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1. THE MOTIVATION AND BASIC IDEA 

A knot is a smooth simple closed curve, K, in the 3-sphere, S3. The knot exterior is the 
compact 3-manifold X= S3 - 71(K) where q(K) is an open tubular neighborhood. The group 
r,(X) is called the knot group associated to the knot. We recall that the boundary of X is a 
torus T and there are two simple closed curves on X called a longitude and meridian which 
intersect transversely in a single point. These two curves generate r,(T) = Z X z! which is 
usually referred to as the peripheral subgroup. 

In the 1960s Waldhausen showed that the data consisting of the knot group plus the 
peripheral subgroup is a complete knot invariant. The difficulty is that although a powerful 
invariant it is extremely difficult to work with this data directly. One usually makes a trade- 
off and at the expense of some loss of information constructs a usable invariant. The 
Alexander polynomial is an example of this. 

A classical way to study groups is to look at their linear representations and this suggests 
that one studies representations of knot groups into linear groups. Waldhausen’s results 
suggest that one should also try and keep track of some of the peripheral data. 

What is actually studied in this context is the totality of linear representations into 
SL(2,C). (One can work with more general Lie groups but a good deal less is known. The 
isomorphism PSL(2,C) = Z som + ( W”) makes this choice occupy a special place in the 
current theory.) As we indicate below, given a finitely generated group, G, the set of 
representations of G into SL(2,C) is an affine algebraic set which we will refer to as the 
representation variety even though it is typically a finite union of (irreducible) algebraic 
varieties in the sense of algebraic geometry. 

Varieties are also difficult to work with directly, but when G is a knot group the peripheral 
subgroup of the knot provides a way to produce a more manageable algebraic set: one uses 
the longitude and meridian to project this representation variety into a smaller affine space 
which records the restriction of the representations of G to the peripheral subgroup. 

One now obtains an invariant of the knot: an affine variety in an affine space with 
canonical coordinates determined by the longitude and meridian. This variety determines an 
ideal which is generated by a single integral polynomial in two variables, and this is the A- 
polynomial. 

Work of Thurston on hyperbolic structures, and of Culler and Shalen imply that the A- 
polynomial is closely connected to many geometric and topological properties of the knot. In 
fact it turns out that the Newton Polygon of the A-polynomial contains a great deal of subtle 
information about the knot exterior. 
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2. DEFiNITION OF THE A-POLYNOMIAL 

In 1977. Thurston showed that many 3-manifolds admit a so-called hyperbolic sfructure [l]. 
We do not give the technical definition since we shall not need it. However what will be 
important in the sequel is the consequence that the fundamental group of many manifolds 
have irreducible representations into the Lie group Zsorrz +(H3) = PSL(2,C). It is shown in [2] 
that a representation corresponding to a complete hyperbolic structure can always be lifted 
to S1,(2,C), and it is SL(2,C) with which we shall work. 

Now observe that given any representation p of a group, we can obtain another 
representation pA by stipulating that pA(g) =A.p(g)-A ‘, where A is any matrix in SL(2,C). 
One says that p and pA are con&g&e. In general these representations will be different, but 
the difference is not regarded as a substantial one, and one often works with representations 
up to conjugacy. (Or by using the closely related theory of characters.) 

It makes sense then to ask how many different representations a 3-manifold group has up 
to conjugacy. In the case that the manifold has a torus boundary component, Thurston shows 
that there are many by proving that usually representations can be ‘deformed’: 

Theorem 2.1. ]l] Let X be a manifold with a single torus boundary component T’. Suppose 
that p:r,(X) -+ SL(2,C) is an irreducible representation with the property that p(rr(T’)) is 
not the trivial subgroup. 

Then the complex dimension of the space of small deformations of p up to conjugacy is at 
least one. 

A word of explanation about the conclusion is in order as this will be the starting point of 
what follows. Suppose that ri(X) has a finite presentation (g,,..., gk / RI,..., R,). Then we wish 
to assign matrices Gj E X(2,@) to each g, so that when we substitute these matrices into the 
relations R,(g,...., gl;). we see the equation 

Ri(G::...,GI;) = I 

The representation p is then given by p(gi’l = G,. Conversely. any representation describes 
such a collection of matrices G,. 

To construct such matrices. we regard each matrix C;; as a 2 X 2 matrix of indeterminates. 

G: .= 
II, h,’ 

! 1 c rl 
and formally make the substitution into all the relations: each condition of 

the form (*i yields four equations and hence we obtain a system of 41 polynomial equations 
which must be satisfied in order to have a representation. We also require each matrix has 
determinant 1. so that we obtain a further k equations of the form a,~$ - b&= 1. Any 
complex solution to these equations gives rise to a representation of the group ri(X) and 
conversely, any representation gives rise to a solution to these equations. This shows that the 
set Hom(7r,(X),$L(2,C)) has the structure of an afine algebraic set and that the tools from 
algebraic geometry can be brought to bear. The presence of the representation p shows that 
the set is not empty. 

Thurston’s theorem is proved by showing that the solutions near to the solution 
corresponding to p have complex dimension 4. The Lie group SL(2,C) has complex 
dimension 3, so that when we identify conjugate representations we obtain a one complex 
parameter family of solutions which turns out to be equipped with the structure of an affine 
algebraic curve. 

One way of seeing this last statement is as follows. The boundary torus has fundamental 
group Z @ Z and one can easily show the generic representation of this group into SL(2&) 
can be conjugated to be upper triangular and to have the shape: 
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No further conjugacy of p is possible once we have decreed it is of this form on the 
boundary torus, so that an informal description of the affine algebraic set of ‘representations 
up to conjugacy’ is given by taking all the polynomial equations described above together 
with two more equations which specify that the lower-left entries of the two elements Al. and 
A are zero. 

We shall denote the affine algebraic set constructed in this way by R(rr,(X),SL(2$)); 
Thurston’s theorem shows that this set has a component (in the sense of algebraic geometry) 
of complex dimension at least one. 

This idea was then taken up by Culler and Shalen in [2] and [3]. Somewhat amazingly, they 
showed that this information has implications for the geometry of the manifold. To state their 
results we need some definitions. 

We will consider embeddings of connected orientable surfaces i:S -+ X which are proper, 
that is to say i:dS+ dX. We say such an embedding is incompressible if the induced map 
i:?r,(S) --+ ri(X) is injective. A closed surface in the interior of X is called boundary parallel if 
it can be homotoped into the boundary of X. Usually one makes another stipulation that the 
surfaces are boundary incompressible but we will not define this formally. One can roughly 
think of this condition as requiring that there are no redundant boundary components. An 
incompressible, boundary incompressible surface which is not boundary parallel is called 
essential. 

Essential surfaces are a powerful tool for understanding a manifold. In the context of knot 
complements, it was classically known that there is always at least one essential surface, a 
Seifert surface. This is an essential surface in the knot exterior with boundary a longitude of 
the knot. However it was a longstanding open question whether there was always a 
separating essential surface. This was resolved by: 

Theorem 2.2. (Culler-Shalen [3]) Suppose that X is an irreducible 3-manifold with a single 
torus boundary component. Then either M = 0’ X S1 or X contains a separating essential 
surface with non-empty boundary. 

We outline the major steps which lead to this result; a slightly more detailed (geometric) 
description of the ingredients is contained in Section 7. 

Some classical 3-manifold topology shows that the crucial case is when X is hyperbolic; 
Thurston’s theorem guarantees an affine algebraic curve of representations %’ of the 
fundamental group. Any affine curve has points at infinity (the so-called ideal points) and one 
fixes one of these and examines what happens to representations which are very close to this 
ideal point. One applies Bass-Serre theory [4] and deduces that the group ri(X) acts on a 
certain simplicial tree. This gives the algebraic information that 7.r1(X) has a decomposition as 
a graph of groups. 

Now there is a topological idea which goes back to Stallings [S] and Epstein [6] that a 
graph of groups decomposition of the fundamental group of a 3-manifold, X, can be changed 
into a (possibly different) decomposition which is realized topologically in X. For example, if 
~-r(x) =A*B is a free product decomposition, then there is a sphere embedded in X which 
separates X into two complementary components whose fundamental groups are A and B 
[5]. More generally if ri(X) EA*~B is the free product of A and B amalgamated along a 
subgroup C then there is an essential surface F properly embedded in X with r,(F) injecting 
into the subgroup C of rri(X). 

In summary, the argument so far has shown that to each ideal point one can associate a 
splitting of the group and hence an incompressible surface. However, these surfaces are 



possibly closed or possibly the Seifert surface. The theorem is completed by showing that for 
at least one ideal point one obtains a surface which is neither of these types; we now outline 
this step as it will be of interest to us in the sequel. 

As representations move around on the curve %, we can examine the behavior of the pair 
of ‘eigenvalues’ (M,L) which arise by restricting the representation to the boundary torus. In 
fact, if we fix coprime integers, a and b we can ask about the eigenvalue of the element 
fi”Ah E 7~r(?‘), (namely M”.L’) and with some care one can make sense out of the idea that 
for each (a,b), there is a holomorphic map f&% --;f C which assigns to a representation the 
eigenvalue at the representation of the element ,u’A ‘I. 

Fixing some ideal point of %‘, two kinds of behavior are now possible for the functions 
ga.h = fa,,b + l/& near this ideal point. One possibility is that for every choice of coprime (a&), 
the functions g,,b remain bounded. One then shows that the surface associated to the splitting 
can be chosen to be closed. Otherwise, there is a single choice f (a&) for which g,,b remains 
bounded and for every other pair, the function gn,b has a pole at the ideal point. A surface 
(S,dS) associated to this ideal point has boundary and has all its boundary curves parallel to 
the curve p”Ab. One says that the pair (a,b) is a boundary slope. Usually these are encoded 
as a/b E a;S U (110). 

The argument of [3] concludes as follows. One can show that in this setting, the functions 
ga,& are always non-con&u& so no g,,, can be bounded at every ideal point. It follows that 
there are at least two distinct values of (a,b) which are boundary slopes and now an easy 
homology argument shows that one of them must correspond to a separating surface. 

Some years later, these ideas were used to define a knot invariant, the A-polynomiuE [7]. 
Suppose that M is a knot complement and project the affine algebraic set 
5:R(7r1(X),SL(2,C))-+ C*, a map defined by l(p) = cf,(p)f,(p)). It turns out that although 
the image of 5 need not be an affine algebraic set, it is very close to being one and if we take 
the closure (either in the classical or Zariski topology) we obtain a new affine algebraic set. 
the eigenvalue variety g = t(R) c C”. One can show (see below, Corollary 3.8) that all the 
components of % have complex dimension zero or one. Discard the zero dimensional 
components. 

Now we appeal to the crucial fact (see 181, proposition 1.13) that an irreducible algebraic 
hypersurface in Cz is the zero set of a single polynomial of two variables (in the language of 
algebraic geometry, the associated radical ideal is principal). Thus for each curve component 
‘%, of 8 we may associate a two variable polynomial c,(M,L). We define 

where the product is taken over the polynomials associated to each curve component of Y. 
The point of dividing out by the factor L -- 1 is that H,(X) = 7 for any knot so that we always 
have a component corresponding to abelian representations; these give rise to a factor L - 1 
since A lies in the commutator subgroup of the knot group. This normalization arranges: 

Corollury 2.3. Let K c S” be the unknot. Then A,(M,L) = 1. 
There is some ambiguity in A since one can regard it as the generator of an ideal, but it 

turns out that we may scale so that A,(M,L) is an integer polynomial and it is then defined 
up to multiplication by f L”MP. There are two alternative normalizations. The first is to 
choose cu,p so that the A-polynomial is unchanged by simultaneously replacing both L,M by 
their reciprocals, this is possible by Theorem 3.5. This results in a Laurent polynomial 
symmetric about the origin. The second is to choose a, p so that A,(L,M) is a polynomial of 
minimal total degree. With either of these conventions, the A-polynomial is defined up to 
sign. 
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Another matter of convention is whether or not one counts components of the variety 
corresponding to the A-polynomial with multiplicity. This corresponds to deciding on whether 
or not the definition of the A-polynomial should allow repeated factors. As these issues at the 
present time do not seem to be of much importance, we will ignore them here. 

3. PROPERTIES OF AK 

It would appear that the A-polynomial, being a description of a polynomial ideal 
associated to the eigenvalues of representations encodes information about a knot which is 
somewhat obscure. However it turns out that a good deal of geometric information is 
captured. The most primitive example of this comes from a comparison with the Alexander 
polynomial; the precise result needs to be stated a little carefully (for which we reference [7] 
and [9]), but one can summarize roughly by saying that it is known that the A-polynomial 
contains at least as much information as the Alexander polynomial in the sense that if the 
Alexander polynomial is non-trivial then so is the A-polynomial. Moreover, conjecturally, 
one can actually recover the factors occurring in the Alexander polynomial from A, but 
although this is proven in many special cases, a proof that this works in general is lacking. 

We now address some of the most basic issues attaching to any invariant. For example, one 
immediate question which arises is the question of how powerful an invariant A is. In this 
direction we note that it follows immediately from the definition: 

Theorem 3.1. Suppose that K c S3 is any hyperbolic knot. Then AK is non-trivial. 
This already covers a very large class of knots. In general, it seems probable that the A 

polynomial is non-trivial for any non-trivial knot, but this remains open because the 
following is unresolved: 

Question 3.2. Suppose that KC S3 is a non-trivial knot. Does m1(S3 - K) admit an irreducible 
representation into SL(2,@)? 

It is known that the A-polynomial is not a complete invariant of knots: it is shown in [lo], 
that there are different knots with the same A-polynomial. 

A related issue is how the invariant changes as one applies various symmetries to a knot. It 
is easily seen that reversal of string orientation is not detected by A, but reflection potentially 
is: 

Theorem 3.3. If K and K’ are mirror images, then A,(M,L) = A,.(M,lIL) up to powers of M 
and L. 

Example 3.4. One trefoil has polynomial 1 + M6L, the mirror image has polynomial L + M6. 
In particular, A is powerful enough to show that these are distinct knots. 

Another basic issue with any invariant is the question of the set of values the invariant can 
take on. Some restrictions are easily seen: 

Theorem 3.5. Suppose that K is a knot in S3. Then: 

l A,(M,L) contains only even powers of M; 
l A,(M,L) =A,(l/M,lIL) up to powers of L and M. 

These two properties can safely be left as an exercise in the definitions for the untiring 
reader. Slightly more subtle is: 

Theorem 3.6. Suppose that K is a knot in S3 with the additional property that every closed 
incompressible surface embedded in S3 - N(K) is parallel to the boundary torus. 

ThenA( f 1,L) = n-(L + l)“+.(L - l)“-.Lp for some non-zero integer II. 
In general, specializing M= f 1 in A either corresponds to representations where the 

meridian has eigenvalue f 1 or to points at infinity in the eigenvalue variety. However it 
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turns out that this latter possibility is excluded by the hypothesis on closed surfaces (see 
[11]). 

Once we know that the roots of A( ± 1,L) correspond to representations of the knot 
complement, it is not difficult to see that the only possibilities for such roots are { + 1,0}. (In 
fact, it follows from [12] below that n = ± 1.) 

Question 3.7. Do the constants a ± or fl have any geometric significance? 
There is a much more interesting and less well-understood condition. It is shown in [7] 

(4.5) that one can associated to a representation of p of ~'I(X) into SL(2,C) a volume and 
this assignment defines a continuous function V: Hom(Trl(X),SL(2C)) ~ ~. 

Briefly, the idea is that given a representation p, one chooses a nice p-equivariant map of 
the universal cover 2£ of X into hyperbolic 3-space, H 3. Use this map to pull-back the volume 
form on H 3 to a 7rl(X)-equivariant 3-form on )( .  This descends to a form on X and 
integrating this over X gives the volume of the representation. In the case that the 
representation is the holonomy of a hyperbolic structure on X the volume defined this way 
equals the volume of X as a Riemannian manifold. 

Fix a representation p and as usual let L,M be the eigenvalues of the longitude and 
meridian. 

Set 
log(M) = £~ + iOn, log(L) = ~A + iOA 

Then define a 1-form to on ( C -  0) 2 by the formula to =/?~d0A- e~d0~. This form is not 
exact since dto= df,~ A d 0 a - d f a  A d0~. However pulling back to a curve C in 
Hom(Trl(X),SL(2,C)) gives the form ~*to which is exact since it equals + 2dV. This formula is 
due to Hodgson [13] (see also [7]). One can use the fact that ~o is not exact on ( C -  0) 2 to 
obtain: 

Corollary 3.8. [7] dimc(R) <- 1. 
This leads to an obstruction to a polynomial arising as the A-polynomial of a knot, namely 

if 3' is any loop on the curve A --- 0 then the integral of w around 3' must be zero. 
A specific example of this is the following: one finds that the polynomial of the figure eight 

knot is: 

A(L,M) = - 2 + M 4 + M  - a -  M 2 -  M - e -  L - L -1 

Changing this slightly gives a different polynomial: 
f (L ,M)=  - 2 + M 6 +  M - 6 -  M 2 -  M - e -  L - L -1 

One can use the volume form to show that this is not the A-polynomial of any knot. (See 
[10] for some details.) Nonetheless it does satisfy every other condition that we know of to be 
a knot polynomial. 

Question 3.9. Which affine curves ~ in (C - 0) 2 satisfy the condition that to is exact on cg? 
A final basic problem is the issue of whether the invariant can be calculated. It turns out 

(see [7] or [10] for details) that in principle, one can compute AK for any knot K. 
Nonetheless, it involves rather a lot of calculation and all but the simplest examples require 
the use of a computer. In this sense, the invariant appears to have a different character to 
other knot polynomials (e.g. Alexander and Jones), in that it seems unlikely that there are 
iterative crossing change formulae. 

4. THE NEWTON POLYGON AND BOUNDARY SLOPES 

The most important and deepest properties of the A-polynomial come from the fact that it 
encodes information about the boundary slopes of the knot, via its so-called Newton 
polygon. 
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If p(x,y) is a polynomial in two variables the Newton polygon of p is the convex hull of the 
finite set of points in the plane: 

Newt(p) = ((ij): th e coefficient of x’y’ in p(xy) is not zero). 

The sides of the Newton polygon describe the geometry of the curve % defined by p := 0 
when at least one of the coordinates is near zero or infinity. To see this, suppose that (X,Y) is 
a point on C and that at least one of the variables, for example X, has large modulus. The 
polynomial p is a linear combination of monomials of the form x”y” and the logarithm of the 
modulus of this monomial at (X,Y) is 4(a,b) = alog 1 X) + blog 1 Y I. 

Since p(X,Y) vanishes there cannot be a single monomial which is far larger in modulus 
than all the other monomials. One thinks of 4 as a linear map defined on I@ and in particular 
on the Newton polygon. The level sets of 4 are straight lines with slope - log 1 XI /log ( Y) . 
By the previous discussion there is a side of Newt(p) which is nearly parallel to these lines. 
Similar considerations hold if X is very close to zero. From this, one sees that to each 
topological end of the curve % one may assign an edge e of Newt(p) consisting of those terms 
of p of approximately largest modulus for points on % near the given end. 

This gives rise to a connection between sides of the Newton polygon and boundary slopes 
which we now sketch. Suppose that pn is a sequence of representations which are ‘blowing 
up’ on the boundary torus in the sense that at least one of the longitude or meridian 
eigenvalue is converging to 0 or CO (see Section 7) Then as we argued above, there is an edge, 
e, of Newt(A(L,M)) containing the terms of largest magnitude. If L”Mb and L”Md both lie on 
e then L”Mb= LcMd and so MbPdL”-’ = 1. Thus p,&b-dhn-c) has bounded eigenvalues 
and we are in the situation of the Theorem in [2] so that p b -dha-c is a boundary slope. The 
slope of this curve on the boundary torus is (b - d)l(a - c) which equals the slope of e. This 
proves one of the most important properties of A: 

Theorem 4.1. [7] Slopes of edges of the Newton polygon AK are boundary slopes of the knot 
K. 

As remarked above, although in general quite difficult, in principle the A-polynomial can 
always be computed so that this theorem gives a way of computing boundary slopes of any 
knot. 

The question which this immediately raises and which remains open is: 

Question 4.2. Does AK detect all the boundary slopes of K except possibly O/l for fibered 
knots? 

There seems to be some evidence that this is true. A proof would give a new proof of a 
theorem of Hatcher [14]: 

Theorem 4.3. [14] A manifold with a single torus boundary component has only finitely many 
boundary slopes. 

We briefly explain the reason for the exclusion of the slope O/l in Question 4.2. A knot 
may have the property that it can be written as a punctured surface bundle over a circle; such 
knots are called fibered knots and the surface in question (which is always unique up to 
isotopyj is called the fiber. It always has slope O/l and is the only incompressible non- 
separating surface with this slope. It is known (see [7]) that this machinery applied to 
irreducible representations can never detect fibers and it follows that if the knot K is fibered 
and has no separating surface of slope O/l, the A-polynomial will not detect O/l. This is not an 
uncommon situation. However, if one adopts the convention that the abelian representations 
of the knot complement are also included, the above machinery does detect fiber surfaces. 

A beautiful example of how this apparent disadvantage can actually be exploited is given 
by the A-polynomial of the knot SZO shown in Fig. 1. This knot is known to be fibered. 
However, one sees that the Newton polygon has detected a slope of O/l which means that 
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Fig. 1 

there is also a separating surface in this knot complement with slope 0/1. This is the first knot 
in the table with this property. 

The convex hull of the polygon in the figure shows that 82o has slopes {0,8/3,- 10}. It is 
possible to show that these are only slopes of the knot. The presence of the non-integral 
slope 8/3 is also interesting; it is the first knot in the table with such a slope. 

In fact there is even more geometric information which comes from the edges. The terms 
of the A-polynomial appearing along an edge e of its Newton polygon may be viewed as a 
polynomial in a single variable t called an edge polynomial re(t). It turns out that the variable 
t may be identified with an eigenvalue of the loop /3 on the boundary torus which is the 
boundary slope of an incompressible surface in the knot complement. Thus t= LqM p if the 
slope of/3 is p/q. 

Theorem 4.4. [7, 15, 12] The edge polynomial re(t) is a product 

n.A (it).f2(t)"'" fn(t) 
where n is an integer and f~(t) is a cyclotomic polynomial. 

If ~o is a pth root of unity which is a zero of f(t) then p divides the number of boundary 
components of every component of an incompressible surface associated to the action on a 
tree arising from a degeneration corresponding to the edge e. 

In summary, with the interpretation of the previous paragraph, if one goes to infinity in the 
eigenvalue variety, then the limiting value of the eigenvalue of the boundary slope is a root 
of unity. Moreover, the degree of this root of unity has consequences for the surfaces which 
arise from the degeneration. One interesting aspect of this theorem is the diverse methods of 
proof which are available to prove it. It can be proved geometrically, or by using Algebraic 
K-theory or by using the volume form together with Theorem 4.6 below. 

Definition 4.5. A corner of a polynomial p(x,y) in two variables is a term appearing in a 
corner of the Newton polygon of p. 

One might view corners as analogous to the first and last term in a polynomial in a single 
variable, in which case one interprets the theorem which follows as saying that the A- 
polynomial is monic if we assume that it has been normalized so that the greatest common 
divisor of its coefficients is 1. 

Theorem 4.6. [12] The coefficients of terms in the corners of the A-polynomial are + 1. 
This is perhaps the deepest property currently known about A. For example, it is stronger 

than the roots of unity theorem. It has various other consequences. Here are two simple 
ones: 

Corollary 4. 7. The constant n appearing in Theorem 4.4 is + 1. 

Corollary 4.8. The edge polynomials of a 2-bridge knot are all + (t - 1)k(t+ 1)( 

Proof. It is shown in [16] that an incompressible surface in a 2-bridge knot has one or two 
boundary components. The above theorems now give the result. [] 
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Example. Figure 2 below illustrates all these results. It shows the Newton polygon of the two- 
bridge knot 81 exhibiting the boundary slopes (12,0, - 41, corner entries of f 1 and edge 
polynomials t - 1, (t - l)* and (t - 1)3. 

5. DEHN SURGERY AND PROPERTY P 

Given a knot complement X= S3 - N(K) and a boundary slope a/b one can obtain a closed 
manifold as follows. Fix a closed curve (Y c JX= T* representing the slope a/b. Then a regular 
neighborhood of (Y in dX is homeomorphic to S1 X I. Attach a D* X Z to X along dX by 
identifying dD2 x Z= S1 X Z with this regular neighborhood of (Y. This yields a manifold with a 
single boundary component which is a 2-sphere. We cap this off with a 3-ball to obtain a 
closed manifold which we denote by X(alb) or X(a) if we have not chosen meridian- 
longitude coordinates. We say that X(alb) is obtained from X by Dehn filling along the slope 
a/b. (Or Dehn surgery depending whether your preference is for dentists or doctors.) 

Example 5.1. If K c S3, then X(1/0) = S3. 
An easy exercise in the Van Kampen theorem shows that rr(X((~)) is obtained from rl(X) 

by adding the single relation which says that the element of fundamental group represented 
by (Y is trivial, that is to say, rl(X(a)) has presentation r(X(a)) = < T,X] (Y = 1 > . 

One of the major thrusts of knot theory in recent years has been directed towards an 
understanding of which manifolds can be obtained as a result of Dehn surgery along some 
knot and the extent to which the geometry of the manifold must persist in the Dehn filled 
manifold. The usual flavour of the theorems proved in recent years has been that although a 
complicated manifold may become simpler (the above example shows that a hyperbolic knot 
complement may admit a surgery which is S”) this either happens finitely often or only for a 
very controlled set of surgeries. A very striking example is: 

Theorem 5.2. [ll] Suppose that X= S3 - N(K) . is a hyperbolic knot complement. Then there 
are at most three surgeries on X for which X, has a cyclic fundamental group. 

Examples exist which show that the number three cannot be improved. 
The Poincare conjecture asserts that a closed, simply-connected 3-manifold is 

homeomorphic to S3. One motivation for this theorem comes from the question of whether 
one can do surgery on a knot and obtain a counterexample to the Poincare conjecture. A 
knot for which it is impossible to do surgery and obtain a counterexample to the Poincare 
conjecture is said to have Property P. Many classes of knots are known which have Property 
P, but it remains open in general. 

The sharpest methods available at the moment split knots into two types: 
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l Knots which contain an essential closed surface in the exterior. 
l Knots which contain no such surface. 
The A-polynomial contains information about this problem at least in the case of the latter 
type of knot: 
/‘l~~~enz 5.3. [7] Suppose that there is no essential closed surface in the exterior of a knot K. 
Then IY has Property P if the degree of the A-polynomial in 34 is more than twice the degree 
in I.. 

All known A-polynomials satisfy this condition. It is easy to show that the M degree is 
always at least the I. degree. 

In fact in our current state of ignorance. the restriction to knots which do not contain an 
cssentinl. closed surface may hc completely unnecessary. As hinted above. the reason for 
imposing such a condition arises from ideal points lying at infinity in R(7r1(X),SL(2,C)) which 
pro,ject to finite points in -t. A sequence /),, in R( 7r,(X).SL(2.C.)) hk)ws up if there is cy in C; 
such that ~r(rce(~,,(~) -+ 11.. A Iiolr is a point in (i: 0)’ which is the limit of the projection, by 
6. of a sequence p,, that blows up. If there is an essential torus Tin X then one may slide the 
representation along T by conjugating the representation on one side of T by an element that 
commutes with n, 1: A similar construction can bc done if there is an essential annulus. These 
give rise to holes. However the situation is somewhat special, in particular. if X is hyperbolic 
then there are no such annuli or tori. 
L)~csrio~ 3.4. If X is hyperbolic, does 8 have any holes? 

If the eigenvalue variety of a knot has a hole, there must be a closed incompressible 
surface in the complement of the knot. No holes have ever been seen but this may be due to 
the complication of the knots which could possibly have holes. It would be convenient if the 
answer to this question were negative, but there seems to be no reason to believe this. 

Our remarks at the beginning of this section show that a representation of the knot 
exterior which kills A”@” induces a representation of the corresponding Dehn-filled manifold 
,‘I((&). Killing A”p” is almost the same as requiring that the eigenvalue, LqM”. of AiJgy is 
k !. It is not quite the same thing because of parabolics. However one can show: 

I’rop~sitio~l 52. [ 1 1] (also [ 171. section 2.1). Suppose that there is no essential closed surface 
in the exterior of a knot K. Suppose that LM are complex numbers with LqMP= f 1 and 
that A,, (L.M) = 0 and that either I_ f f 1 or M f f 1. Then Dehn-filling K along A“p”’ 
produces a closed manifold with non-cyclic fundamental group. 

Because of the problems they cause. we will call a boundary slope, cr. a Pesky houndar~ 
vlope. or p&slope if it satisfies two conditions: 
l Dehn-filling along u yields a manifold with cyclic fundamental group. 
l There is a degeneration of the knot exterior which produces an essential surface in the 

knot exterior with slope cy and such that the limiting eigenvalue of (Y is T I. 
WC will call a knot ~zrce if it has no pb-slopes. In his thesis [1X]. Shanahan gives a necessary 
condition based on the Newton polygon for a Dehn-filling on a nice knot to give a manifold 
with cyclic fundamental group. Shanahan defines. for each rational direction, a widrh of the 
Newton polygon in that direction as follows. Suppose that 3 is a polygon in the plane whose 
vertices have integer coordinates. Given p/q E Q U (l/O) define the p/q-width of 9 to be one 
less than the number of lines of slope p/q which intersect 9 and which contains a point with 
integer coordinates. Thus the l/l-width of a unit square is 2. The following is derived in [ 181 
using the work of Culler and Shalen [2.11]. 
‘Theorem 5.6. [18] Suppose K is a nice knot. If p/q is a cyclic filling, the p/q-width is minimal 
over all rational directions. Given a polygon. there are at most three such minimal-width 
directions. 
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For nice knots, this shows that the shape of the Newton polygon determines the 
possibilities for cyclic surgeries. In view of this the following question seems natural. An 
affirmative answer would also enable the hypothesis of no essential closed surface to be 
removed from 5.3 and 5.5. 
Question 5.7. Is every knot nice? 

6. GEOMETRIC STRUCTURES AND THE A-POLYNOMIAL 

In this section we discuss how for hyperbolic knot complements the A-polynomial gives 
information about the hyperbolic 3-manifolds obtained by Dehn-filling along the knot. There 
are in general many components of R(rrX) = Hom(~,X,SL&), but if the knot is hyperbolic 
there is a particular component, &,, which contains the holonomy, pO, of the complete 
hyperbolic structure. One corollary of Thurston’s theorem 2.1 is that there is a neighborhood, 
U, of p0 in R0 which corresponds to incomplete hyperbolic structures on X. This means that 
for each p # p. in U there is a hyperbolic metric on X which is metrically incomplete. Taking 
the metric completion yields a compactification XP of X. This compactification is either the 
one-point compactification of X (which is therefore not a manifold), or else it is a closed 
3-manifold obtained by Dehn-filling. Which of these possibilities arises depends on p. 

The topology of the completion depends only on the restriction of p to the fundamental 
group of i? If (Y is an essential simple closed curve on T and if p(a) = f I then X, is 
homeomorphic to X(Q). Since the A-polynomial encodes which representations of rrIT one 
obtains by restriction of a representation of rrrX, this means that the A-polynomial contains 
information about the hyperbolic 3-manifolds obtained by Dehn-filling along the knot. The 
core curve of a Dehn-filling is an unknotted simple closed curve in the solid torus glued on to 
the knot exterior which generates the fundamental group of the solid torus. 
Proposition 6.1. Given a hyperbolic knot exterior X then for all but finitely many homotopy 
classes of LY the manifold X(a) is hyperbolic. The holonomy, p, of X((Y) lifts to a 
representation p of rrrX satisfying p(a) = f 1. If CY = pPAq then there are integers Y,S with 
pr - qs = 1 and the core curve is homotopic in X(a) to ,u’h’. The holonomy of the core curve 
satisfies trace (pp) = T+ l/T where T= M”L’ and L,M satisfy the two equations 

A(L,M) = 0, MPLq = f 1. 
However, in general, there are other components of R(r,X) other that R, and so this is 

not the end of the story. It does raise the question of what subset of R, corresponds to 
incomplete hyperbolic structures on X, the so-called hyperbolic region of Dehn-surgery 
space. This is intimately connected to the Geometrization conjecture for closed 3-manifolds. 

For a hyperbolic knot, the unique complete hyperbolic structure on the knot complement 
gives rise to a Euclidean similarity structure on the boundary torus T. Such a structure is 
determined by a complex number x + iy with y > 0 called the cusp constant. In [lo] it is shown 
that the cusp constant is a root of a polynomial derived from the A-polynomial. 

7. DEGENERATIONS, ACTIONS ON TREES, AND INCOMPRESSIBLE SURFACES 

If G is a finitely generated group then a sequence of representations of G into SL(2,C) 
which goes to infinity gives rise to an action of G on a tree. By classical topology, if M is a 
3-manifold and G = ~$4 acts on a tree without a common fixed-point then one obtains an 
incompressible surface in M. This theory was described in [2] in terms of the Bass-Serre 
theory applied to SL(2,K) where K is a field equipped with a discrete rank-l valuation. There 
is a less elegant and more geometric way to describe the idea, and this was done in [19,15]. 
We will recapitulate the geometric approach, treading lightly over details which may be 
found in the above. 
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First one must confront the problem that conjugacy poses. We think of a representation of 
a finitely generated group, G, as an assignment of matrices in SL(2,C) to each of some fixed 
finite set of generators of G. Given a representation one may conjugate it to obtain another 
representation. Doing this repeatedly sometimes gives a sequence of representations which 
goes to infinity in the sense that some matrix entries go to infinity. Conjugation corresponds 
to a change of basepoint (and base-frame) and does not tell us anything about G. An obvious 
way to overcome this is to consider, in place of the representation, the character of the 
representation, the point being that the trace of a matrix is not changed by conjugacy. This 
approach leads to the consideration of the closely related character variety instead of the 
representation variety. We will not do this in this article. 

The idea for understanding degenerations geometrically is roughly the following. Let G be 
a finitely generated group and (W, dw) a metric space. Consider a sequence, pn, of 
representations of G into the group, Isom(W), of isometries of W. We will say that this 
sequence blows up if there is an element g of G such that the sequence pn(g) cannot be 
conjugated to lie in any compact subset of Isom(W). Suppose that it is possible to linearly 
rescale the metric on W to obtain a sequence of metric spaces, W,, which converge in some 
sense to a limiting metric space W. We want to do this in such a way that the actions p~ on 
the rescaled spaces W~ have a subsequence that converges to an interesting action, FS, by 
isometries on W. The particular case we have in mind is that W= H 3 and W is some sort of 
tree. 

Example 7.1. Let G be a free non-abelian group on two generators a,fl, and suppose that W 
is ~ x  S 1 metrized as a right circular cylinder. The isometry group of W is 
Isom(W)~-Isom(R) X Isom(S 1) which has four connected components. The component 
containing the identity is isomorphic to the Lie group ~ × S 1. Suppose that we have a 
sequence, p,:G~Isom(w) which is blowing up. Then we can choose a subsequence (which 
for simplicity of notation we assume to be the original sequence) and A ~ o o  with the 
following property. Rescale the metric on W by multiplying by A ~- 1 to obtain a metric space 
Wn ~- (W, hn-ldw). Then W, converges as a metric space to W = E with the usual metric. 
Furthermore we may arrange that the action of p,  on W~ converges to an isometric action of 
G on ~ such that some element of G is a non-zero translation. Rescaling the metric on W 
shrinks the circle factor until in the limit it has become a single point. 

A direct attempt to do this with hyperbolic space H 3 in place of W leads to complications. 
Instead one pulls back the metric from H 3 to a metric on G. This metric is rescaled, and 
under suitable hypotheses converges to a generalization of a tree, a so-called R-tree. 

Here are a few more details, see [19] for a treatment from this point of view. Consider the 
complete graph K(G) with vertex set the elements of G and with an edge connecting every 
pair of vertices. Given a representation p:G--~ Isom(H 3) we choose a G-equivariant straight 
map ~b:K(G)~H 3 as follows. First, given p, one chooses a point x in H 3 called an 
approximate center for p. This is a point with the property that the greatest distance x is 
moved by any of a fixed finite generating set of G is within 1 of the infimum of this quantity. 
Given x define ~b(g) = (pg)(x) and then extend ~b over the edges of K(G) by mapping an edge 
e with endpoints gl,g2 to the unique geodesic segment in H 3 with endpoints ~b(gl),~b(g2). 

The map ~b need not be injective, hence the pull-back via ~b of the hyperbolic metric to 
K(G) is a pseudo-metric. If one identifies points in K(G) which are zero distance apart in this 
pseudo-metric then one obtains a metric space which is isometric to the image of qk Given a 
sequence of representations of G one obtains a sequence of pseudo-metrics on K(G). Now a 
pseudo-metric is just a symmetric function 

K(G) x K(G)~ 

satisfying the triangle inequality One shows that this sequence of pseudo-metrics can be 
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resealed suitably so that a subsequence converges to a pseudo-metric on K(G). The metric 
space obtained from this pseudo-metric on K(G) obtained by identifying points which are 
zero distance apart is an R-tree. The reason for this is that a triangle in E-U3 is thin meaning 
that every point on one side of the triangle is within a distance of at most A = ln(1 + V/2) of 
the union of the other two sides. The resealed hyperbolic metrics pulled back to K(G) have 
the property that each side of a triangle in K(G) is within a distance Ah; r of the union of 
the other two sides. The limit as A,+ c~ gives a metric such that each side of a ‘triangle’ is 
within a distance 0 of the union of the two other sides. Thus every triangle in K(G) has 
collapsed to an interval or a figure Y, and K(G) has collapsed to an R-tree T. 

The next step is to find a G-invariant simplicial subtree To contained in T. Given an 
isometry 7 of metric space X, the translation length, t(T), of T is defined to be the infimum of 
the distance between n and rx as x varies over X. In particular if r has a fixed point then 
t(T) = 0. Given an action p:G + Zsom(W) the translation length function associated to p is 

L,:G -+ [0,x) 

given by L,(g) = t(p(g)). We have produced an action of G on the R-tree T. The metric on T is 
only defined up to resealing by multiplying by a constant. Suppose that for this action the 
translation length of every element of G is integral. One then shows by a combinatorial 
argument that T contains a G-invariant simplicial subtree. 

To obtain the condition on integral translation length one shows that if C is an affine 
algebraic curve contained in R(G) and that p,, is a sequence of points in C which blow up and 
which converge to some end E of C then the translation length function for the action on the 
R-tree, T, obtained above can be scaled to be integral valued. This is shown as follows. 
Suppose we have a sequence of representations p,:G+ SL(2$) which converge in the above 
sense to an action on an R-tree KG+ Zsom(T). Let L,“:G + R be the translation length 
function of pn and L, that for (+. Then there are positive real numbers A, such that 
lim n+&lLp, = L 

Given an elemen;A of SL(2,C) the translation length of A thought of as an isometry of E-U3 
is 2cosh - ’ ) truce(A)/2 1. Given an element g of G and a representation p E C the translation 
length of p(g) is a real valued function on the curve C, denoted t,:C+ R. Now 
p(p) = truce(pg) is a Laurent polynomial function on the curve C. Also 
t,(p) = 2cosh -r ] t,(p) I= 21n 1 t,(p) ] . Th e rate at which this polynomial goes to infinity as p -+ E 
determines the translation length of g on the limiting R-tree. We illustrate this with an 
example: 

Example 7.2. Consider the special case that the affine curve C is just the complex plane C’. 
Then p(p) is a laurent polynomial ~~+a~-rz~-~ + . . . +uk-l. This has the same magnitude as 
z k when z is large. Also cash - 1 I zk ] = kln 1 z ] when z is large. Thus scaling the translation 
lengths of pn by dividing by In 1 z, ] shows that L, may be scaled to be integral. One thus sees 
that L,(g) is the degree, k, of the Laurent polynomial p(p) on the curve C. 

More generally, given an affine curve C and an end E there is a function which assigns to 
each polynomial function an integer which generalizes the idea of the degree of a 
polynomial. This integer measures the rate at which the polynomial goes to infinity as you go 
out along C towards the end E. This function is the valuation on C associated to the end E. 
(This is the valuation used on the function field in [2]. See [19] for an geometric description.) 
The translation length L,(g) of the element g on the R-tree T is the valuation evaluated on 
the polynomial p(p), and is therefore integer valued. 

A simple example of this theory arises from looking at abelian representations of the knot 
group, G, into SL(2,c). The abelianization of G is Z with the meridian abelianizing to 1 and 
the longitude to 0. Given a non-zero complex number, t, there is an abelian representation pI 
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which sends the meridian to the diagonal matrix with diagonal entries t, 1/t. As t ~  oc the tree 
produced by rescaling is the real line, and G acts by integer translations. 

If a group G acts on a simplicial tree T then there is associated to this action a 
decomposition of G as a graph of  groups constructed as follows: The space obtained from T 
by identifying points in the same orbit under G is a simplicial graph F. If G is finitely 
generated and T has no invariant subtree, then F is a finite graph. To each vertex and edge of 
F one assigns a group and also a monomorphism from the group assigned to an edge to the 
group assigned to the vertex at either end, see [4] and also [19]. For each vertex v, in F, one 
chooses a vertex 0 in T which projects to v, then the group assigned to v is the stabilizer of ~?, 
in other words the elements of G which fix 0. Similarly groups are assigned to edges. 

As described earlier, an action of the fundamental group of a 3-manifold gives rise to an 
essential surface. The A-polynomial gives information about how these incompressible 
surfaces in the knot exterior intersect the boundary torus OX. The idea is that representations 
of lrl(X) which degenerate can be restricted to Irl(dX) to give limiting actions of rrl(gX) on 
a tree. Either the action of 7rl(gX) on the tree has a common fixed point. In this case there is 
a closed surface F in X which is disjoint from OX associated to the degeneration. The other 
possibility is that the action of ~rl(0X) on the tree T contains an invariant subtree which is a 
copy of R. Then ¢rl(gX) acts by integer translations on ~. The kernel of this action is an 
infinite cyclic subgroup of 7r~(OX) and a generator of this subgroup is represented by a simple 
closed curve, a,  on dX. Then any surface F associated with this degeneration intersects OX in 
curves parallel to a. Such a curve is a boundary slope of the knot. 

The A-polynomial tells us which boundary slopes o~ arise this way. Recall that the traces of 
an element is large if and only if the translation length of that element is large. One is thus 
looking for complex numbers L, M such that A(L,M)--0 and also so that at least one of 
L+I /L ,M+I /M is near infinity. The elements of 7rl(gX) act by translation on ~ and the 
translation distance is determined by how fast the trace of the element goes to infinity under 
the degeneration. The element a is some element whose translation length, and hence trace, 
remains bounded as the representation goes to infinity. Now as elements of rrl(gX) we have 
Ol =[.lbP/t~ q for some coprime integers p,q. The eigenvalues of a are thus (MPL q) ±1. We thus 
seek L,M as above with MPL q bounded away from 0 and ~. Clearly this information is 
contained in the A-polynomial, in fact via its Newton polygon. 
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