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Abstract. In the space of probability measures on ℝ𝑑 equipped with the 2-Wasserstein distance, heat flow
is the gradient flow of the entropy functional. In this senior thesis, we will closely follow "Gradient flows of the
entropy for finite Markov chains" by Jan Maas [3], in which Maas develops an analogue of the 2-Wasserstein
distance on the space of probability measures on finite weighted graphs, describing how a new metric allows us
to show that heat flow is the gradient flow of the entropy in the graph setting. We will focus primarily on the
case of a two-node graph, where we will solve for more explicit formulas. We will first motivate our problem
by introducing gradient flows on both Euclidean space and the space of probability measures. From there, we
will give an introduction to Markov chains and their properties, which will provide the analogue of heat flow in
the graph setting. We will then give the definition of a new metric  on the space of probability measures on
a two-node graph, and prove the isometry of this metric to a subset of ℝ. Next, our isometry helps us develop
intuition for geodesics and convexity on our metric space. We will finish by returning to our original motivation,
showing how our new metric allows us to prove that heat flow is the gradient flow of the entropy.

1 Introduction to Gradient Flows

Let us first introduce gradient flows in Euclidean space, before generalizing this notion to any metric space. This
will help us develop an idea of what a gradient flow might be with respect to the metric we will introduce in
Section 3.

DEFINITION 1.1 (Gradient Flow). Given a function  ∶ ℝ𝑛 → ℝ, which is smooth, and a point 𝑥0 ∈ ℝ𝑛, a
gradient flow is defined as a curve 𝑥(𝑡) with starting point 𝑥(0) = 𝑥0, that moves by following the path that
makes  decrease as steeply as possible, that is, it is the unique solution to the Cauchy problem:

{

𝑥′(𝑡) = −∇ (𝑥(𝑡))
𝑥(0) = 𝑥0.

When generalizing this to a metric space (𝑋, 𝑑), we lack a clear definition of gradient flow and instead turn to a
limiting process to define gradient flow. Intuitively, we begin at a point 𝑥0 ∈ 𝑋, and at this point, we determine
the direction of steepest descent using our metric 𝑑, move a small step in this direction, and repeat from there.
As the size of the steps goes to zero, this converges to the gradient flow.

Let us introduce a well-known example, the space of probability measures on ℝ𝑑 with finite second moment. In
other words, our space is given by:

2(ℝ𝑑) =
{

𝜇 ∈ (ℝ𝑑) ∶ ∫ℝ𝑑
|𝑥|2𝑑𝜇 < ∞

}

.

We can equip this space with a metric called the 2-Wasserstein distance, 2. In this metric space, we have a
well-defined notion of gradient with respect to 2, denoted by ∇2

.

Given a functional  with "nice" properties, the JKO scheme [4] describes a process that converges to gradient
flow in the space (2(ℝ𝑑),2). Let us briefly describe this process more precisely. Given a functional  ∶
2(ℝ𝑑) → ℝ, we consider some step size 𝜏 > 0. We begin with initial value 𝜇0 ∈ 2(ℝ𝑑). Now, given any 𝜇𝜏

𝑘,
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the next step of the path is given by

𝜇𝜏
𝑘+1 = argmin

𝜇∈2(ℝ𝑑 )
 (𝜇) +

2
2 (𝜇, 𝜇

𝜏
𝑘)

2𝜏
.

We call the gradient flow of  the limit as 𝜏 → 0 of the interpolated paths given by each step size 𝜏. Due to
special properties of the Wasserstein metric, we are able to consider gradient flows hand in hand with certain
PDEs: the solutions of certain PDEs are the gradient flows of a given functional and vice versa.

For readers familiar with geodesics, we introduce the following definition:

DEFINITION 1.2 (𝜆-Geodesically Convex in (2(ℝ𝑑),2)). A functional  is 𝜆-geodesically convex, if, given a
constant speed geodesic 𝜇(𝑡) between points 𝜇(0) and 𝜇(1), there exists 𝜆 > 0 such that

𝐹 (𝜇(𝑡)) ≤ (1 − 𝑡) (𝜇(0)) + 𝑡 (𝜇(1)) − 𝜆
𝑡(1 − 𝑡)

2
2

2 (𝜇(0), 𝜇(1))

holds for all 𝑡 ∈ [0, 1].

Say we have a functional  . Let
𝜌∗ = argmin

𝜌∈2(ℝ𝑑 )
 (𝜌).

Say we have gradient flow 𝜌(𝑡) such that 𝜌(0) = 𝜌0(⋅). If  is 𝜆-geodesically convex for 𝜆 > 0, then we have that

2(𝜌(𝑡), 𝜌∗) ≤ 𝑒−𝜆𝑡2(𝜌0, 𝜌∗).

Intuitively, 𝜆-convexity tells us the gradient flow approaches the minimizer quickly [4]. We will postpone our
discussion of geodesics for Section 6, but the above will motivate the results of this coming section.

To introduce a major result, Jordan, Kinderlehrer, and Otto [2] showed that, given a gradient flow 𝜇(𝑡) for a point
𝜇0, if we define ∇2

 (𝜌) = −∇ ⋅
((

∇ 𝜕
𝜕𝜌

)

𝜌
)

, we know that

{

𝜕𝑡𝜇(𝑡) = −∇2
 (𝜇(𝑡))

𝜇(0) = 𝜇0.

Notice that this is identical to the Cauchy problem above!

As a key example, the solution to the heat equation can be viewed as a gradient flow. In other words, if we have
the heat equation

{

𝜕𝑡𝜇 = Δ𝜇
𝜇(0, ⋅) = 𝜇0(⋅),

then we can construct the energy functional  ∶ 2(ℝ𝑑) → ℝ, given by

 (𝜇) =

{

∫ℝ𝑑 log
(

𝑑𝜇
𝑑𝑥 (𝑥)

)

𝑑𝜇(𝑥) if 𝜇 ≪ 𝜆,

+∞ otherwise,

where 𝜆 denotes Lebesgue measure on ℝ𝑑 . If 𝜇(𝑡) is the gradient flow of the above functional  , then one can
show 𝜇(𝑡) solves the heat equation. It can also be shown that  is 𝜆-convex for 𝜆 = 0.
Moving forward, we will be working on the space of probability measures on graphs, rather than Euclidean
space. Here, we desire a similar metric,  , and functional,  , to satisfy

𝜕𝑡𝜇(𝑡) = −∇ (𝜇(𝑡))
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for any solution of the heat equation.

2 Introduction to Markov Chains

Intuitively, we can think of a Markov jump process as a set of states in a state space, 𝑋 = {𝑥1, 𝑥2, ...𝑥𝑛}, along
with a transition matrix 𝑄. 𝑄 encodes the probability of jumping to state 𝑥𝑗 , given we are at state 𝑥𝑖. Say we are
at state 𝑥𝑖 at current time, and wish to jump to state 𝑥𝑗 . After a time with exponential distribution 𝑒𝑥𝑝(𝑞𝑖𝑗), if the
process has not jumped to any other state, we will jump to state 𝑥𝑗 . The rigorous definition of 𝑄 is as follows:

DEFINITION 2.1 (Transition Matrix, Q). 𝑞𝑖𝑗 ≥ 0 describes the rate of transition from state 𝑥𝑖 to state 𝑥𝑗 . We let
𝑞𝑖𝑖 = −

∑

𝑗≠𝑖 𝑞𝑖𝑗 , so that, letting 𝑄 = [𝑞𝑖,𝑗], the sum of each row of matrix 𝑄 is equal to 0.

𝑄 has the following properties:
∙ 𝑄 has a "memoryless property" meaning that each jump is independent of previous jumps, or how long

we have been in the chain. It is solely dependent on which state we are in at the current time.
∙ If 𝑞𝑖𝑗 = 0 for some 𝑖, 𝑗, then the probability of jumping from state 𝑥𝑖 to 𝑥𝑗 is zero.

Knowing the transition rate matrix 𝑄, with some calculation we are able to obtain the probability matrix 𝐻(𝑡)[1].

DEFINITION 2.2 (Probability Matrix, 𝐻(𝑡)). Entry 𝑝𝑖𝑗 of the matrix 𝐻(𝑡) gives us the probability that we will be
at state 𝑥𝑗 after time 𝑡, assuming that we began at state 𝑥𝑖 at time 0.

𝐻(𝑡) has the following properties[1]:
∙ For each time 𝑡, 𝐻(𝑡) is a real valued matrix dependent on t.
∙ {𝐻(𝑡) ∶ 𝑡 ≥ 0} is called the transition semigroup.
∙ 𝐻(𝑡) = 𝑒𝑡𝑄 =

∑∞
𝑘=0

𝑡𝑘

𝑘!𝑄
𝑘.

∙ If, for all 𝑖, 𝑗, there exists 𝑡 ≥ 0 such that 𝐻(𝑡)𝑖𝑗 > 0, then it is possible to jump to any state from any
other state, and we say the matrix 𝐾 ∶= 𝑄 + 𝐼 is irreducible.

Note here that irreducibility of 𝐾 ensures the existence of a unique steady state 𝜋, a row vector with entries
corresponding to states in the state space. We can think of a steady state as the "limit" of the Markov jump
process as 𝑡 → ∞. In other words, our steady state, 𝜋, is itself a probability measure on the state space, so its
entries sum to 1, and it encodes the probability that the process is at each state 𝑥𝑖 as time diverges to infinity. We
note here as well that steady states are left eigenvectors of 𝐾 = 𝑄 + 𝐼.

For the context of our problem, say we are given a finite directed complete weighted graph 𝐺, with nodes
𝑆 = {𝑠1,… , 𝑠𝑛}, and an adjacency matrix 𝑄 = [𝑞𝑖𝑗], where 𝑞𝑖𝑗 ≥ 0 refers to the edge weight from 𝑠𝑖 to 𝑠𝑗 . It is
possible to frame this weighted graph as a continuous time Markov jump process.

Intuitively, the collection of nodes of our graph can be thought of as "states" of a Markov chain. At any given
time, we exist in a certain state, or node. We’ll refer to these states by their indices, namely, when considering
behavior jumping from a certain state 𝑖 to 𝑗. Fundamentally, we consider ourselves "jumping" from state to state,
and we wish to consider the probabilities of jumping from state to state. Our matrix 𝑄 of edge weights encodes
these probabilities.

3 Defining  on the Two-Point Space, (1)

Let us consider the two-point space, a graph with two-nodes {𝑎, 𝑏}, where the edge weight from 𝑎 to 𝑏 is given
by 𝑝 ∈ (0, 1], and the edge weight from 𝑏 to 𝑎 is given by 𝑞 ∈ (0, 1]. We can visualize this as:

We can view this as a continuous time Markov jump process with state space 1 ∶= {𝑎, 𝑏}. To obtain transition
3



matrix 𝑄, we know 𝑞1,2 = 𝑝 and 𝑞2,1 = 𝑞. Since our rows must sum to 0, we know 𝑞1,1 = −𝑝 and 𝑞2,2 = −𝑞.
Thus we have the corresponding transition matrix:

𝑄 =
[

−𝑝 𝑝
𝑞 −𝑞

]

and 𝐾 = 𝑄 + 𝐼 =
[

1 − 𝑝 𝑝
𝑞 1 − 𝑞

]

.

From here, our time semigroup is given by 𝐻(𝑡) = {𝑒𝑡𝑄 ∶ 𝑡 ≥ 0}. With some elementary calculation, we obtain
that:

𝐻(𝑡) = 𝑒𝑡𝑄 = 1
𝑝 + 𝑞

([

𝑞 𝑝
𝑞 𝑝

]

+ 𝑒−(𝑝+𝑞)𝑡
[

𝑝 −𝑝
−𝑞 𝑞

])

.

Since 𝑝, 𝑞 ≠ 0, for any state in 1, we can reach any other state in 1, and thus 𝐾 is irreducible. Since steady
states are left eigenvectors of 𝐾 , we obtain steady state 𝜋 as follows:

[

𝜋(𝑎) 𝜋(𝑏)
]

[

1 − 𝑝 𝑝
𝑞 1 − 𝑞

]

=
[

𝜋(𝑎) − 𝑝𝜋(𝑎) + 𝑞𝜋(𝑏) 𝑝𝜋(𝑎) + 𝜋(𝑏) − 𝑞𝜋(𝑏)
]

=
[

𝜋(𝑎) 𝜋(𝑏)
]

⟹ 𝜋(𝑎) =
𝑞

𝑝 + 𝑞
, 𝜋(𝑏) =

𝑝
𝑝 + 𝑞

.

Now any probability measure on {𝑎, 𝑏} must be of the following form, for some 𝛽 ∈ [−1, 1]:

𝜇𝛽 = 1
2
((1 − 𝛽)𝛿𝑎 + (1 + 𝛽)𝛿𝑏).

For any measure 𝜇𝛽 , we desire a corresponding probability density function 𝜌𝛽 ∶ 1 → ℝ with respect to 𝜋.
For any subset 𝐴 ⊆ 1, 𝜌𝛽 should satisfy the following:

𝜇𝛽(𝐴) = 𝜌𝛽(𝑎)𝜋(𝑎)𝛿𝐴(𝑎) + 𝜌𝛽(𝑏)𝜋(𝑏)𝛿𝐴(𝑏).

To explicitly solve for 𝜌𝛽 in terms of 𝜇𝛽 :

𝜌𝛽 =
[

𝜌𝛽(𝑎) 𝜌𝛽(𝑏)
]

=
[

𝜇𝛽 (𝑎)
𝜋(𝑎)

𝜇𝛽 (𝑏)
𝜋(𝑏)

]

=
[

(𝑝+𝑞)(1−𝛽)
2𝑞

(𝑝+𝑞)(1+𝛽)
2𝑝

]

.

Our goal is to construct a metric comparing 𝜌𝛽 for various values of 𝛽 ∈ [−1, 1]. In order to construct our metric,
we choose a "nice" function 𝜃 ∶ [0,∞) × [0,∞) → [0,∞) that satisfies the following:

(i) 𝜃 is continuous on [0,∞) × [0,∞)
(ii) 𝜃 is 𝐶∞ on (0,∞) × (0,∞)

(iii) 𝜃(𝑠, 𝑡) = 𝜃(𝑡, 𝑠) for 𝑠, 𝑡 ≥ 0
(iv) 𝜃(𝑠, 𝑡) > 0 for 𝑠, 𝑡 > 0

Then, let
𝜌̂(𝛽) ∶= 𝜃(𝜌𝛽(𝑎), 𝜌𝛽(𝑏)).

We introduce our metric  :

DEFINITION 3.1. For 𝛼, 𝛽 ∈ [−1, 1], we define:

(𝜌𝛼 , 𝜌𝛽) = 1
2

√

1
𝑝
+ 1

𝑞

|

|

|

|

|

|

∫

𝛽

𝛼

1
√

𝜌̂(𝑟)
𝑑𝑟
|

|

|

|

|

|

.

Given a function 𝜃, we now have an explicit definition for a metric  on the space (1). Moving forward, we
will show the isometry of this metric to a subset of the real line, allowing us to explore geodesics, convexity, and
gradient flows.
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4 The Isometry Induced by 

Let us define

𝜑(𝛽) ∶= 1
2

√

1
𝑝
+ 1

𝑞 ∫

𝛽

0

1
√

𝜌̂(𝑟)
𝑑𝑟.

Notice first that 𝜑 is continuous and strictly increasing, by assumptions placed on 𝜃. For 𝛼, 𝛽 ∈ [−1, 1], we have
that:

|𝜑(𝛼) − 𝜑(𝛽)| =
|

|

|

|

|

|

1
2

√

1
𝑝
+ 1

𝑞 ∫

𝛼

0

1
√

𝜌̂(𝑟)
𝑑𝑟 − 1

2

√

1
𝑝
+ 1

𝑞 ∫

𝛽

0

1
√

𝜌̂(𝑟)
𝑑𝑟

|

|

|

|

|

|

= 1
2

√

1
𝑝
+ 1

𝑞

|

|

|

|

|

|

∫

𝛽

𝛼

1
√

𝜌̂(𝑟)
𝑑𝑟

|

|

|

|

|

|

= (𝜌𝛼 , 𝜌𝛽).

We define
(−1, 1)∗ = {𝛽 ∈ [−1, 1] ∶ |𝜑(𝛽)| < ∞}.

Consider
1(1) ∶= {𝜌𝛽 ∈ (1) ∶ 𝛽 ∈ (−1, 1)∗}.

To see that  is a metric on 1(1), note that the following hold:
(i) (𝜌𝛼 , 𝜌𝛽) = 0 ⟺ |𝜑(𝛼) − 𝜑(𝛽)| = 0 ⟺ 𝜑(𝛼) = 𝜑(𝛽) ⟺ 𝛼 = 𝛽

(ii) (𝜌𝛼 , 𝜌𝛽) = |𝜑(𝛼) − 𝜑(𝛽)| = |𝜑(𝛽) − 𝜑(𝛼)| = (𝜌𝛽 , 𝜌𝛼)
(iii) (𝜌𝛼 , 𝜌𝛾 ) = |𝜑(𝛼) − 𝜑(𝛾)| ≤ |𝜑(𝛼) − 𝜑(𝛽)| + |𝜑(𝛽) − 𝜑(𝛾)| = (𝜌𝛼 , 𝜌𝛽) +(𝜌𝛽 , 𝜌𝛾 ).

We have shown that for all 𝛼, 𝛽 ∈ (−1, 1)∗, (𝜌𝛼 , 𝜌𝛽) = |𝜑(𝛼) − 𝜑(𝛽)|. Let us first define

𝐼 = {𝜑(𝛽) ∶ 𝛽 ∈ (−1, 1)∗}.

Then, defining 𝐽 ∶ 1(1) → 𝐼 , where 𝜌𝛽 ↦ 𝜑(𝛽), it is clear that J preserves distance from (1(1),)
to (𝐼, | ⋅ |), and thus J is an isometry. In other words, rather than considering each 𝜌𝛽 as a probability density
function, we may instead think of the scalar value 𝐽 (𝜌𝛽) = 𝜑(𝛽), which will allow us to simplify our calculations
later on.

To summarize our isometries and variables, each measure on 1(1) is uniquely defined by a value 𝛽 ∈ [−1, 1].
We have used the above isometry to show that (1(1),) and (𝐼, | ⋅ |) are isomorphic, and thus, using the
interval 𝐼 to only consider the values of 𝛽 where |𝜑(𝛽)| < ∞, we can apply 𝐽 to any measure 𝜌𝛽 , and instead
observe nice properties of 𝜑(𝛽).

5 Example: 𝜃 is the Logarithmic Mean

As an example, let us consider the case where 𝜃(𝑠, 𝑡) = ∫ 1
0 𝑠1−𝑟𝑡𝑟𝑑𝑟. If we have 𝛽 ∈ [−1, 1],

𝜌̂(𝛽) = 𝜃
(

𝜌𝛽(𝑎), 𝜌𝛽(𝑏)
)

= 𝜃
(

𝑝 + 𝑞
𝑞

1 − 𝛽
2

,
𝑝 + 𝑞
𝑝

1 + 𝛽
2

)

= ∫

1

0

(

𝑝 + 𝑞
2𝑞

(1 − 𝛽)
)1−𝑟(𝑝 + 𝑞

2𝑝
(1 + 𝛽)

)𝑟
𝑑𝑟
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=
𝑝 + 𝑞
2𝑝𝑞

𝑞(1 + 𝛽) − 𝑝(1 − 𝛽)
ln 𝑞(1 + 𝛽) − ln 𝑝(1 − 𝛽)

.

Notice first that 𝜌̂(−1) = 𝜌̂(1) = 0. Furthermore,

(−1, 1)∗ = {𝛽 ∈ [−1, 1] ∶ |𝜑(𝛽)| < ∞}

= {𝛽 ∈ [−1, 1] ∶
|

|

|

|

|

|

1
2

√

1
𝑝
+ 1

𝑞 ∫

𝛽

0

1
√

𝜌̂(𝑟)

|

|

|

|

|

|

𝑑𝑟 < ∞}

= {𝛽 ∈ [−1, 1] ∶
|

|

|

|

|

|

∫

𝛽

0

1
√

𝜌̂(𝑟)

|

|

|

|

|

|

𝑑𝑟 < ∞}.

We see that in this example, (−1, 1)∗ = [−1, 1], so 𝐼 = [𝜑(−1), 𝜑(1)] is compact. Let us explicitly compute
(𝜌𝛼 , 𝜌𝛽) for 𝛼 ≤ 𝛽.

(𝜌𝛼 , 𝜌𝛽) = 1
2

√

1
𝑝
+ 1

𝑞

|

|

|

|

|

|

∫

𝛽

𝛼

1
√

𝜌̂(𝑟)
𝑑𝑟

|

|

|

|

|

|

= 1
2

√

1
𝑝
+ 1

𝑞

⎛

⎜

⎜

⎝

√

2𝑝𝑞
𝑝 + 𝑞

⎞

⎟

⎟

⎠

∫

𝛽

𝛼

√

ln 𝑞(1 + 𝑟) − ln 𝑝(1 − 𝑟)
𝑞(1 + 𝑟) − 𝑝(1 − 𝑟)

𝑑𝑟

= 1
√

2 ∫

𝛽

𝛼

√

ln 𝑞(1 + 𝑟) − ln 𝑝(1 − 𝑟)
𝑞(1 + 𝑟) − 𝑝(1 − 𝑟)

𝑑𝑟.

In the case where 𝑝 = 𝑞, we can simplify this further. Observe:

𝜌̂(𝛽) =
𝑝 + 𝑞
2𝑝𝑞

𝑞(1 + 𝛽) − 𝑝(1 − 𝛽)
ln 𝑞(1 + 𝛽) − ln 𝑝(1 − 𝛽)

=
2𝑝
2𝑝2

𝑝(1 + 𝛽) − 𝑝(1 − 𝛽)
ln 𝑝(1 + 𝛽) − ln 𝑝(1 − 𝛽)

=
2𝛽

ln(1 + 𝛽) − ln(1 − 𝛽)

=
𝛽

arctanh(𝛽)
.

Thus, in the case 𝑝 = 𝑞, we have:

(𝜌𝛼 , 𝜌𝛽) = 1
2

√

1
𝑝
+ 1

𝑞

|

|

|

|

|

|

∫

𝛽

𝛼

1
√

𝜌̂(𝑟)
𝑑𝑟
|

|

|

|

|

|

= 1
√

2𝑝 ∫

𝛽

𝛼

√

arctanh(𝑟)
𝑟

𝑑𝑟.

6 -Geodesics

A geodesic from point 𝑎 to point 𝑏 takes the shortest path possible from 𝑎 to 𝑏 with respect to the given metric.
Furthermore, a constant speed geodesic is a geodesic that moves at a constant pace, in other words:

DEFINITION 6.1 (Constant Speed Geodesic). A constant speed geodesic in a metric space (𝑋, 𝑑) is a curve
𝑢 ∶ [0, 1] → 𝑋 such that

𝑑(𝑢(𝑠), 𝑢(𝑡)) = |𝑡 − 𝑠|𝑑(𝑢(0), 𝑢(1))
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for all 𝑠, 𝑡 ∈ [0, 1].

We can consider Euclidean space as an example. Given two points 𝑎, 𝑏 ∈ ℝ𝑑 , the shortest path from 𝑎 to 𝑏 is
a straight line. Furthermore, if we want to maintain constant speed along our geodesic, it must be of the form
𝑢(𝑡) = (1 − 𝑡)𝑎 + 𝑡𝑏.

Generalizing to other manifolds, we can intuitively consider constant speed geodesics as the shortest path be-
tween two points that travels at constant speed.The existence and uniqueness of constant speed geodesics will
later aid us in showing the convexity of the functional  along these geodesics. The convexity of the functional
proves interesting when considering curvature properties of a manifold, and also helps ensure fast convergence
to a minimizer of a functional,  .

In our context, a constant speed geodesic is a curve 𝜇 ∶ [0, 1] → 1(1) such that

(𝜇(𝑠), 𝜇(𝑡)) = |𝑡 − 𝑠|(𝜇(0), 𝜇(1))

for all 𝑠, 𝑡 ∈ [0, 1]. Notice that for any 𝜇(𝑡) ∈ (1), we have that 𝜇(𝑡) = 𝜌𝛽 for some 𝛽 ∈ [−1, 1]. Thus, rather
than seeking a function 𝜇 ∶ [0, 1] → (1), we instead seek 𝛾 ∶ [0, 1] → [−1, 1] so that 𝜇(𝑡) = 𝜌𝛾(𝑡).

THEOREM 6.2. Let 𝜌𝛼 , 𝜌𝛽 ∈ 1(1) such that 𝛼, 𝛽 ∈ (−1, 1)∗. There exists a unique constant speed geodesic
𝜌𝛾(𝑡) ∶ [0, 1] → (1) so that 𝜌𝛾(0) = 𝜌𝛼 and 𝜌𝛾(1) = 𝜌𝛽 . Furthermore, 𝛾 ∈ 1([0, 1], [−1, 1]) and, for 𝑡 ∈ [0, 1],
𝛾 satisfies

𝛾 ′(𝑡) = 2(𝑠𝑔𝑛(𝛽 − 𝛼))(𝜌𝛼 , 𝜌𝛽)
√

𝑝𝑞
𝑝 + 𝑞

𝜌̂(𝛾(𝑡)).

Proof. Fix 𝛼, 𝛽 ∈ (−1, 1)∗. Consider the ordinary differential equation:
{

𝛾 ′(𝑡) = 2(𝑠𝑔𝑛(𝛽 − 𝛼))(𝜌𝛼 , 𝜌𝛽)
√

𝑝𝑞
𝑝+𝑞 𝜌̂(𝛾(𝑡))

𝛾(0) = 𝛼.

Let us consider 𝑓 (𝑥) = 2(𝑠𝑔𝑛(𝛽 − 𝛼))(𝜌𝛼 , 𝜌𝛽)
√

𝑝𝑞
𝑝+𝑞 𝜌̂(𝑥). Since 𝑓 (𝑥) and 𝑓 ′(𝑥) are continuous, there exists

a unique function 𝛾 ∈ 1([0, 1], [−1, 1]) such that 𝛾 is the solution to the above ordinary differential equation.
Now, we see that:

(𝜌𝛾(𝑡), 𝜌𝛾(𝑠)) = |𝜑(𝛾(𝑡)) − 𝜑(𝛾(𝑠))|

=
|

|

|

|

|

∫

𝑡

𝑠
𝜑′(𝛾(𝑟))𝛾 ′(𝑟)𝑑𝑟

|

|

|

|

|

=
|

|

|

|

|

|

∫

𝑡

𝑠

1
2

√

1
𝑝
+ 1

𝑞
1

√

𝜌̂(𝛾(𝑟))
𝛾 ′(𝑟)𝑑𝑟

|

|

|

|

|

|

=
|

|

|

|

|

|

∫

𝑡

𝑠

1
2

√

1
𝑝
+ 1

𝑞
1

√

𝜌̂(𝛾(𝑟))
2(𝑠𝑔𝑛(𝛽 − 𝛼))(𝜌𝛼 , 𝜌𝛽)

√

𝑝𝑞
𝑝 + 𝑞

𝜌̂(𝛾(𝑟))𝑑𝑟
|

|

|

|

|

|

= (𝜌𝛼 , 𝜌𝛽)|(𝑡 − 𝑠)|.

Thus 𝑡 ↦ 𝜌𝛾(𝑡) is a constant speed geodesic. Next we show that 𝛾(1) = 𝛽. To begin, notice that:

(𝜌𝛾(0), 𝜌𝛾(1)) = |𝜑(𝛾(0)) − 𝜑(𝛾(1))|
= |𝜑(𝛼) − 𝜑(𝛾(1))| 𝛾(0) = 𝛼

= (𝜌𝛼 , 𝜌𝛽)|0 − 1| Definition of constant speed geodesic
= |𝜑(𝛽) − 𝜑(𝛼)|.
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Since 𝛾(0) = 𝛼 by assumption, we now have

|𝜑(𝛾(1)) − 𝜑(𝛼)| = |𝜑(𝛽) − 𝜑(𝛼)|.

Since 𝜑(𝛽) is strictly increasing for all 𝛽 ∈ (−1, 1)∗, this tells us 𝜑(𝛾(1)) = 𝜑(𝛽), allowing us to conclude
𝛾(1) = 𝛽. Thus, 𝑡 ↦ 𝜌𝛾(𝑡) is a constant speed geodesic.

Finally, we want to show that 𝜌𝛾(𝑡) is the unique constant speed geodesic. Fix 𝛼, 𝛽 ∈ (−1, 1)∗. We have already
established the existence of a constant speed geodesic 𝛾(𝑡) such that 𝜌𝛾(0) = 𝜌𝛼 and 𝜌𝛾(1) = 𝜌𝛽 . Say there exists
another such geodesic, 𝜌𝜎(𝑡) such that 𝜌𝜎(0) = 𝜌𝛼 and 𝜌𝜎(1) = 𝜌𝛽 . Fix 𝑡 ∈ (0, 1). We have that:

|𝜑(𝛾(𝑡)) − 𝜑(𝛼)| = (𝜌𝛾(𝑡), 𝜌𝛼)

= (𝜌𝛾(𝑡), 𝜌𝛾(0))

= 𝑡 ⋅(𝜌𝛼 , 𝜌𝛽).

Similarly,

|𝜑(𝜎(𝑡)) − 𝜑(𝛼)| = (𝜌𝜎(𝑡), 𝜌𝛼)

= (𝜌𝜎(𝑡), 𝜌𝜎(0))

= 𝑡 ⋅(𝜌𝛼 , 𝜌𝛽).

This tells us 𝛾(𝑡) = 𝜎(𝑡) for all 𝑡 ∈ (0, 1), so 𝛾(𝑡) is unique.

Let us impose an additional condition on our function 𝜃, now assuming the existence of 𝑓 ∈ ([0,∞),ℝ) ∩
∞((0,∞),ℝ) such that 𝑓 ′′(𝑡) > 0 for all 𝑡 > 0 and

𝜃(𝑠, 𝑡) = 𝑠 − 𝑡
𝑓 ′(𝑠) − 𝑓 ′(𝑡)

for all 𝑠, 𝑡 > 0 where 𝑠 ≠ 𝑡.

Furthermore, let us define  ∶ 1(1) → ℝ by

 (𝜌) =
∑

𝑥∈1

𝑓 (𝜌(𝑥))𝜋(𝑥)

=
𝑞

𝑝 + 𝑞
𝑓 (𝜌(𝑎)) +

𝑝
𝑝 + 𝑞

𝑓 (𝜌(𝑏)).

To consider the convexity of the above functional  , we define the function 𝐾 ∶ (−1, 1) → ℝ by

𝐾(𝛽) ∶=
𝑝 + 𝑞
2

+ 1
2
𝜌̂(𝛽)(𝑞𝑓 ′′(𝜌𝛽(𝑏)) + 𝑝𝑓 ′′(𝜌𝛽(𝑎)))

and we let
𝜅 ∶= 𝑖𝑛𝑓{𝐾(𝛽) ∶ 𝛽 ∈ (−1, 1)}.

Since, by assumption, 𝑓 ′′ > 0, we know that 𝜅 ≥ 𝑝+𝑞
2 .

THEOREM 6.3 (Convexity along Geodesics). Let 𝜅 be defined as above. Then, the functional is 𝜅-convex along
geodesics. More explicitly, let 𝜌𝛼 , 𝜌𝛽 ∈ 1(1), and let 𝜌𝛾(𝑡) be the unique constant speed geodesic satisfying
𝜌𝛾 (0) = 𝜌𝛼 and 𝜌𝛾 (1) = 𝜌𝛽 . Then, for all 𝑡 ∈ [0, 1], the following inequality holds:

 (𝜌𝛾(𝑡)) ≤ (1 − 𝑡) (𝜌𝛼) + 𝑡 (𝜌𝛽) − 𝜅
2
𝑡(1 − 𝑡)2(𝜌𝛼 , 𝜌𝛽).

Proof. Let 𝛼, 𝛽 ∈ (−1, 1)∗. Let 𝜌𝛾(𝑡) be the unique constant speed geodesic satisfying 𝜌𝛾 (0) = 𝜌𝛼 and 𝜌𝛾 (1) = 𝜌𝛽 .
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Let us assume WLOG that 𝛼 ≤ 𝛽, and for ease of notation, let 𝑤 = (𝜌𝛼 , 𝜌𝛽). We want to show

 (𝜌𝛾(𝑡)) ≤ (1 − 𝑡) (𝜌𝛼) + 𝑡 (𝜌𝛽) − 𝜅
2
𝑡(1 − 𝑡)𝑤2.

Let us define 𝜁 (𝑡) =  (𝜌𝛾(𝑡)), and it will suffice to show

𝜁 ′′(𝑡) ≥ 𝑤2𝜅.

Applying our definition of  from above, we know that

𝜁 ′(𝑡) =
𝑞

𝑝 + 𝑞
𝑓 ′(𝜌𝛾(𝑡)(𝑎))

(

𝑝 + 𝑞
𝑞

⋅
−1
2

)

𝛾 ′(𝑡) +
𝑝

𝑝 + 𝑞
𝑓 ′(𝜌𝛾(𝑡)(𝑏))

(

𝑝 + 𝑞
𝑝

⋅
1
2

)

𝛾 ′(𝑡)

= 1
2
𝛾 ′(𝑡)(𝑓 ′(𝜌𝛾(𝑡)(𝑏) − 𝑓 ′(𝜌𝛾(𝑡)(𝑎)).

Now, we can apply definition of 𝛾 ′(𝑡) from Theorem 6.2. Substituting this in the above equation, and applying
our extra assumption of 𝜃, we see that

𝜁 ′(𝑡) = 1
2
(2)(𝜌𝛼 , 𝜌𝛽)

√

𝑝𝑞
𝑝 + 𝑞

𝜌̂(𝛾(𝑡))(𝑓 ′(𝜌𝛾(𝑡)(𝑏) − 𝑓 ′(𝜌𝛾(𝑡)(𝑎)))

= 𝑤

√

𝑝𝑞
𝑝 + 𝑞

⋅
𝜌𝛾(𝑡)(𝑏) − 𝜌𝛾(𝑡)(𝑎)

𝑓 ′(𝜌𝛾(𝑡)(𝑏) − 𝑓 ′(𝜌𝛾(𝑡)(𝑎))
(𝑓 ′(𝜌𝛾(𝑡)(𝑏) − 𝑓 ′(𝜌𝛾(𝑡)(𝑎)))

= 𝑤
√

𝑝𝑞
𝑝 + 𝑞

√

(𝜌𝛾(𝑡)(𝑏) − 𝜌𝛾(𝑡)(𝑎))(𝑓 ′(𝜌𝛾(𝑡)(𝑏) − 𝑓 ′(𝜌𝛾(𝑡)(𝑎))).

By differentiating once more, and yet again substituting 𝛾 ′(𝑡), we obtain

𝜁 ′′(𝑡) = 𝑤2𝐾(𝛾(𝑡)) ≥ 𝑤2𝜅.

And thus we have shown 𝜅-convexity along constant speed geodesics 𝜌𝛾(𝑡). As a result, we know gradient flows
of  converge to minimizers exponentially quickly.

7 Gradient Flows with respect to 

In Euclidean space, Brownian motion may be thought of in the following way: Let 𝑋ℎ(𝑡) be a random walk on
a lattice with edge length ℎ. As ℎ → 0, our random walk converges to Brownian motion. A heat flow 𝜌(𝑡, 𝑥)
may be thought of as the probability density function describing the location of a particle moving according to
Brownian motion at time 𝑡. This idea can be extended to a more general manifold. The shape of the manifold
determines the heat flow, i.e, the probability that a point is in a certain place at a certain time.

Intuitively, the shape of the manifold governs the movement of the particle. In our context, a continuous time
Markov jump process on the graph, the Markov kernel plays the role of the manifolds above; it is what governs
the movement of a particle moving randomly on the graph, determining where it is most likely for the particle
to travel. If we desire a sense of heat flow that mimics a probability density function of the location of a particle
at a certain time, it is natural to turn to the continuous time semigroup – which gives the probability a particle is
at a state 𝑗, given it began at time 𝑡 = 0 at state 𝑖.

Recall that we defined our probability matrix 𝐻(𝑡) = 𝑒𝑡𝑄. In this time dependent matrix, the 𝑖𝑗-th entry of
matrix 𝐻(𝑡) gives the probability that we are at state 𝑗 at time 𝑡 given that we began at state 𝑖 at time 𝑡 = 0.
While each entry of 𝐻(𝑡) gives a single probability with respect to two nodes, we desire a "path" through the
space of probability measures. By multiplying 𝐻(𝑡) on the right by 𝜌𝛽 , we obtain a probability measure in
1(1), and we will use this to define our notion of heat flow. Since 𝐻(𝑡)𝜌𝛽 is a probability measure, we know
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there exists 𝛽𝑡 ∈ [−1, 1] such that 𝜌𝛽𝑡 = 𝐻(𝑡)𝜌𝛽 . With some calculation, we can explicitly solve to obtain

𝛽𝑡 =
𝑝 − 𝑞
𝑝 + 𝑞

(1 − 𝑒−(𝑝+𝑞)𝑡) + 𝛽𝑒−(𝑝+𝑞)𝑡.

With the above context in mind, for some 𝛽 ∈ [−1, 1], we define

𝜇 ∶ ℝ → (1) defined by 𝑡 ↦ 𝜌𝛽𝑡 = 𝐻(𝑡)𝜌𝛽

to be the heat flow trajectory, starting at 𝜌𝛽 at time 𝑡 = 0. Now, we introduce a major result:

THEOREM 7.1 (Heat flow is the gradient flow of the entropy). For 𝛽 ∈ [−1, 1], our function 𝜇(𝑡), as defined
above, is a gradient flow trajectory of the functional  in the Riemannian manifold (1(1),)

Proof. To show the above, we desire to show that

𝑑
𝑑𝑡

𝜇(𝑡) = −∇ (𝜇(𝑡)).

Intuitively, our isometry from section 4 allows us to view the above from a different perspective. Since gradient
flow is uniquely determined by the metric, our isometry provides a one to one correspondence between gradient
flows in (1(1),) and gradient flows in (𝐼, | ⋅ |). Though this is outside the scope of this thesis, [4] provides
a good resource to explore this further. Rather than showing the above directly, we define ̃ = ◦𝐽−1, and we
will now equivalently show:

𝑑
𝑑𝑡

𝜑(𝛽𝑡) = −(̃ (𝜑(𝛽𝑡)).

Let us define 𝓁(𝛽) = 𝜌𝛽(𝑎) and 𝑟(𝛽) = 𝜌𝛽(𝑏), as well as 𝑐𝑝𝑞 =
1
2

√

1
𝑝 +

1
𝑞 . We calculate

𝓁′(𝛽) = 𝑑
𝑑𝛽

(

𝑝 + 𝑞
𝑞

1 − 𝛽
2

)

= −
𝑝 + 𝑞
2𝑞

and
𝑟′(𝛽) = 𝑑

𝑑𝛽

(

𝑝 + 𝑞
𝑝

1 + 𝛽
2

)

=
𝑝 + 𝑞
2𝑝

.

Recall also that

𝜌̂(𝛽) = 𝜃(𝜌𝛽(𝑎), 𝜌𝛽(𝑏)) = 𝜃(𝜌𝛽(𝑏), 𝜌𝛽(𝑎)) =
𝜌𝛽(𝑏) − 𝜌𝛽(𝑎)

𝑓 ′(𝜌𝛽(𝑏)) − 𝑓 ′(𝜌𝛽(𝑎))
=

𝑟(𝛽) − 𝓁(𝛽)
𝑓 ′(𝑟(𝛽)) − 𝑓 ′(𝓁(𝛽))

and

𝜑(𝛽) = 𝑐𝑝𝑞 ∫

𝛽

0

1
√

𝜌̂(𝑟)
𝑑𝑟,

which allows us to calculate
𝑑
𝑑𝛽

𝜑(𝛽) = 𝑐𝑝𝑞

√

𝑓 ′(𝑟(𝛽)) − 𝑓 ′(𝓁(𝛽))
𝑟(𝛽) − 𝓁(𝛽)

.

Since 𝑓, 𝑟,𝓁, and 𝜑 are continuously differentiable, for all 𝛽 ∈ 𝐼 , we must have that ̃ is continuously differen-
tiable on 𝐼 as well. Now, we know that

𝑑
𝑑𝛽

̃ (𝜑(𝛽)) = ̃ ′(𝜑(𝛽)) ⋅ 𝜑′(𝛽).

Since we have already calculated 𝜑′(𝛽), we can calculate 𝑑
𝑑𝛽 ̃ (𝜑(𝛽)) so that we may find ̃ ′(𝜑(𝛽)). First,
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̃ (𝜑(𝛽)) = ̃ (𝐽 (𝜌𝛽)) =  (𝜌𝛽)

=
𝑞

𝑝 + 𝑞
𝑓 (𝓁(𝛽)) +

𝑝
𝑝 + 𝑞

𝑓 (𝑟(𝛽)).

Now, we can differentiate, and see that

𝑑
𝑑𝛽

̃ (𝜑(𝛽)) =
𝑞

𝑝 + 𝑞
𝑓 ′(𝓁(𝛽))𝓁′(𝛽) +

𝑝
𝑝 + 𝑞

𝑓 ′(𝑟(𝛽))𝑟′(𝛽)

=
𝑞

𝑝 + 𝑞

(

−
𝑝 + 𝑞
2𝑞

)

𝑓 ′(𝓁(𝛽)) +
𝑝

𝑝 + 𝑞

(

𝑝 + 𝑞
2𝑝

)

𝑓 ′(𝑟(𝛽))

= 1
2
(𝑓 ′(𝑟(𝛽)) − 𝑓 ′(𝓁(𝛽))).

Finally, we can put this together to obtain

̃ ′(𝜑(𝛽)) =
𝑑
𝑑𝛽 ̃ (𝜑(𝛽))

𝜑′(𝛽)

=
𝑓 ′(𝑟(𝛽)) − 𝑓 ′(𝓁(𝛽))

2𝜑′(𝛽)

=
𝑓 ′(𝑟(𝛽)) − 𝑓 ′(𝓁(𝛽))

2𝑐𝑝𝑞
√

𝑓 ′(𝑟(𝛽))−𝑓 ′(𝓁(𝛽))
𝑟(𝛽)−𝓁(𝛽)

= 1
2𝑐𝑝𝑞

√

(𝑟(𝛽) − 𝓁(𝛽))(𝑓 ′(𝑟(𝛽)) − 𝑓 ′(𝓁(𝛽)).

Note that this above formula holds for 𝛽𝑡, i.e.

̃ ′(𝜑(𝛽𝑡)) =
1

2𝑐𝑝𝑞

√

(𝑟(𝛽𝑡) − 𝓁(𝛽𝑡))(𝑓 ′(𝑟(𝛽𝑡)) − 𝑓 ′(𝓁(𝛽𝑡)) (1).

Now recall that
𝛽𝑡 =

𝑝 − 𝑞
𝑝 + 𝑞

(1 − 𝑒−(𝑝+𝑞)𝑡) + 𝛽𝑒−(𝑝+𝑞)𝑡.

Then we have that
𝑑
𝑑𝑡

𝛽𝑡 = 𝑝(1 − 𝛽𝑡) − 𝑞(1 + 𝛽𝑡).

We can use this to compute 𝑑
𝑑𝑡𝜑(𝛽𝑡), since we know that

𝑑
𝑑𝑡

𝜑(𝛽𝑡) =
𝑑
𝑑𝛽

𝜑(𝛽𝑡) ⋅
𝑑
𝑑𝑡

𝛽𝑡

= 𝑐𝑝𝑞

√

𝑓 ′(𝑟(𝛽𝑡)) − 𝑓 ′(𝓁(𝛽𝑡))
𝑟(𝛽𝑡) − 𝓁(𝛽𝑡)

⋅ (𝑝(1 − 𝛽𝑡) − 𝑞(1 + 𝛽𝑡))

= 𝑐𝑝𝑞

√

𝑓 ′(𝑟(𝛽𝑡)) − 𝑓 ′(𝓁(𝛽𝑡))
𝑟(𝛽𝑡) − 𝓁(𝛽𝑡)

(

−2
(

𝑝𝑞
𝑝 + 𝑞

)(

𝑝 + 𝑞
𝑝

1 + 𝛽𝑡
2

−
𝑝 + 𝑞
𝑞

1 − 𝛽𝑡
2

))

= 𝑐𝑝𝑞

√

𝑓 ′(𝑟(𝛽𝑡)) − 𝑓 ′(𝓁(𝛽𝑡))
𝑟(𝛽𝑡) − 𝓁(𝛽𝑡)

(

− 2
𝑐2𝑝𝑞

(𝜌𝛽𝑡 (𝑏) − 𝜌𝛽𝑡 (𝑎))

)
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= 𝑐𝑝𝑞

√

𝑓 ′(𝑟(𝛽𝑡)) − 𝑓 ′(𝓁(𝛽𝑡))
𝑟(𝛽𝑡) − 𝓁(𝛽𝑡)

(

− 1
𝑐2𝑝𝑞

(𝑟(𝛽𝑡) − 𝓁(𝛽𝑡))

)

= − 1
2𝑐𝑝𝑞

√

(𝑟(𝛽𝑡) − 𝓁(𝛽𝑡))(𝑓 ′(𝑟(𝛽𝑡)) − 𝑓 ′(𝓁(𝛽𝑡)).

By equation (1), we see that 𝑑
𝑑𝑡𝜑(𝛽𝑡) = −̃ ′(𝜑(𝛽𝑡)).

Conclusion: Extending to the general space

In this thesis, we have worked solely in the space of probability measures on two-node graphs,(1), introducing
a metric  , examining its properties, before introducing and proving a major result, that heat flow is the gradient
flow of the entropy. Moving forward, readers can refer to [3] to see how Maas generalizes these ideas to the more
general space of graphs, using the base ideas developed in the two-node example.

Acknowledgments

I’d like to sincerely thank Claire Murphy for her patience, time, and care throughout this process. Having her as
a mentor and friend has been the most valuable part of this project, her patience and enthusiasm have helped me
understand more than I ever thought possible. This thesis truly would not be the same without her. Thank you
to Professor Katy Craig for always encouraging me, helping me find my path in mathematics, and being the best
role model I could ask for. I would also like to thank my mother, Kamna Mittal, for supporting me throughout
my time at UC Santa Barbara, and my best friend, Greta, for keeping me laughing, even through the stressful
days.

REFERENCES

[1] M. ALDRIDGE, Math2750: Introduction to Markov Processes. https://mpaldridge.github.io/math2750/, 2021. Accessed: 2025-05-04.
[2] R. JORDAN, D. KINDERLEHRER, AND F. OTTO, The variational formulation of the Fokker–Planck equation, SIAM Journal on Math-

ematical Analysis, 29 (1998), pp. 1–17.
[3] J. MAAS, Gradient flows of the entropy for finite Markov chains, Journal of Functional Analysis, 261 (2011), pp. 2250–2292.
[4] F. SANTAMBROGIO, {Euclidean, Metric, and Wasserstein} Gradient Flows: an overview, Bulletin of Mathematical Sciences, 7 (2017),

pp. 87–154.

12

https://mpaldridge.github.io/math2750/

	Introduction to Gradient Flows
	Introduction to Markov Chains
	Defining W on the Two-Point Space, P(Q1)
	The Isometry Induced by W
	Example:  is the Logarithmic Mean
	W-Geodesics
	Gradient Flows with respect to W
	References

