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Problem Statement

Let F : Rd → Rd be an interaction force with a singularity at zero.
Consider the Jeans-Vlasov equation / collisionless Boltzmann equation

(PDE)


∂t f + v · ∇x f + E(t , x) · ∇v f = 0
E(t , x) =

∫
Rd

ρ(t , y)F (x − y)dy

ρ(t , x) =
∫
Rd

f (t , x , v)dv .

An exact solution to this PDE has not been discovered (yet).
Our goal is to develop a particle method to approximate the solution of this PDE.
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The Particle Method

Idea: We start with N particles {Xi (0)}N
i=1 ⊆ Rd with velocities {Vi (0)}N

i=1 ⊆ Rd .

We create a modified interaction force FN : Rd → Rd which is bounded at zero.

We evolve our particles according to the ODE

(ODE)


Ẋi (t) = Vi (t)

V̇i (t) = 1
N

N∑
j=1

FN(Xi − Xj ).

If we define µN(t , x) = 1
N

N∑
i=1

δXi (t)(x) we aim to show that

lim
N→∞

µN(t , x) = f (t , x),

where f is the exact solution to the Jeans-Vlasov equation under an appropriate initial-
ization.
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Theorem and Outline of Proof
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Limiting Assumptions on F

F satisfies the (Sα) condition if there exists C > 0 such that for all x ∈ Rd\{0},

|F (x)| ≤
C

|x |α
and |∇F (x)| ≤

C
|x |α+1

.

F is weakly singular if it satisfies the (Sα) condition for some α < 1.

A family of forces {FN} ∪ {F} is strongly singular with cutoff if F satisfies the (Sα)
condition for some α < d − 1, and if for each N, there exists m such that

∀|x | ≥ N−m, FN(x) = F (x).

∀|x | ≤ N−m, |FN(x)| ≤ Nmα.
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Example: Strong Singularity

Consider the case d = 2. Fix 0 < κ < 1. Define F (x) = x
|x|2−κ , and

FN(x) =

{
F (x) |x | ≥ N−1

x
|x|Nκ−1 |x | ≤ N−1 .

We claim that our forces are strongly singular with cutoff. Set α = 1 − κ, m = 1.

1 F satisfies the Sα condition.
2 For |x | ≥ N−m, FN(x) = F (x).
3 For |x | ≤ N−m, |FN(x)| = N1−κ = Nmα.

N = 2 N = 4 N = 8
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Theorem

Theorem
Assume d ≥ 2 and that {FN} satisfies a (Sα

m) condition for some 1 ≤ α < d − 1, with
a cutoff order satisfying

m < m∗ :=
1

2d
min

(
d − 2
α− 1

,
2d − 1

α

)
.

Choose any γ ∈
( m

m∗ , 1
)
.

Assume f 0 ∈ L∞(R2d ) has compact support and total mass one, and denote by f the
unique, bounded, and compactly supported solution of the Jeans-Vlasov equation with
initial condition f 0 on the interval [0,T∗).

Under certain light conditions on the initialization of our particles, for any T < T∗, there
exists constants C0 and C1 such that for all N ≥ eC1T and for all t ∈ [0,T ],

W1(µN(t), f (t)) ≤ eC0t
(

W1(µ
0
N , f

0
N) + 2N− γ

2d

)
.
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Proof: Notation

We define f 0
N(x) as the “smoothing" of our initial empirical distribution µ0

N(x). Then, we
define fN(t , x , v) as the solution to the Jeans-Vlasov equation with initial condition

f (0, x , v) = f 0
N(x , v).
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Sketch of Proof

By the triangle inequality,

W1(µN(t), f (t)) ≤ W1(µN(t), fN(t)) + W1(fN(t), f (t)).

A standard stability estimate allows us to bound the second term:

W1(fN(t), f (t)) ≤ eCt W1(f 0
N , f

0).

Since W1 ≤ W∞, we bound the first term by

W∞(µN(t), fN(t)).

Why W∞? The infinite distance is the only MKW distance with which we can handle a
localized singularity in the force and Dirac masses in the empirical distribution.
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Sketch of Proof

Goal: Bound W∞(µN(t), fN(t)).
To bound this quantity, we compare:

1 ẼN(t , i) := 1
N

N∑
j=1

t∫
t−ϵ

F (Xi (s)− Xj (s)) ds.

2 Ẽ∞(t , x , v) :=
∫
Rd

∫
Rd

t∫
t−ϵ

F (xs − y)f (s, y ,w) ds dy dw , where xs denotes the

position at time s of the point starting at (t , x , v) when following the characteristics
defined by fN .

These quantities describe the force generated by N particles, vs. the force generated
by a continuous distribution. If we can show that these quantities are similar, then

µN(t , x) ≈ fN(t , x).
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Numerical Implementation
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Our setup

We continue using the interaction forces described earlier:

F (x) =
x

|x |2−κ
,

FN(x) =

{
F (x) |x | ≥ N−1

x
|x|Nκ−1 |x | ≤ N−1 .

These forces approximate the Coulombian force, which models

1 Ions or electrons evolving without collisions.

2 Gravitational interactions between stars and galaxies.
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Results

=⇒

=⇒

=⇒

We start by generating a reference
particle solution with many, many
particles (in this case N = 960), which
we hope models the exact solution
well.

Then, for smaller N, we calculate the
L1 distance between the empirical
solution and the reference solution.

N Error (L1)

160 0.31890

320 0.29904

640 0.24443
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Future Work

Ideas for future work:

1 Prove the d = 2 case.

2 Work with different interaction forces in our numerical simulations.

3 Use the W1 norm in our numerical simulations to evaluate the error (since this is
the norm used in our “big theorem").
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Conclusion
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Infinite Wasserstein Distance

We define a transference plan as a product measure π on Rd × Rd such that∫
Rd

dπ(x , ·) = dµ(x),
∫
Rd

dπ(·, x) = dν(x).

Let Π(µ, ν) equal the set of all transference plans.
For π ∈ Π(µ, ν), we define

||x − y ||L∞(π) = max{|x − y | : (x , y) ∈ spt(π)}.

We define the infinite Wasserstein distance W∞ by

W∞(µ, ν) = inf{||x − y ||L∞(π) : π ∈ Π(µ, ν)}.

Remarks
lim

p→∞
Wp(µ, ν) = W∞(µ, ν).

W1 ≤ W∞.
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Infinite Wasserstein Distance

Need to restrict to space of measures with bounded support.

Otherwise, W∞(µ, ν) may be infinite.

If µ is absolutely continuous w.r.t Lebesgue measure,

W∞(µ, ν) = inf{||T (x)− x ||L∞(µ) : T#µ = ν}.

From Santambrogio:

[The W∞ distance] measures the minimal maximal displacement that should
be done to move particles from one distribution to the other.

In other words, for each transference plan, we measure the greatest distance we have
to transport a particle. Then, we take the infimum of each of these distance.
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Initialization of Particles

From Hauray et. al:

In many physical settings, the initial positions and velocities are selected ran-
domly and typically independently (or almost independently)...

Moreover, we emphasize that the two problems with initial particles on a mesh,
or with initial particles not equally distributed seem to be very different.

In our numerical simulations, particles and velocities are distributed according to the
normal distribution with mean one, standard deviation zero.
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Sketch of Proof

To compare ẼN(t , i) and Ẽ∞(t , x , v), we consider three domains:

1 Contribution of particles j and points y “far enough" from Xi and x in the physical
space.

2 Contribution of particles j and points y ϵ-close in the physical space to Xi and x ,
but with sufficiently different velocities.

3 Contribution of particles ϵ-close in R2d in position and velocity.
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