
at step 1 and pick a new function f(x). Otherwise, if d 6= 1 and d 6= n, then d is
our factor of n.

Quadratic Sieve

In this factoring method, ifwewant to factor some number n, wemust find integers

x and y such that x2 ≡ y2(mod n), but x 6≡ y(mod n). In this case, n is composite
and gcd(x-y,n) gives us our nontrivial factor of n.

In order to find our integers x and y, we must produce squares that are slightly

larger than a multiple of n using bin + jc for various values of i and small j.
Once we find our x integers, we must write them as products of primes less than

20, which will comprise our factor base. Each of our squares will represent a row

of a matrix with the entries being the exponents of the primes. For example:

9398 0 0 5 0 0 0 0 1

19095 2 0 1 0 1 1 0 1

1964 0 2 0 0 0 3 0 0

17078 6 2 0 0 1 0 0 0

8077 1 0 0 0 0 0 0 1

3397 5 0 1 0 0 2 0 0

14262 0 0 2 2 0 1 0 0

Now, if we have a linear dependency mod 2 among the rows, the product of the

numbers yields another square, our y2. If x 6≡ ±y(mod n), then gcd(x-y,n) gives us
our factor of n.

The p − 1 Factoring Algorithm

1. Choose an integer a > 1 (a = 2 is common).
2. Choose a bound B. The size of B will depend on the situation, but if B is too

small, the chance of success is small and if B is too big, then the algorithm is

very slow.

3. Compute b ≡ aB!(mod n) where
a. b1 ≡ gcd(b − 1, n).

b. bj ≡ bj
j−1(mod n).

c. Then bB ≡ (mod n).

4. Let d = gcd(b − 1, n). If 1 < d < n, we have our nontrivial factor of n.

