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Motivation

Setup: Let ρ̃ be a probability measure on Euclidean space Rd .

Goal: We seek {xi}n
i=1 ⊂ Rd such that the empirical measure 1

n

n∑
i=1

δxi converges to ρ̃

as n → ∞.

Our definition of “convergence" depends on the context of the problem. For
example, we may define convergence in terms of the 2-Wasserstein metric.
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Classical Approach: Langevin Dynamics

Assumption: The target measure ρ̃ is strongly log-concave, i.e. ρ̃(x) = e−V (x) for a
λ-convex function V : Rd → R, λ > 0.

For any initialization {xi,0}n
i=1, evolving particles by the stochastic differential equation{

dxi (t) = ∇ log(ρ̃(xi ))dt + dWi

xi (0) = xi,0.

ensures that lim
t→∞

lim
n→∞

1
n

n∑
i=1

δxi (t) = ρ̃.

Remark (Continuum Perspective)

At time t , the particles approximate ρ(t , x), the solution to the Fokker-Planck
equation: {

∂tρ+∇ · (ρ∇ log(ρ̃)) = ∆ρ t ≥ 0
ρ(0, x) = ρ0(x).

ρ(t , x) converges to ρ̃ as t → ∞.
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The Nonlinear Diffusion Equation

A drawback of Langevin dynamics is that the target measure ρ̃ must be strongly log-
concave, i.e. ρ̃ = e−V (x)dx for a λ-convex function V .

A new approach allows us to consider target measures of the form

ρ̃(x) = ((f ′)−1(Z − V (x)))+,

where

Z is a normalizing constant.

V : Rd → R and f : [0,∞) → R are smooth.

V is λ-convex for some λ > 0.

f is convex and s 7→ sd f (s−d ) is convex and nonincreasing on (0,∞).

Key idea: If ρ(t , x) is a solution to the Generalized Fokker-Planck equation:{
∂tρ−∇ · (ρ∇V ) = ∇ · (ρ∇f ′(ρ)) t ≥ 0
ρ(0, x) = ρ0(x),

then ρ(t , x) still converges to ρ̃ as t → ∞.
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My Project

Develop a particle method to approximate ρ(t , x), the solution to the Generalized Fokker-
Planck equation.

Example: Consider the function

f (s) =

{
s ln(s)− s m = 1

sm

m−1 m ̸= 1

and the external potential V (x) = x2

2(m+1) .

Figure: Numerical solutions are plotted with dashed lines, exact solutions are plotted with solid lines. Solutions are
plotted in increments of one unit of time, up until tmax = 6.
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Approximation of the Generalized Fokker-Planck Equation

Consider the function

fε(s) =

{
δ(ε)

2 |s|2 + δ(ε)f (s)− δ(ε)f (0) s ≥ 0
+∞ s < 0,

where εf is the Moreau-Yosida regularization of f and δ(ε) → 0 as ε → 0.

Let φε be a mollifier.

We approximate the Generalized Fokker-Planck equation via
∂tρε = ∇ · (ρε∇ (pε + V ))

pε = f ′ε(φε ∗ ρε)

ρε(0, x) = ρ0
ε(x).

(PDEε)
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From PDE to ODE

Suppose that ρ0
ε(x) =

n∑
i=1

miδx0
i
(x). Then, there exists a unique solution of PDEε of the

form ρε(t , x) =
n∑

i=1
miδxi (t)(x), where

{
ẋj (t) = −∇pε(xj (t))−∇V (xj (t))
xj (0) = x0

j .

Elementary calculations show that the trajectory of the j th particle at time t is given byẋj (t) = −f ′′ε

( n∑
i=1

miφε(xj (t)− xi (t))
) n∑

i=1
mi∇φε(xj (t)− xi (t))−∇V (xj (t))

xj (0) = x0
j .
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