Sampling via Nonlinear Diffusion Equations

SL Math 2025

Claire Murphy

UC Santa Barbara

June 20, 2025

Introduction

Setup: Let $\tilde{\rho}$ be a probability measure on Euclidean space \mathbb{R}^d .

Goal: We seek $\{x_i\}_{i=1}^n \subset \mathbb{R}^d$ such that the empirical measure $\frac{1}{n}\sum_{i=1}^n \delta_{x_i}$ converges to $\tilde{\rho}$ as $n \to \infty$.

 Our definition of "convergence" depends on the context of the problem. For example, we may define convergence in terms of the 2-Wasserstein metric.

Assumption: The target measure $\tilde{\rho}$ is strongly log-concave, i.e. $\tilde{\rho}(x)=e^{-V(x)}$ for a λ -convex function $V:\mathbb{R}^d\to\mathbb{R},\,\lambda>0$.

For any initialization $\{x_{i,0}\}_{i=1}^n$, evolving particles by the stochastic differential equation

$$\begin{cases} dx_i(t) = \nabla \log(\tilde{\rho}(x_i))dt + dW_i \\ x_i(0) = x_{i,0}. \end{cases}$$

ensures that $\lim_{t\to\infty}\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\delta_{x_i(t)}=\tilde{\rho}.$

Remark (Continuum Perspective)

At time t, the particles approximate $\rho(t, x)$, the solution to the Fokker-Planck equation:

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \nabla \log(\tilde{\rho})) = \Delta \rho & t \ge 0 \\ \rho(0, x) = \rho_0(x). \end{cases}$$

 $\rho(t,x)$ converges to $\tilde{\rho}$ as $t \to \infty$.

Claire Murphy

The Nonlinear Diffusion Equation

A drawback of Langevin dynamics is that the target measure $\tilde{\rho}$ must be strongly log-concave, i.e. $\tilde{\rho}=e^{-V(x)}dx$ for a λ -convex function V.

A new approach allows us to consider target measures of the form

$$\tilde{\rho}(x) = ((f')^{-1}(Z - V(x)))_+,$$

where

- Z is a normalizing constant.
- $V : \mathbb{R}^d \to \mathbb{R}$ and $f : [0, \infty) \to \mathbb{R}$ are smooth.
- V is λ -convex for some $\lambda > 0$.
- f is convex and $s \mapsto s^d f(s^{-d})$ is convex and nonincreasing on $(0, \infty)$.

Key idea: If $\rho(t, x)$ is a solution to the **Generalized Fokker-Planck equation**:

$$\begin{cases} \partial_t \rho - \nabla \cdot (\rho \nabla V) = \nabla \cdot (\rho \nabla f'(\rho)) & t \ge 0 \\ \rho(0, x) = \rho_0(x), \end{cases}$$

then $\rho(t, x)$ still converges to $\tilde{\rho}$ as $t \to \infty$.

My Project

Develop a particle method to approximate $\rho(t, x)$, the solution to the Generalized Fokker-Planck equation.

Example: Consider the function

$$f(s) = \begin{cases} s \ln(s) - s & m = 1\\ \frac{s^m}{m - 1} & m \neq 1 \end{cases}$$

and the external potential $V(x) = \frac{x^2}{2(m+1)}$.

Figure: Numerical solutions are plotted with dashed lines, exact solutions are plotted with solid lines. Solutions are plotted in increments of one unit of time, up until t_{max} = 6.

Conclusion

References

- Craig, Katy, Karthik Elamvazhuthi, Matt Haberland, and Olga Turanova. "A blob method for inhomogeneous diffusion with applications to multi-agent control and sampling." Mathematics of Computation (2023).
- Craig, Katy, Matt Jacobs, and Olga Turanova. "A blob method for general nonlinear diffusion." In preparation.
- Jin, Shi, Lei Li, and Jian-Guo Liu. "Random batch methods (RBM) for interacting particle systems." Journal of Computational Physics (2020).

Approximation of the Generalized Fokker-Planck Equation

Consider the function

$$f_{\varepsilon}(s) = \begin{cases} \frac{\delta(\varepsilon)}{2} |s|^2 + \frac{\delta(\varepsilon)}{2} f(s) - \frac{\delta(\varepsilon)}{2} f(0) & s \ge 0 \\ +\infty & s < 0, \end{cases}$$

where $^{\varepsilon}f$ is the Moreau-Yosida regularization of f and $\delta(\varepsilon) \to 0$ as $\varepsilon \to 0$.

Let φ_{ε} be a mollifier.

We approximate the Generalized Fokker-Planck equation via

$$\begin{cases} \partial_t \rho_{\varepsilon} = \nabla \cdot (\rho_{\varepsilon} \nabla (p_{\varepsilon} + V)) \\ p_{\varepsilon} = f_{\varepsilon}'(\varphi_{\varepsilon} * \rho_{\varepsilon}) \\ \rho_{\varepsilon}(0, X) = \rho_{\varepsilon}^0(X). \end{cases}$$
(PDE_{\varepsilon})

From PDE to ODE

Suppose that $\rho_{\varepsilon}^0(x) = \sum_{i=1}^n m_i \delta_{x_i^0}(x)$. Then, there exists a unique solution of PDE $_{\varepsilon}$ of the

form
$$\rho_{\varepsilon}(t,x) = \sum\limits_{i=1}^n m_i \delta_{x_i(t)}(x)$$
, where

$$\begin{cases} \dot{x}_j(t) = -\nabla p_{\varepsilon}(x_j(t)) - \nabla V(x_j(t)) \\ x_j(0) = x_j^0. \end{cases}$$

Elementary calculations show that the trajectory of the *j*th particle at time *t* is given by

$$\begin{cases} \dot{x}_j(t) = -f_{\varepsilon}'' \left(\sum_{i=1}^n m_i \varphi_{\varepsilon}(x_j(t) - x_i(t)) \right) \sum_{i=1}^n m_i \nabla \varphi_{\varepsilon}(x_j(t) - x_i(t)) - \nabla V(x_j(t)) \\ x_j(0) = x_j^0. \end{cases}$$