Particle Methods for Nonlinear Diffusion Equations

Claire Murphy

UC Santa Barbara

April 7, 2025

1/30

References

Our Method Performance The Random Batch Method

Outline

- 1 Motivation
- 2 Our Method
- 3 Performance
- 4 The Random Batch Method
- 5 References

The Generalized Fokker-Planck Equation

Suppose that

Motivation

0000000

- $V : \mathbb{R}^d \to \mathbb{R}$ is differentiable, λ -convex for some $\lambda > 0$ and min V(x) = 0.
- $f:[0,\infty)\to\mathbb{R}$ is l.s.c., coercive, and convex, f(0)=0.

[Craig, Jacobs, Turanova '24] showed that there exist weak solutions to the **Generalized** Fokker-Planck equation

$$\begin{cases} \partial_t \rho = \nabla \cdot (\nabla f^*(p) + \rho \nabla V) \\ p \in \partial f(\rho) \\ \rho(0, x) = \rho_0(x). \end{cases}$$
 (PDE)

Notice that in the case $f(s) = s \ln(s)$, this equation simplifies to the Fokker-Planck equation.

For f sufficiently regular, PDE becomes $\partial_t \rho - \nabla \cdot (\rho \nabla V) = \Delta F(\rho)$, where F'(s) =

This equation describes difficult cases of nonlinear diffusion, such as:

- 1 Fast diffusion, $f(s) = \frac{s^m}{m-1}$, m < 1.
- Avalanche dynamics, $f(s) = \begin{cases} 0 & s \in [0, r_c] \\ s \log \left(\frac{s}{r_c}\right) & s > r_c. \end{cases}$
- Height-constrained transport, formally modeled by $f(s) = \begin{cases} 0 & s \in [0, 1] \\ \infty & \text{otherwise.} \end{cases}$

Motivation

0000000

sf''(s).

Application 2: Sampling

Motivation

0000000

Setup: Let $\tilde{\rho}$ be a probability measure on Euclidean space \mathbb{R}^d .

Goal: We seek $\{x_i\}_{i=1}^n \subset \mathbb{R}^d$ such that the empirical measure $\frac{1}{n}\sum_{i=1}^n \delta_{x_i}$ converges to $\tilde{\rho}$ as $n \to \infty$.

Our definition of "convergence" depends on the context of the problem. For example, we may define convergence in terms of the 2-Wasserstein metric.

Classical Sampling: Langevin Dynamics

Assumption: The target measure $\tilde{\rho}$ is strongly log-concave, i.e. $\tilde{\rho}(x) = e^{-V(x)} dx$ for a λ -convex, continuously differentiable function $V : \mathbb{R}^d \to \mathbb{R}, \, \lambda > 0$.

PDE perspective: If $\rho(t, x)$ is a solution to the **Fokker-Planck equation**, then

$$W_2(\rho(t), \tilde{\rho}) \leq e^{-\lambda t} W_2(\rho_0, \tilde{\rho}).$$

Particle method: Let $\{x_{i,0}\}_{i=1}^n \subseteq \mathbb{R}^d$ be iid samples from a measure with finite second moment. If we evolve our particles by the stochastic differential equation

$$\begin{cases} dx_i(t) = \nabla \log(\tilde{\rho}(x_i))dt + dW_i \\ x_i(0) = x_{i,0} \end{cases}$$

then $\lim_{t\to\infty}\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\delta_{x_i(t)}(x)=\tilde{\rho}(x).$

Motivation

0000000

Sampling and the Generalized Fokker-Planck equation

Assumption: The target measure $\tilde{\rho}$ is of the form

$$\tilde{\rho}(x) = \max((f')^{-1}(Z - V(x)), 0).$$

Z is a normalization constant chosen so that $\int \tilde{\rho} = 1$.

Remark

Motivation

0000000

If $f(s) = s \ln(s)$, then $\tilde{\rho}$ is strongly log-concave.

PDE perspective: We formally expect that if $\rho(t, x)$ is a solution to the Generalized Fokker-Planck equation, then

$$W_2(\rho(t), \tilde{\rho}) \leq e^{-\lambda t} W_2(\rho_0, \tilde{\rho}).$$

Remark

If $f(s) = s \ln(s)$, the Generalized Fokker-Planck equation reduces to the Fokker-Planck equation.

Particle method: Our goal!

Our Goal

Motivation

0000000

Our goal is to develop a new numerical particle method to solve the Generalized Fokker-Planck equation.

Why a particle method?

- Intrinsically adaptive, i.e. better resolution in areas with higher density.
- In principle, can be scaled to higher dimensions (unlike grid-based methods).
- Directly connected to sampling application.

9/30

Previous Work

Consider the function

$$f_{\varepsilon}(s) = \begin{cases} \frac{\delta(\varepsilon)}{2} |s|^2 + \frac{\delta(\varepsilon)}{2} f(s) - \frac{\delta(\varepsilon)}{2} f(0) & s \ge 0 \\ +\infty & s < 0, \end{cases}$$

where $^{\varepsilon}f$ is the Moreau-Yosida regularization of f and $\delta(\varepsilon) \to 0$ as $\varepsilon \to 0$.

Let φ_{ε} be a mollifier.

We obtain the following nonlocal approximation of PDE:

$$\begin{cases} \partial_t \rho_\varepsilon = \nabla \cdot (\rho_\varepsilon \nabla (p_\varepsilon + V)) \\ p_\varepsilon = \varphi_\varepsilon * f_\varepsilon' (\varphi_\varepsilon * \rho_\varepsilon) \\ \rho_\varepsilon (0, x) = \rho_\varepsilon^0 (x). \end{cases}$$
 (PDE_{\varepsilon, moll})

The Random Batch Method

Theorem (Craig, Jacobs, Turanova '24)

Let $\rho_{\varepsilon} \in AC^2_{loc}([0,\infty]; \mathcal{P}_2(\mathbb{R}^d))$ be the solution of $PDE_{\varepsilon,moll}$ with initial data ρ_{ε}^0 and velocity V. For some $\rho^0 \in P_2(\mathbb{R}^d)$, suppose that $\rho^0 \to \rho^0$ in W_2 . We assume sufficient conditions on ρ_{ε}^0 , ρ^0 , f, V, δ , and φ_{ε} . Then, there exists $\rho \in AC_{loc}^2([0,\infty); \mathcal{P}_2(\mathbb{R}^d))$ so that, up to a subsequence, $\rho_{\epsilon}(t) \to \rho(t)$ in weak $L_{loc}^{1}(\mathbb{R}^{d})$ and W_{1} for all $t \geq 0$, and ρ is a solution of PDE with initial data ρ^0 .

Our Contribution: A Particle Method

Our Method

The double convolution structure of $PDE_{\varepsilon,moll}$ is important in convergence analysis, but can be dropped in the numerical scheme:

$$\begin{cases} \partial_t \rho_{\varepsilon} = \nabla \cdot (\rho_{\varepsilon} \nabla (p_{\varepsilon} + V)) \\ p_{\varepsilon} = f_{\varepsilon}'(\varphi_{\varepsilon} * \rho_{\varepsilon}) \\ \rho_{\varepsilon}(0, x) = \rho_{\varepsilon}^0(x). \end{cases}$$
(PDE_{\varepsilon})

Suppose that $\rho_{\varepsilon}^0(x) = \sum_{i=1}^n m_i \delta_{x_i^0}(x)$. Then, there exists a unique solution of PDE $_{\varepsilon}$ of the

form $ho_{arepsilon}(t,x) = \sum\limits_{i=1}^n m_i \delta_{x_i(t)}(x),$ where

$$\begin{cases} \dot{x}_j(t) = -\nabla p_{\varepsilon}(x_j(t)) - \nabla V(x_j(t)) \\ x_j(0) = x_j^0. \end{cases}$$

Elementary calculations show that the trajectory of the jth particle at time t is given by

$$\begin{cases} \dot{x}_j(t) = -f_{\varepsilon}'' \left(\sum_{i=1}^n m_i \varphi_{\varepsilon}(x_j(t) - x_i(t)) \right) \sum_{i=1}^n m_i \nabla \varphi_{\varepsilon}(x_j(t) - x_i(t)) - \nabla V(x_j(t)) \\ x_j(0) = x_j^0. \end{cases}$$

We investigate multiple (implicit and explicit) ways to numerically solve the ODE system.

II Assume that the support of $\rho_0(x)$ is contained in some interval [a, b]. Initialize equidistant particles $x_1^0 < x_2^0 < \ldots < x_n^0 \subseteq \mathbb{R}$ so that

$$[a,b] \subseteq [x_1^0,x_n^0].$$

- **2** Define m_i as the integral of $\rho_0(x)$ on the interval of length $h := x_2^0 x_1^0$ centered at xi.
- Evolve particles according to the ODE system described above.
- **4** Our particle solution $\sum_{i=1}^{n} m_i \delta_{x_i(t)}(x)$ is impossible to visualize graphically, so we mollify by the Gaussian function

$$\xi_{\varepsilon}(x) = \frac{1}{(4\pi\varepsilon^2)^{1/2}} e^{-x^2/4\varepsilon^2}.$$

In other words, in all graphs appearing in this presentation, the smooth solution $\mu_{\varepsilon}(t,x)$ has the form

$$\mu_{\varepsilon}(t,x) = \xi_{\varepsilon} * \sum_{i=1}^{n} m_{i} \delta_{x_{i}(t)}(x) = \sum_{i=1}^{n} m_{i} \xi_{\varepsilon}(x - x_{i}(t)).$$

Parameters

- 1 h: Initial distance between adjacent particles.
- **2** ε_{φ} : Choice of ε used by the mollifier φ_{ε} in our ODE system.
- **3** ε_{MY} : Choice of ε used in the Moreau-Yosida approximation of f.
- **I** ε_{ξ} : Choice of ε used in the construction of our visualization mollifier ξ_{ε} . **Does not influence our underlying particle method.**

 Motivation
 Our Method
 Performance
 The Random Batch Method
 Reference

 000000
 000000
 000000
 000000
 00

Nonlinear Diffusion

Motivation

Consider the function

$$f(s) = \begin{cases} \frac{s^m}{m-1} & m \neq 1\\ s \ln(s) & m = 1 \end{cases}$$

and the external potential $V(x) = \frac{x^2}{2(m+1)}$.

PDE becomes $\partial_t \rho + \nabla \cdot (\rho V) = \Delta \rho^m$.

- m > 1: Porous medium equation.
- $\underline{\mathbf{n}} = 1$: Heat equation.
- m < 1: Fast diffusion equation.

Figure: Numerical solutions are plotted with dashed lines, exact solutions are plotted with solid lines. Solutions are plotted in increments of one unit of time, up until $t_{max} = 6$. h = .01, $\varepsilon_{\omega} = 5h^{.9}$, $\varepsilon_{MY} = 0$, $\varepsilon_{\mathcal{F}} = 7h^{.9}$.

Evaluating Accuracy

Motivation

For a given distance h between initial particles, define

$$\varepsilon_{\varphi}=a_{\varphi}h^{.9}.$$

Assessing accuracy:

- **■** For $a_{\varphi} \in \{1, 5, 10\}$, and for $h \in \{.01, .02, .04, .08\}$, compute the particle solution up to $t_{max} = 1.5$.
- Compare the numerical and exact solutions using the 2-Wasserstein metric, which can be approximated numerically.

	h = .01	.02	.04	.08
$a_{\varphi}=10$	34.599	7.832	3.922	0.898
$a_{\varphi}=5$	53.523	10.047	2.641	1.012
$a_{\varphi}=1$	36255	1782	11.542	1.521

Table: Runtime, in seconds.

Figure:
$$m = 1$$
, $V(x) = \frac{x^2}{2(m+1)}$, $\varepsilon_{MY} = 0$.

 $m = \text{slope of blue line} \approx 3.00181 \Rightarrow \ln(E(h)) \approx m \ln(h) + C_0 \Rightarrow E(h) \approx C_1 h^m$.

The Moreau-Yosida Regularization and Accuracy

For a given distance h between initial particles, define

$$\varepsilon_{MY} = a_{MY} h^{.9}$$
.

Assessing accuracy:

Motivation

- For $a_{MY} \in \{0, .1, 1\}$, and for $h \in \{.01, .02, .04, .08\}$, compute the particle solution up to $t_{max} = 1.5$.
- Compare the numerical and exact solutions using the 2-Wasserstein metric, which can be approximated numerically.

	h = .01	.02	.04	.08
$a_{MY}=1$	17.397	4.154	0.980	0.224
$a_{MY}=.1$	19.918	4.740	1.096	0.231
$a_{MY}=0$	18.507	4.064	0.745	0.190

Table: Runtime, in seconds.

Figure:
$$m = 1$$
, $V(x) = \frac{x^2}{2(m+1)}$, $\varepsilon_{\varphi} = 5h^{-9}$.

The Moreau-Yosida Regularization and Step Size

Avalanche dynamics: Particles above a critical height r_c diffuse according to the heat equation.

$$f(s) = \begin{cases} 0 & s \in [0, r_c] \\ s \log \left(\frac{s}{r_c}\right) & s > r_c. \end{cases}$$

We solve our ODE system using the backward Euler method with step size Δt .

Figure: h = .005, $\varepsilon_{\varphi} = 5h^{.9}$, $\varepsilon_{\xi} = 9h^{.9}$.

The Visualization Mollifier

In all figures, we plot

$$\mu_{\varepsilon}(t,x) = \xi_{\varepsilon} * \sum_{i=1}^{n} m_{i} \delta_{x_{i}(t)}(x) = \sum_{i=1}^{n} m_{i} \xi_{\varepsilon}(x - x_{i}(t)).$$

where ξ_{ε} is a mollifier.

How does the strength of ε influence $\mu_{\varepsilon}(t, x)$?

Example

- $\blacksquare f(s) = s \ln(s).$
- The double well $V(x) = (1 x)^2 (1 + x)^2$.

Figure: Initial solution and solution at $t_{max} = .45$. h = .01, $\varepsilon_{\varphi} = h^{.9}$, $\varepsilon_{MY} = 0$.

Compactly Supported Mollifers

In all other simulations, the mollifier in our ODE system is a Gaussian with standard deviation ε_{φ} . What happens if we use a mollifier with compact support?

Figure: $m=1$	V(x) -	_x ² _
Figure: $m = 1$, V(x) =	$\widehat{2(m+1)}$

	h = .01	.02	.04	.08
$a_{MY}=1$	11.909	3.045	0.755	0.247
$a_{MY}=0$	27.614	2.667	0.631	0.195
Gaussian	18.370	3.551	0.646	0.156

Table: Runtime, in seconds.

otivation Our Method Performance The Random Batch Method Reference occion occi

The Random Batch Method

Motivation

Height constraint: Our particle solution cannot rise above height 1.

$$f(s) = \begin{cases} 0 & s \in [0, 1] \\ \infty & \text{otherwise.} \end{cases}$$

We approximate our energy via $f(s) = \frac{s^{100}}{99}$. $V(x) = \frac{x^2}{2}$. Up to time In(3), particles are attracted to $x_0 = 0$. After the particle solution hits the "ceiling" 1, particles remain steady.

Figure: Solutions are plotted in increments of .25 units of time, up until $t_{max} = 1.5$. h = .005, $\varepsilon_{iQ} = 2h^{.9}$, $\varepsilon_{MY} = 1.5$ $0, \varepsilon_{E} = 15h^{.9}$.

	Backward Euler	Forward Euler
Error	Error 1.461 * 10 ⁻⁴	
Runtime (s)	8351	3132

Previous Work: The Batch Method

The Batch Method: At each time step, randomly select p particles. Evolve ALL particles according to the approximate velocity field based on the location of the p particles [Jin, Li, and Liu, '20].

In practice, we lose accuracy and obtain a stiffer ODE system. Consider slow diffusion with m=2 and no external potential.

Figure: Numerical solutions are plotted with dashed lines, exact solutions are plotted with solid lines. Solutions are plotted in increments of .5 units of time, up until $t_{max}=3$. h=.01, $\varepsilon_{\varphi}=5h^{.9}$, $\varepsilon_{MY}=0$, $\varepsilon_{\xi}=15h^{.9}$.

	100% of particles	50% of particles	25% of particles
Error at t _{max}	3.078 * 10 ⁻⁴	3.966 * 10 ⁻⁴	8.995 * 10 ⁻⁴
Runtime (s)	13.12809	17.25817	19.03422

The Batch Forward Euler Method

Notice that we can successfully use explicit (forward Euler) methods with even our stiffest simulations!

Is there a way to retool the batch method to avoid adding stiffness to our system?

The Batch Forward Euler Method: At each time step, randomly select p particles. These p particles make a "fast" forward Euler jump with a large time step. All other particles evolve according to a forward Euler method with a slower / smaller time step.

Pseudocode

```
1: Input: fast t step, slow t step, p, N, T, f, x_0
 2: k \leftarrow \text{fast\_t\_step} / \text{slow\_t\_step}
 3: for i = 1 to T/ slow t step do
         if i \mod k = 0 then
            Let I_{\text{fast}} equal p randomly selected indices of \{1, \dots, N\}
 5:
            I_{\text{slow}} \leftarrow \{1, \dots, N\} \setminus I_{\text{fast}}
 6.
            x_{i+1}[I_{\text{fast}}] \leftarrow x_i[I_{\text{fast}}] + \text{fast\_t\_step} \cdot f(i \cdot \text{slow\_t\_step}, x_i)[I_{\text{fast}}]
        else
 8:
            x_{i+1}[I_{fast}] = x_i[I_{fast}]
 9:
         end if
10:
         x_{i+1}[I_{slow}] \leftarrow x_i[I_{slow}] + slow_t\_step \cdot f(i \cdot slow_t\_step, x_i)[I_{slow}]
11:
12: end for
```

Example: Height Constraint

Motivation

$$f(s) = \begin{cases} 0 & s \in [0,1] \\ \infty & \text{otherwise} \end{cases} \quad \text{and} \quad V(x) = \frac{x^2}{2}.$$

and
$$V(x) = \frac{x^2}{2}$$

We approximate our energy via $f(s) = \frac{s^{100}}{aa}$.

Figure: Solutions are plotted in increments of .25 units of time, up until $t_{max}=1.5$. $h=.005, \varepsilon_{\varphi}=2h^{.9}, \varepsilon_{MY}=1.5$ $0, \varepsilon_{\mathcal{E}} = 15h^{.9}.$

	Backward Euler	Forward Euler	Batch Forward Euler
Error	1.461 * 10 ⁻⁴	1.461 * 10 ⁻⁴	1.461 * 10 ⁻⁴
Runtime (s)	8351	3132	886

Future Work

Motivation

2D simulations: Currently programming a 2-dimensional simulation of the vorticity formulation of the Navier-Stokes equation.

Variational Inference: Let $C = \{\mu_1 \otimes \ldots \otimes \mu_d : \mu_i \in P(\mathbb{R})\}$. Approximate a probability measure $\pi \propto \exp(-V)$ over \mathbb{R}^d via

$$\pi_{\mathit{C}}^* = \operatorname*{argmin}_{\mu \in \mathit{C}} \mathit{KL}(\mu||\pi).$$

- [Jiang, Chewi, Pooladian '24] If π is λ -strongly log-concave, then $\mathit{KL}(\cdot||\pi)$ is λ -strongly convex over the geodesically convex set C.
- Avoid curse of dimensionality on measures on \mathbb{R}^d .

 obitivation
 Our Method
 Performance
 The Random Batch Method
 References

 000000
 000000
 0000000
 ●○

Our Method Performance The Random Batch Method

References

Motivation

- CEHT Craig, Katy, Karthik Elamvazhuthi, Matt Haberland, and Olga Turanova. "A blob method for inhomogeneous diffusion with applications to multi-agent control and sampling." Mathematics of Computation (2023).
 - CJT Craig, Katy, Matt Jacobs, and Olga Turanova. "Nonlocal approximation of slow and fast diffusion." Journal of Differential Equations (2025).
 - JCP Jiang, Yiheng, Sinho Chewi, and Aram-Alexandre Pooladian. "Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space." (2024).
 - JLL Jin, Shi, Lei Li, and Jian-Guo Liu. "Random batch methods (RBM) for interacting particle systems." Journal of Computational Physics (2020).

References