Version: March 13
Read with suspicion. Please let me know about wrong things you find below. Thanks.

Solutions of Some Problems

Problem 9 (label “cmc”) part (¢): This question is answered in the affirmative if we show
that {f;} is Cauchy in measure together with the convergence of a subsequence f; — f
a.e. implies that f; — f in measure. Since

{If = fel > ey C{lfe = fil > /2y U{If5, = 1 > €/2}

and the measure of the first set can be made small by taking k, [ large, it suffices to show
that the measure of the second set can be made small by taking [ large. This reduces
the issue to showing that Cauchy in measure and convergence a.e. implies convergence in
measure.

Thus let {f;} be Cauchy in measure and f; — f a.e. Recall that f; — f a.e by
itself is not, in general, enough to imply that f; — f in measure. Throw out the null
set of x’s for which f;(z) 4 f(z), so that we may assume f; — f everywhere. Then
|f(z) — fe(x)| > € implies that |f;(x) — fx(x)| > € as soon as j is large enough (with “large
enough” depending on z and €). That is,

{If = sl > ey < U N AIfi = fil > €}

J=1j=J

Since M52 ; {[f; — fx| > €} gets bigger as J increases, this implies that
H({1S = ol > D) < Jim (2, 4165 = Sl > ) < limsupp ({115 = il > ).

Since {f;} is Cauchy in measure, the right-hand side is less than € if & is sufficiently large.
(This solution was suggested by the psets of Tomas and Kamille).

Problem 17 (label “nolo”): Consider the mapping f — sy(f) := S~y f(n)e™, which
takes f into the N*® partial sum of its Fourier series. Show that it is not true that for all
fin LY(—m, ) we have ||f — sn(f)||1(—xm) — 0 as N — oo. Hint: In outline, but not
in detail, the proof mimics the proof that Fourier series of a continuous function do not
converge pointwise to the function. You need to show that || Sy|| is unbounded in N, and
this is related to || Dyl zec(—r,x)-

Solution

We first remark that final part of the “Hint” is not directly used below; our advice was
misleading, apologies.

Let Dy(t) = sin((IN + 1/2)t)/sin(t/2). It suffices to show that if

™

(0.1) Tnf(t):= [ Dult—s)f(s)ds = 2xSn(f)(t)
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then ||Ty|| (as a linear mapping from L'(—m,7) into itself) is unbounded in N. By the
uniform boundedness principle, this implies that {Sy(f)} is unbounded in L'(—m, ) for
a dense G bunch of f’s in L'(—m,7), and for those f’s, |Sn(f) — fllo(cam — O as
N — oo is impossible.

Let us assume to the contrary, that ||Ty| < M for all N. Then if f € L'(—m,7),
g € L>®(—m, ), we would have, using Fubini and then that Dy is even,

|/ Tu(f (t)dz\:|/ (/ DN(t—s)f(s)ds) o(t) dt]
:|/ (/ Dn(t — s)g )dt)f(s)ds}

= | [ Telo)(s)as|

(0.2)

< T ()l (—mmllgll Lo (—.m)
< M fll 2 (—rmy gl oo ()

The first inequality above is a bound on the far left-hand side of the chain of relations,
and the second inequality is from the assumption ||Ty|| < M for all N.
Choosing f = xg after the third equality sign, where E C (—m, ), this tells us that
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where |E| is the Lebesgue measure of E, and this implies that

| TN (9| oo (=) < M| G| Loo(—r,m)

However, we already shown that this cannot hold, even for g € C,([—m,7]). See the
arguments following equation (6.44) in the notes (label “ubfs”).

Problem 19 (label “nolo”) part (iv) The problem here was to show that T, f := p.* f does
not converge to the identity in the normed space £(LP(IR"), LP(IR")), or

limsup ||T. — I|| # 0.
el

We'll work in L'(IR™). Assume the contrary. Then there is a x(e) > 0 satisfying
lim sup, | k(€) = 0 such that
(0.3) 1pe* f = fllv < k(I fll-
Put f = gs(x) where 6 > 0 and

1 1 1
= — = 8 = .
g(z) wnXB(O,l)(I)7 gs() wn6"XB(O’1) (z/9) u}nénXB(o,a) () ;

where w, is the volume of the unit ball in IR". That is, gs is related to g as p. is related
to p. Then ||gs|l1 = 1 and (0.3) tells us that

| pe * g5 — gsll1 < k(€)
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Next, for fixed € > 0, limg o || pe * g5 — pel|1 = 0 by the theorem on approximate identities.
Putting this together with (0.3), we have

e = gsll1 < |lpe * g5 — gsll1 + [|pe * g5 — pellx

4
(04) BRI

where limgs|o 0(9, €) = 0 for fixed € > 0. However,

1 T 1
. — - —n(=) = dz.
lpe — gsll1 /]Rn P (€> 5%an<0,5>($)! x
Changing variables by y = /e leads to

E’I’L

106 — € d .
['his and (04) ylelds

[ oty < o= galls < () + 006,
[yl >6/e
This cannot be, for it implies that
- / pdy — lim pdy < Tim(x(e) + 06, ) = (e),
IR" 310 Jjy|>s/e 810
and k(€) < 1 if € is sufficiently small.

Problem 21 (label “bm”) Show that if f : IR" — IR is Lebesgue measurable, then there
is a Borel measurable function fy such that f = f; a.e. You may quote - do so in detail
by giving page numbers or statements - results from KF or your lecture notes from last
quarter, but not other sources. Close any gaps to accommodate “infinite measures.”

Solution It suffices to assume that f > 0. Indeed, splitting f into its positive and negative
parts, the result may be applied to each of them. If f > 0, we showed in class that
there is an increasing sequence of simple functions {s;}°°, such that lim;_ s;(z) = f(z)
everywhere. If we can show the result for simple functions, then there are Borel measurable
functions b; such that s;(z) = b;(z) except on a Lebesgue null set N;. It then follows that
f(z) = lim s;(z) = limsupb;(r) except on N := U2, Ny,
Jj—00 j—o00

and N is a Lebesgue null set. Since measurability is preserved under “lim sup”, lim sup,_, , b;
is Borel measurable, and we are done.

Thus the issue is reduced to treating simple functions, that is finite linear combinations
of functions of the form xp where E is Lebesgue measurable. Clearly it suffices to treat
a single yg. From last term, you know that if |F| (the Lebesgue measure of F) is finite,
then there is an F, set Fy C E such that |E \ Ey| = 0. In the general case, let E,,, =
En{z:|z] <m} and E,,o be an F, satisfying E,, o C E,, and |E,, \ E,,o| = 0. Then

E \ U?r?:lE'ﬂ%O = U(J?il (Em \ Em,O)
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shows that Ey := UyS_, E,, 0 is an F, set - hence Borel measurable - contained in £ such
that xg = xg, ae (wrt Lebesgue measure).

More Hints
Exercise 33 (label “spmeas”). The problem is to show that if (X, M) is a measurable

space, then the set of complex measures on it is a Banach space under the “total variation”
norm

all = 1) (X).
The linear structure of the space of complex measures is entirely natural: (ap;+bus)(E) :=
apr (E)+bus(E). It is easy to check that the norm proposed is a norm. If {y;} is a Cauchy
sequence in this norm, then for any £ € M,
1145 (E) — i (E)| <y — g (B) < g — gl
It follows that p may be defined on M by

w(E) = Im p;(B).

We need to show that j is a measure. Since each p; is a measure, if Fy, Fy, ..., E,, is a
finite sequence of pairwise disjoint sets in M,

p(UZ By) = lim g5 (U2, ) = jh_{&ZMj(El) = Zjl'ggo pi(E) = p(E),
=1 =1 =1

because we may commute limits and finite sums. Thus p is finitely additive.

We want, however, to have the analogous result for infinite partitions {E;},°, of a set
E. One cannot willy-nilly commute infinite sums and limits. However, the result just
remarked gives us

u(E) = ZH(EZ) +p (U?im-HEl) :
1=1
Thus the heart of the game is to show that
lim g (U, 1) =0.

m—00



