Homework 8 Selected Solutions

1e) $R = \{(x, y) \in \mathbb{N} \times \mathbb{N} : x \le y\}$

Answer. R is not a function because $(1, 2) \in R$ and $(1, 3) \in R$ but $2 \neq 3$. [I didn't take any points off if you didn't give an explanation, but you need to know how to show that a relation is not a function by giving a very *specific* counterexample. Notice also that x and y do not range over all real numbers in some of the problems.]

2f) $\{(x, y) \in \mathbb{Z} \times \mathbb{Z} : y = \frac{x^2 - 4}{x - 2}\}$ Answer. Let f be the function defined above.

$$Dom(f) = \mathbb{Z} \setminus \{2\} = \{x \in \mathbb{Z} \mid x \neq 2\}$$
$$Rng(f) = \mathbb{Z} \setminus \{4\} = \{y \in \mathbb{Z} \mid y \neq 4\}.$$

Other possible codomains: \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , etc (anything that contains $\operatorname{Rng}(f)$).

14b) Show that $f : \mathbb{Z}_4 \to \mathbb{Z}_6$ given by $f(\overline{x}) = [2x+1]$ is not well-defined. Solution. We have $\overline{0} = \overline{4}$ in \mathbb{Z}_4 . However,

 $f(\overline{0}) = [2(0) + 1] = [1]$ and $f(\overline{4}) = [2(4) + 1] = [3],$

and $[1] \neq [3]$ because 6 does not divide (1-3). Hence, f is not well-defined.

15e) Show that $f : \mathbb{Z}_6 \to \mathbb{Z}_6$ given by $f(\overline{x}) = \overline{x^2 + 3}$ is well-defined.

Solution. Assume that $\overline{x} = \overline{y}$ in \mathbb{Z}_6 , where $x, y \in \mathbb{Z}$. Then $x \equiv y \pmod{6}$, so $6 \mid (x - y)$. Since $x + y \in \mathbb{Z}$, we have $6 \mid (x - y)(x + y)$ also. But

$$(x-y)(x+y) = x^2 - y^2 = (x^2 - 3) - (y^2 - 3),$$

so $[x^2 - 3] = [y^2 - 3]$. This shows that $f(\overline{x}) = f(\overline{y})$, whence f is well-defined.

2i) Find $f \circ g$ and $g \circ f$ (I will only do $f \circ g$) for

$$f(x) = \begin{cases} x+1 & \text{if } x \le 0\\ 2x & \text{if } x > 0 \end{cases} \quad \text{and} \quad g(x) = \begin{cases} 2x & \text{if } x \le -1\\ -x & \text{if } x > -1 \end{cases}$$

Solution. First, by definition of g we have

$$(f \circ g)(x) = \begin{cases} f(2x) & \text{if } x \le -1\\ f(-x) & \text{if } x > -1. \end{cases}$$

Notice that if $x \leq -1$, then $2x \leq -2$ so in particular $2x \leq 0$, whence

$$(f \circ g)(x) = f(2x) = (2x) + 1.$$

Next, observe that $-x \leq 0 \iff x \geq 0$, or equivalently $-x > 0 \iff x < 0$. Hence, if x > -1, then we have

$$(f \circ g)(x) = f(-x) = \begin{cases} 2(-x) & \text{if } -1 < x < 0 \\ (-x) + 1 & \text{if } x \ge 0 \end{cases} \quad (-x \ge 0 \text{ in this case}).$$

In summary, we have

$$(f \circ g)(x) = \begin{cases} 2x+1 & \text{if } x \le -1 \\ -2x & \text{if } -1 < x < 0 \\ 1-x & \text{if } x \ge 0. \end{cases}$$

 $[f \circ g \text{ and } (f \circ g)(x) \text{ are not the same thing. The former is the function } f \circ g$, which is a relation and in particular a set. But the latter is the function $f \circ g$ evaluated at x, which is an element in the codomain.]

5d) Define $f : \mathbb{Z}_8 \to \mathbb{Z}_4, g : \mathbb{Z}_4 \to \mathbb{Z}_8$, and $h : \mathbb{Z}_8 \to \mathbb{Z}_8$

$$f(\overline{x}) = [x+2], \quad g([x]) = \overline{2x}, \quad h(\overline{x}) = \overline{2x+4}.$$

By comparing images, verify $(g \circ f)(x) = h(x)$ for all $x \in \mathbb{Z}_8$.

Solution. There are 8 elements in \mathbb{Z}_8 , namely $\overline{0}, \overline{1}, ..., \overline{7}$. We have

$(g \circ f)(\overline{0}) = g([2]) = \overline{4}$	$h(\overline{0}) = [4]$
$(g \circ f)(\overline{1}) = g([3]) = \overline{6}$	$h(\overline{1}) = [6]$
$(g \circ f)(\overline{2}) = g([0]) = \overline{0}$	$h(\overline{2}) = [0]$
$(g \circ f)(\overline{3}) = g([1]) = \overline{2}$	$h(\overline{3}) = [2]$
$(g \circ f)(\overline{4}) = g([2]) = \overline{4}$	$h(\overline{4}) = [4]$
$(g \circ f)(\overline{5}) = g([3]) = \overline{6}$	$h(\overline{5}) = [6]$
$(g \circ f)(\overline{6}) = g([0]) = \overline{0}$	$h(\overline{6}) = [0]$
$(g \circ f)(\overline{7}) = g([1]) = \overline{2}$	$h(\overline{7}) = [2].$

Hence, indeed $(g \circ f)(x) = h(x)$ for all $x \in \mathbb{Z}_8$.

[Many of you did $(g \circ f)(\overline{x}) = g([x+2]) = \overline{2x+4} = h(\overline{x})$, which isn't wrong, but the problem asks you to verify this by *comparing images*, i.e by computing $(g \circ f)(x)$ and h(x) and checking that they are equal for every $x \in \mathbb{Z}_8$. Also, say $x \in \mathbb{Z}$, the symbols

$$x \in \mathbb{Z}, \qquad \overline{x} \in \mathbb{Z}_8, \qquad [x] \in \mathbb{Z}_4$$

represent completely different objects (they lie in different sets). It is important to make the distinction. Moreover, if $x \in \mathbb{Z}_8$ say, then f(x) = [x + 2]does not make sense because x is not longer an integer.]