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The Generalized Fokker-Planck Equation

Suppose that

V : Rd → R is differentiable, λ-convex for some λ > 0 and minV (x) = 0.

f : [0,∞)→ R is l.s.c., coercive, and convex, f (0) = 0.

[Craig, Jacobs, Turanova ’24] showed that there exist weak solutions to the Generalized
Fokker-Planck equation 

∂tρ = ∇ · (∇f∗(p) + ρ∇V )

p ∈ ∂f (ρ)
ρ(0, x) = ρ0(x).

(PDE)

Notice that in the case f (s) = s ln(s), this equation simplifies to the Fokker-Planck
equation.
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Application 1: Difficult Diffusion Cases

For f sufficiently regular, PDE becomes ∂tρ − ∇ · (ρ∇V ) = ∆F (ρ), where F ′(s) =
sf ′′(s).

This equation describes difficult cases of nonlinear diffusion, such as:

1 Fast diffusion, f (s) = sm

m−1 , m < 1.

2 Avalanche dynamics, f (s) =

{
0 s ∈ [0, rc ]

s log
(

s
rc

)
s > rc .

3 Height-constrained transport, formally modeled by f (s) =

{
0 s ∈ [0, 1]
∞ otherwise.
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Application 2: Sampling

Setup: Let ρ̃ be a probability measure on Euclidean space Rd .

Goal: We seek {xi}n
i=1 ⊂ Rd such that the empirical measure 1

n

n∑
i=1

δxi converges to ρ̃

as n→∞.

Our definition of “convergence" depends on the context of the problem. For example,
we may define convergence in terms of the 2-Wasserstein metric.
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Classical Sampling: Langevin Dynamics

Assumption: The target measure ρ̃ is strongly log-concave, i.e. ρ̃(x) = e−V (x)dx for a
λ-convex, continuously differentiable function V : Rd → R, λ > 0.

PDE perspective: If ρ(t , x) is a solution to the Fokker-Planck equation, then

W2(ρ(t), ρ̃) ≤ e−λt W2(ρ0, ρ̃).

Particle method: Let {xi,0}n
i=1 ⊆ Rd be iid samples from a measure with finite second

moment. If we evolve our particles by the stochastic differential equation{
dxi (t) = ∇ log(ρ̃(xi ))dt + dWi

xi (0) = xi,0

then lim
t→∞

lim
n→∞

1
n

n∑
i=1

δxi (t)(x) = ρ̃(x).
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Sampling and the Generalized Fokker-Planck equation

Assumption: The target measure ρ̃ is of the form

ρ̃(x) = max((f ′)−1(Z − V (x)), 0).

Z is a normalization constant chosen so that
∫
ρ̃ = 1.

Remark
If f (s) = s ln(s), then ρ̃ is strongly log-concave.

PDE perspective: We formally expect that if ρ(t , x) is a solution to the Generalized
Fokker-Planck equation, then

W2(ρ(t), ρ̃) ≤ e−λt W2(ρ0, ρ̃).

Remark
If f (s) = s ln(s), the Generalized Fokker-Planck equation reduces to the Fokker-Planck
equation.

Particle method: Our goal!
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Our Goal

Our goal is to develop a new numerical particle method to solve the Generalized Fokker-
Planck equation.

Why a particle method?

1 Intrinsically adaptive, i.e. better resolution in areas with higher density.

2 In principle, can be scaled to higher dimensions (unlike grid-based methods).

3 Directly connected to sampling application.
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Our Method
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Previous Work

Consider the function

fε(s) =

{
δ(ε)

2 |s|
2 + δ(ε)f (s)− δ(ε)f (0) s ≥ 0

+∞ s < 0,

where εf is the Moreau-Yosida regularization of f and δ(ε)→ 0 as ε→ 0.

Let φε be a mollifier.

We obtain the following nonlocal approximation of PDE:
∂tρε = ∇ · (ρε∇ (pε + V ))

pε = φε ∗ f ′ε(φε ∗ ρε)
ρε(0, x) = ρ0

ε(x).
(PDEε,moll)

Theorem (Craig, Jacobs, Turanova ’24)

Let ρε ∈ AC2
loc([0,∞];P2(Rd )) be the solution of PDEε,moll with initial data ρ0

ε and
velocity V . For some ρ0 ∈ P2(Rd ), suppose that ρ0

ε → ρ0 in W2. We assume sufficient
conditions on ρ0

ε, ρ0, f , V , δ, and φε. Then, there exists ρ ∈ AC2
loc([0,∞);P2(Rd )) so

that, up to a subsequence, ρϵ(t)→ ρ(t) in weak L1
loc(R

d ) and W1 for all t ≥ 0, and ρ is
a solution of PDE with initial data ρ0.
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Our Contribution: A Particle Method

The double convolution structure of PDEε,moll is important in convergence analysis, but
can be dropped in the numerical scheme:

∂tρε = ∇ · (ρε∇ (pε + V ))

pε = f ′ε(φε ∗ ρε)
ρε(0, x) = ρ0

ε(x).
(PDEε)

Suppose that ρ0
ε(x) =

n∑
i=1

miδx0
i
(x). Then, there exists a unique solution of PDEε of the

form ρε(t , x) =
n∑

i=1
miδxi (t)(x), where

{
ẋj (t) = −∇pε(xj (t))−∇V (xj (t))
xj (0) = x0

j .

Elementary calculations show that the trajectory of the j th particle at time t is given byẋj (t) = −f ′′ε

( n∑
i=1

miφε(xj (t)− xi (t))
) n∑

i=1
mi∇φε(xj (t)− xi (t))−∇V (xj (t))

xj (0) = x0
j .

We investigate multiple (implicit and explicit) ways to numerically solve the ODE system.
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1-Dimensional Numerical Setup

1 Assume that the support of ρ0(x) is contained in some interval [a, b]. Initialize
equidistant particles x0

1 < x0
2 < . . . < x0

n ⊆ R so that

[a, b] ⊆ [x0
1 , x

0
n ].

2 Define mi as the integral of ρ0(x) on the interval of length h := x0
2 − x0

1 centered
at xi .

3 Evolve particles according to the ODE system described above.

4 Our particle solution
n∑

i=1
miδxi (t)(x) is impossible to visualize graphically, so we

mollify by the Gaussian function

ξε(x) =
1

(4πε2)1/2
e−x2/4ε2

.

In other words, in all graphs appearing in this presentation, the smooth solution
µε(t , x) has the form

µε(t , x) = ξε ∗
n∑

i=1

miδxi (t)(x) =
n∑

i=1

miξε(x − xi (t)).
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Parameters

1 h: Initial distance between adjacent particles.

2 εφ: Choice of ε used by the mollifier φε in our ODE system.

3 εMY : Choice of ε used in the Moreau-Yosida approximation of f .

4 εξ: Choice of ε used in the construction of our visualization mollifier ξε. Does not
influence our underlying particle method.
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Performance
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Nonlinear Diffusion

Consider the function

f (s) =

{
sm

m−1 m ̸= 1
s ln(s) m = 1

and the external potential V (x) = x2

2(m+1) .

PDE becomes ∂tρ+∇ · (ρV ) = ∆ρm.
1 m > 1: Porous medium equation.
2 m = 1: Heat equation.
3 m < 1: Fast diffusion equation.

Figure: Numerical solutions are plotted with dashed lines, exact solutions are plotted with solid lines. Solutions are
plotted in increments of one unit of time, up until tmax = 6. h = .01, εφ = 5h.9, εMY = 0, εξ = 7h.9.
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Evaluating Accuracy

For a given distance h between initial particles, define

εφ = aφh.9.

Assessing accuracy:

1 For aφ ∈ {1, 5, 10}, and for h ∈ {.01, .02, .04, .08}, compute the particle solution
up to tmax = 1.5.

2 Compare the numerical and exact solutions using the 2-Wasserstein metric, which
can be approximated numerically.

Figure: m = 1, V (x) = x2
2(m+1) , εMY = 0.

h = .01 .02 .04 .08

aφ = 10 34.599 7.832 3.922 0.898

aφ = 5 53.523 10.047 2.641 1.012

aφ = 1 36255 1782 11.542 1.521

Table: Runtime, in seconds.

m = slope of blue line ≈ 3.00181⇒ ln(E(h)) ≈ m ln(h) + C0 ⇒ E(h) ≈ C1hm.
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The Moreau-Yosida Regularization and Accuracy

For a given distance h between initial particles, define

εMY = aMY h.9.

Assessing accuracy:

1 For aMY ∈ {0, .1, 1}, and for h ∈ {.01, .02, .04, .08}, compute the particle solution
up to tmax = 1.5.

2 Compare the numerical and exact solutions using the 2-Wasserstein metric, which
can be approximated numerically.

Figure: m = 1, V (x) = x2
2(m+1) , εφ = 5h.9.

h = .01 .02 .04 .08

aMY = 1 17.397 4.154 0.980 0.224

aMY = .1 19.918 4.740 1.096 0.231

aMY = 0 18.507 4.064 0.745 0.190

Table: Runtime, in seconds.
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The Moreau-Yosida Regularization and Step Size

Avalanche dynamics: Particles above a critical height rc diffuse according to the heat
equation.

f (s) =

{
0 s ∈ [0, rc ]

s log
(

s
rc

)
s > rc .

We solve our ODE system using the backward Euler method with step size ∆t .

Figure: h = .005, εφ = 5h.9, εξ = 9h.9.
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The Visualization Mollifier

In all figures, we plot

µε(t , x) = ξε ∗
n∑

i=1

miδxi (t)(x) =
n∑

i=1

miξε(x − xi (t)).

where ξε is a mollifier.

How does the strength of ε influence µε(t , x)?

Example
f (s) = s ln(s).
The double well V (x) = (1− x)2(1 + x)2.

Figure: Initial solution and solution at tmax = .45. h = .01, εφ = h.9, εMY = 0.
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Compactly Supported Mollifers

In all other simulations, the mollifier in our ODE system is a Gaussian with standard
deviation εφ. What happens if we use a mollifier with compact support?

Figure: m = 1, V (x) = x2
2(m+1) .

h = .01 .02 .04 .08

aMY = 1 11.909 3.045 0.755 0.247

aMY = 0 27.614 2.667 0.631 0.195

Gaussian 18.370 3.551 0.646 0.156

Table: Runtime, in seconds.
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The Random Batch Method
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Example: Height Constraint

Height constraint: Our particle solution cannot rise above height 1.

f (s) =

{
0 s ∈ [0, 1]
∞ otherwise.

We approximate our energy via f (s) = s100

99 . V (x) = x2

2 . Up to time ln(3), particles
are attracted to x0 = 0. After the particle solution hits the “ceiling" 1, particles remain
steady.

Figure: Solutions are plotted in increments of .25 units of time, up until tmax = 1.5. h = .005, εφ = 2h.9, εMY =

0, εξ = 15h.9.

Backward Euler Forward Euler

Error 1.461 * 10−4 1.461 * 10−4

Runtime (s) 8351 3132
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Previous Work: The Batch Method

The Batch Method: At each time step, randomly select p particles. Evolve ALL parti-
cles according to the approximate velocity field based on the location of the p particles
[Jin, Li, and Liu, ’20].

In practice, we lose accuracy and obtain a stiffer ODE system. Consider slow diffusion
with m = 2 and no external potential.

Figure: Numerical solutions are plotted with dashed lines, exact solutions are plotted with solid lines. Solutions are
plotted in increments of .5 units of time, up until tmax = 3. h = .01, εφ = 5h.9, εMY = 0, εξ = 15h.9.

100% of particles 50% of particles 25% of particles

Error at tmax 3.078 * 10−4 3.966 * 10−4 8.995 * 10−4

Runtime (s) 13.12809 17.25817 19.03422
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The Batch Forward Euler Method

Notice that we can successfully use explicit (forward Euler) methods with even our
stiffest simulations!

Is there a way to retool the batch method to avoid adding stiffness to our system?

The Batch Forward Euler Method: At each time step, randomly select p particles.
These p particles make a “fast" forward Euler jump with a large time step. All other
particles evolve according to a forward Euler method with a slower / smaller time step.
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Pseudocode

1: Input: fast_t_step, slow_t_step, p,N,T , f , x0
2: k ← fast_t_step / slow_t_step
3: for i = 1 to T/ slow_t_step do
4: if i mod k = 0 then
5: Let Ifast equal p randomly selected indices of {1, . . . ,N}
6: Islow ← {1, . . . ,N}\Ifast
7: xi+1[Ifast]← xi [Ifast] + fast_t_step · f (i · slow_t_step, xi )[Ifast]
8: else
9: xi+1[Ifast] = xi [Ifast]

10: end if
11: xi+1[Islow]← xi [Islow] + slow_t_step · f (i · slow_t_step, xi )[Islow]
12: end for
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Example: Height Constraint

f (s) =

{
0 s ∈ [0, 1]
∞ otherwise

and V (x) =
x2

2
.

We approximate our energy via f (s) = s100

99 .

Figure: Solutions are plotted in increments of .25 units of time, up until tmax = 1.5. h = .005, εφ = 2h.9, εMY =

0, εξ = 15h.9.

Backward Euler Forward Euler Batch Forward Euler

Error 1.461 * 10−4 1.461 * 10−4 1.461 * 10−4

Runtime (s) 8351 3132 886
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Future Work

2D simulations: Currently programming a 2-dimensional simulation of the vorticity
formulation of the Navier-Stokes equation.

Variational Inference: Let C = {µ1⊗. . .⊗µd : µi ∈ P(R)} . Approximate a probability
measure π ∝ exp(−V ) over Rd via

π∗
C = argmin

µ∈C
KL(µ||π).

[Jiang, Chewi, Pooladian ’24] If π is λ-strongly log-concave, then KL(·||π) is
λ-strongly convex over the geodesically convex set C.

Avoid curse of dimensionality on measures on Rd .
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