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Read with suspicion. Please let me know about wrong things you find below. Thanks.

Solutions of Some Problems

Problem 9 (label “cmc”) part (c): This question is answered in the affirmative if we show
that {fj} is Cauchy in measure together with the convergence of a subsequence fjl

→ f
a.e. implies that fj → f in measure. Since

{|f − fk| > ε} ⊂ {|fk − fjl
| > ε/2} ∪ {|fjl

− f | > ε/2}

and the measure of the first set can be made small by taking k, l large, it suffices to show
that the measure of the second set can be made small by taking l large. This reduces
the issue to showing that Cauchy in measure and convergence a.e. implies convergence in
measure.

Thus let {fj} be Cauchy in measure and fj → f a.e. Recall that fj → f a.e by
itself is not, in general, enough to imply that fj → f in measure. Throw out the null
set of x’s for which fj(x) 6→ f(x), so that we may assume fj → f everywhere. Then
|f(x)−fk(x)| > ε implies that |fj(x)−fk(x)| > ε as soon as j is large enough (with “large
enough” depending on x and ε). That is,

{|f − fk| > ε} ⊂
∞⋃

J=1

∞⋂
j=J

{|fj − fk| > ε} .

Since ∩∞j=J {|fj − fk| > ε} gets bigger as J increases, this implies that

µ({|f − fk| > ε}) ≤ lim
J→∞

µ
(
∩∞j=J {|fj − fk| > ε}

)
≤ lim sup

J→∞
µ ({|fJ − fk| > ε}) .

Since {fj} is Cauchy in measure, the right-hand side is less than ε if k is sufficiently large.
(This solution was suggested by the psets of Tomas and Kamille).

Problem 17 (label “nolo”): Consider the mapping f 7→ sN(f) :=
∑N

−N f̂(n)eint, which

takes f into the N th partial sum of its Fourier series. Show that it is not true that for all
f in L1(−π, π) we have ‖f − sN(f)‖L1(−π,π) → 0 as N → ∞. Hint: In outline, but not
in detail, the proof mimics the proof that Fourier series of a continuous function do not
converge pointwise to the function. You need to show that ‖SN‖ is unbounded in N , and
this is related to ‖DN‖L∞(−π,π).

Solution
We first remark that final part of the “Hint” is not directly used below; our advice was

misleading, apologies.
Let DN(t) = sin((N + 1/2)t)/ sin(t/2). It suffices to show that if

show (0.1) TNf(t) :=

∫ π

−π

DN(t− s)f(s) ds = 2πSN(f)(t)

1
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then ‖TN‖ (as a linear mapping from L1(−π, π) into itself) is unbounded in N. By the
uniform boundedness principle, this implies that {SN(f)} is unbounded in L1(−π, π) for
a dense Gδ bunch of f ′s in L1(−π, π), and for those f ′s, ‖SN(f) − f‖L1(−π,π) → 0 as
N →∞ is impossible.

Let us assume, to the contrary, that ‖TN‖ ≤ M for all N. Then if f ∈ L1(−π, π),
g ∈ L∞(−π, π), we would have, using Fubini and then that DN is even,∣∣ ∫ π

π

TN(f)(t)g(t) dt
∣∣ =

∣∣ ∫ π

−π

(∫ π

−π

DN(t− s)f(s) ds

)
g(t) dt

∣∣
=

∣∣ ∫ π

−π

(∫ π

−π

DN(t− s)g(t) dt

)
f(s) ds

∣∣
=

∣∣ ∫ π

−π

TN(g)(s)f(s) ds
∣∣

≤ ‖TN(f)‖L1(−π,π)‖g‖L∞(−π,π)

≤ M‖f‖L1(−π,π)‖g‖L∞(−π,π)

dualize (0.2)

The first inequality above is a bound on the far left-hand side of the chain of relations,
and the second inequality is from the assumption ‖TN‖ ≤ M for all N.

Choosing f = χE after the third equality sign, where E ⊂ (−π, π), this tells us that∣∣ ∫
E

TN(g)(s) ds
∣∣ ≤ M |E|‖g‖L∞(−π,π)

where |E| is the Lebesgue measure of E, and this implies that

‖TN(g)‖L∞(−π,π) ≤ M‖g‖L∞(−π,π)

However, we already shown that this cannot hold, even for g ∈ Cp([−π, π]). See the
arguments following equation (6.44) in the notes (label “ubfs”).

Problem 19 (label “nolo”) part (iv) The problem here was to show that Tεf := ρε∗f does
not converge to the identity in the normed space L(Lp(IRn), Lp(IRn)), or

lim sup
ε↓0

‖Tε − I‖ 6= 0.

We’ll work in L1(IRn). Assume the contrary. Then there is a κ(ε) > 0 satisfying
lim supε↓0 κ(ε) = 0 such that

dst (0.3) ‖ρε ∗ f − f‖1 ≤ κ(ε)‖f‖1.

Put f = gδ(x) where δ > 0 and

g(x) :=
1

ωn

χB(0,1)(x), gδ(x) :=
1

ωnδn
χB(0,1) (x/δ) =

1

ωnδn
χB(0,δ) (x) ;

where ωn is the volume of the unit ball in IRn. That is, gδ is related to g as ρε is related
to ρ. Then ‖gδ‖1 = 1 and (0.3) tells us that

‖ρε ∗ gδ − gδ‖1 ≤ κ(ε)
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Next, for fixed ε > 0, limδ↓0 ‖ρε ∗ gδ − ρε‖1 = 0 by the theorem on approximate identities.
Putting this together with (0.3), we have

‖ρε − gδ‖1 ≤ ‖ρε ∗ gδ − gδ‖1 + ‖ρε ∗ gδ − ρε‖1

≤ κ(ε) + θ(δ, ε)
comboest (0.4)

where limδ↓0 θ(δ, ε) = 0 for fixed ε > 0. However,

‖ρε − gδ‖1 =

∫
IRn

∣∣ 1

εn
ρ

(x

ε

)
− 1

δnωn

χB(0,δ)(x)
∣∣ dx.

Changing variables by y = x/ε leads to

‖ρε − gδ‖1 =

∫
IRn

|ρ (y)− εn

δnωn

χB(0,δ/ε)(y)| dx.

This and (0.4) yields ∫
|y|>δ/ε

ρ(y) dy ≤ ‖ρε − gδ‖1 ≤ κ(ε) + θ(δ, ε).

This cannot be, for it implies that

1 =

∫
IRn

ρ dy = lim
δ↓0

∫
|y|>δ/ε

ρ dy ≤ lim
δ↓0

(κ(ε) + θ(δ, ε)) = κ(ε),

and κ(ε) < 1 if ε is sufficiently small.

Problem 21 (label “bm”) Show that if f : IRn → IR is Lebesgue measurable, then there
is a Borel measurable function f0 such that f = f0 a.e. You may quote - do so in detail
by giving page numbers or statements - results from KF or your lecture notes from last
quarter, but not other sources. Close any gaps to accommodate “infinite measures.”

Solution It suffices to assume that f ≥ 0. Indeed, splitting f into its positive and negative
parts, the result may be applied to each of them. If f ≥ 0, we showed in class that
there is an increasing sequence of simple functions {sj}∞j=1 such that limj→∞ sj(x) = f(x)
everywhere. If we can show the result for simple functions, then there are Borel measurable
functions bj such that sj(x) = bj(x) except on a Lebesgue null set Nj. It then follows that

f(x) = lim
j→∞

sj(x) = lim sup
j→∞

bj(x) except on N := ∪∞j=1Nj,

and N is a Lebesgue null set. Since measurability is preserved under “lim sup”, lim supj→∞ bj

is Borel measurable, and we are done.
Thus the issue is reduced to treating simple functions, that is finite linear combinations

of functions of the form χE where E is Lebesgue measurable. Clearly it suffices to treat
a single χE. From last term, you know that if |E| (the Lebesgue measure of E) is finite,
then there is an Fσ set E0 ⊂ E such that |E \ E0| = 0. In the general case, let Em =
E ∩ {x : |x| ≤ m} and Em,0 be an Fσ satisfying Em,0 ⊂ Em and |Em \ Em,0| = 0. Then

E \ ∪∞m=1Em,0 = ∪∞j=1 (Em \ Em,0)
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shows that E0 := ∪∞m=1Em,0 is an Fσ set - hence Borel measurable - contained in E such
that χE = χE0 ae (wrt Lebesgue measure).

More Hints

Exercise 33 (label “spmeas”). The problem is to show that if (X,M) is a measurable
space, then the set of complex measures on it is a Banach space under the “total variation”
norm

‖µ‖ = |µ|(X).

The linear structure of the space of complex measures is entirely natural: (aµ1+bµ2)(E) :=
aµ1(E)+bµ2(E). It is easy to check that the norm proposed is a norm. If {µj} is a Cauchy
sequence in this norm, then for any E ∈M,

|µj(E)− µk(E)| ≤ |µj − µk|(E) ≤ ‖µj − µk‖.
It follows that µ may be defined on M by

µ(E) := lim
j→∞

µj(E).

We need to show that µ is a measure. Since each µj is a measure, if E1, E2, . . . , Em is a
finite sequence of pairwise disjoint sets in M,

µ (∪m
l=1El) = lim

j→∞
µj (∪m

l=1El) = lim
j→∞

m∑
l=1

µj(El) =
m∑

l=1

lim
j→∞

µj(El) =
m∑

l=1

µ(El),

because we may commute limits and finite sums. Thus µ is finitely additive.
We want, however, to have the analogous result for infinite partitions {El}∞l=1 of a set

E. One cannot willy-nilly commute infinite sums and limits. However, the result just
remarked gives us

µ(E) =
m∑

l=1

µ(El) + µ
(
∪∞l=m+1El

)
.

Thus the heart of the game is to show that

lim
m→∞

µ
(
∪∞l=m+1El

)
= 0.


