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Sentential Logic

1.1. Deductive Reasoning and Logical Connectives

As we saw in the introduction, proofs play a central role in mathematics, and
deductive reasoning is the foundation on which proofs are based. Therefore,
we begin our study of mathematical reasoning and proofs by examining how
deductive reasoning works.

Example 1.1.1. Here are three examples of deductive reasoning:

1. Tt will either rain or snow tomorrow.
It’s too warm for snow.
Therefore, it will rain.
2. If today is Sunday, then I don’t have to go to work today.
Today is Sunday.
Therefore, T don’t have to go to work today.
3. Twill go to work either tomorrow or today.
I'm going to stay home today.
Therefore, I will go to work tomorrow.

In each case, we have arrived at a conclusion from the assumption that
some other statements, called premises, are true. For example, the premises in
argument 3 are the statements “T will go to work either tomorrow or today”
and “I'm going to stay home today.” The conclusion is “T will go to work
tomorrow,” and it seems to be forced on us somehow by the premises.

But is this conclusion really correct? After all, isn’t it possible that I’1l stay
home today, and then wake up sick tomorrow and end up staying home again?
If that happened, the conclusion would turn out to be false. But notice that in
that case the first premise, which said that I would go to work either tomorrow
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o or today, would be false as well! Although we have no guarantee that the
. conclusion is true, it can only be false if at least one of the premises is also
" false. If both premises are true, we can be sure that the conclusion is also true.
.. This is the sense in which the conclusion is forced on us by the premises, and
: : this is the standard we will use to judge the correctness of deductive reasoning.
L We will say that an argument is valid if the premises cannot all be true without

the conclusion being true as well. All three of the arguments in our example

" are valid arguments.

Here’s an example of an invalid deductive argument:

Either the butler is guilty or the maid is guilty.
Either the maid is guilty or the cook is guilty.
Therefore, either the butler is guilty or the cook is guilty.

The argument is invalid because the conclusion could be false even if both
premises are true. For example, if the maid were guilty, but the butler and the
cook were both innocent, then both premises would be true and the conclusion
would be false.

We can learn something about what makes an argument valid by compar-
ing the three arguments in Example 1.1.1. On the surface it might seem that
arguments 2 and 3 have the most in common, because they’re both about
the same subject: attendance at work. But in terms of the reasoning used,
arguments 1 and 3 are the most similar. They both introduce two possibili-
ties in the first premise, rule out the second one with the second premise, and
then conclude that the first possibility must be the case. In other words, both
arguments have the form:

| PorQ.
not {J.
Therefore, P.

Tt is this form, and not the subject matter, that makes these arguments valid.
You can sec that argument 1 has this form by thinking of the letter P as standing
for the statement “It will rain tomorrow,” and Q as standing for “It will snow
tomorrow.” For argument 3, P would be “l will go to work tomorrow,” and
would be “T will go to work today.”

Replacing certain statements in each argument with letters, as we have in
stating the form of arguments 1 and 3, has two advantages. First, it keeps us
from being distracted by aspects of the arguments that don’t affect their validity.
You don’t need to know anything about weather forecasting or work habits to
recognize that arguments 1 and 3 are valid. That’s because both arguments have
the form shown earlier, and you can tell that this argument form is valid without
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even knowing what P and Q stand for. If you don’t believe this, consider the
following argument:

Either the framger widget is misfiring, or the wrompal mechanism is out of
alignment.

I've checked the alignment of the wrompal mechanism, and it’s fine.
Therefore, the framger widget is misfiring.

If a mechanic gave this explanation after examining your car, you might still
be mystified about why the car won’t start, but you’d have no trouble following
his logic!

Perhaps more imporiant, our analysis of the forms of arguments 1 and 3
makes clear what is important in determining their validity: the words or and
not. In most deductive reasoning, and in particular in mathematical reasoning,
the meanings of just a few words give us the key to understanding what makes
a piece of reasoning valid or invalid. (Which are the important words in ar-
gument 2 in Example 1.1.17) The first few chapters of this book are devoted
to studying those words and how they are used in mathematical writing and
reasoning.

In this chapter, we’ll concentrate on words used to combine statements to
form more complex statements. We’ll continue to use lettets to stand for state-
ments, but only for unambiguous statements that are either true or false. Ques-
tions, exclamations, and vague statements will not be allowed. It will also be
useful to use symbols, sometimes called connective symbols, to stand for some
of the words used to combine statements. Here are our first three connective
symbols and the words they stand for:

Symbol Meaning
v or
A and
- not

Thus, if P and Q stand for two statements, then we’ll write P Vv Q to stand
for the statement “P or Q) P A Q for “P and Q. and —P for “not P or
“p is false.” The statement P Vv Q is sometimes called the disjunction of P
and Q, P A Q is called the conjunction of P and 0, and —P is called the
negation of P.

Example 1.1.2. Analyze the logical forms of the following statements:

1. EitherJohn went to the store, or we’re out of eggs.
2. Joe is going to leave home and not come back.
3. Either Bill is at work and Jane isn’t, or Jane is at work and Bill isn’t.
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Solutions

1. If we let P stand for the staternent “JTohn went to the store” and Q stand for
“We're out of eggs,” then this statement could be represented symbolically
as P v Q.

7. If we let P stand for the statement *Joe is going to leave home” and Q stand
for “Joe is not going to come back,” then we could represent this statement
symbolically as P A . But this analysis misses an important feature of the
statement, because it doesn’t indicate that () is a negative statement. We
could get a better analysis by letting R stand for the statement “Joe is going
to come back” and then writing the statement Q as —R. Plugging this into
our first analysis of the original statement, we get the improved analysis
P A—R.

3. Let B stand for the statement “Bill is at work™ and J for the statement “Jane is
at work.” Then the first half of the statement, “Billis at work and Jane isn’t,”
can be represented as B A —J. Similarly, the second half is J A —=B. To
represent the entire statement, we must combine these two with o7, forming
their disjunction, so the solution is (B A =J) VvV (J A = B).

Notice that in analyzing the third statement in the preceding example, we
added parentheses when we formed the disjunction of B A —J and J A =B
to indicate unambiguously which statements were being combined. This is
like the use of parentheses in algebra, in which, for example, the product
of a + b and a — b would be written (@ + &) - (@ — b), with the parentheses
serving to indicate unambiguously which quantities are to be multiplied. As
in algebra, it is convenient in Jogic to omit some parentheses to make our
expressions shorter and easier to read. However, we must agree on some con-
ventions about how to read such expressions so that they are still unambigu-
ous. One convention is that the symbol — always applies only to the state-
ment that comes immediately after it. For example, =P A @ means (—mP) A O
rather than —(P A Q). We’ll see some other conventions about parentheses
later.

Example 1.1.3. What English sentences are represented by the following
expressions?

1. (=S A L)V §, where S stands for “John is stupid” and L stands for *John is
lazy”

2. =S A (L v §), where § and L bave the same meanings as before.

3. =(S A L)v S, with S and L still as before,
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Solutions

1. Either John isn’t stupid and he is lazy, or he’s stupid.

2. John isn’t stupid, and either he’s lazy or he’s stupid. Notice how the place-
ment of the word either in English changes according to where the paren-
theses are.

3. Either John isn’t both stupid and lazy, or John is stupid. The word
both in English also helps distinguish the different possible positions of
parentheses.

It is important to keep in mind that the symbols A, v, and — don’t really
correspond to all uses of the words and, or, and not in English. For example,
the symbol A could not be used to represent the use of the word and in the
sentence “John and Bill are friends,” because in this sentence the word and is
not being used to combine two statements. The symbols A and Vv can only be
used between two statements, to form their conjunction or disjunction, and the
symbol — can only be used before a statement, to negate it. This means that
certain strings of letters and symbols are simply meaningless. For example,
P=AQ,P /v Q, and P-Q are all “ongrammatical” expressions in the
language of logic. “Grammatical” expressions, such as those in Examples 1.1.2
and 1.1.3, are sometimes called well-formed formulas or just formulas. Once
again, it may be helpful to think of an analogy with algebra, in which the
symbols +, —, -, and <+ can be used between two numbers, as operators, and
the symbol — can also be used before a number, to negate it. These are the
only ways that these symbols can be used in algebra, so expressions such as
X — =Y are meaningless.

Sometimes, words other than and, or, and not are used to express the mean-
ings represented by A, Vv, and -. For example, consider the first statement in
Example 1.1.3. Although we gave the English translation “Either John isn’t
stupid and he is lazy, or he’s stupid,” an alternative way of conveying the same
information would be to say “Either John isn’t stupid but he is lazy, or he’s
stupid.” Often, the word but is used in English to mean and, especially when
there is some contrast or conflict between the statements being combined. For
amore striking example, imagine a weather forecaster ending his forecast with -
the statement “Rain and snow are the only two possibilities for tomorrow’s
weather.” This is just a roundabout way of saying that it will either rain or
snow tomorrow. Thus, even though the forecaster has used the word and, the
meaning expressed by his statement is a disjunction. The lesson of wese ex-
amples is that to determine the logical form of a statement you must think
about what the statement means, rather than just translating word by word into
symbols.
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Sometimes logical words are hidden within mathematical notation. For ex-
ample, consider the statement 3 < w. Although it appears to be a simple
statement that contains no words of logic, if you read it out loud you will
hear the word or. If we let P stand for the statement 3 < s and Q for the
statement 3 = 7, then the statement 3 < 7 would be written P v Q. In this
example the statements represented by the letters P and Q are so short that it
hardly seems worthwhile to abbreviate them with single letters. In cases like
this we will sometimes not bother to replace the statements with letters, so we
might also write this statement as (3 < ) v (3 = 7).

For a slightly more complicated example, consider the statement 3 < 7 < 4.
This statement means 3 < & and 7 < 4, so once again a word of logic has
been hidden in mathematical notation. Filling in the meaning that we just
worked out for 3 < 7, we can write the whole statement as [3 < w) VvV 3 =
)] A (7w < 4). Knowing that the statement has this logical form might be
- important in understanding a piece of mathematical reasoning involving this
" statement.

Exercises

. *1. Analyze the logical forms of the following statements:

o (a) We’ll have either a reading assignment or homework problems, but we
won’t have both homework problems and a test.

(b) You won'’t go skiing, or you will and there won’t be any snow.

(©) VT£2. |

+2. Analyze the logical forms of the following statements:

(a) Either John and Bill are both telling the truth, or neither of them 1is.

(b) "1l have either fish or chicken, but I won’t have both fish and mashed
potatoes.

(¢) 3is a common divisor of 6, 9, and 135.

. Analyze the logical forms of the following statements:

(a) Alice and Bob are not both in the room.

(b) Alice and Bob are both not in the room.

(c) Either Alice or Bob is not in the room.

- (d) Neither Alice nor Bob is in the room.

4. Which of the following expressions are well-formed formulas?

(a) ~(—=P v —=—R).

(b) —=(P, @, AR).

ey PA—P.

(@ (PAQXPVR).
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*5. Let P stand for the statement “T will buy the pants” and S for the statement
“1 will buy the shirt.” What English sentences are represented by the fol-
lowing expressions?

(a) (P A —=5).

(b) =P A —S.

(c) =P Vv —=S.

6. Let S stand for the statement “Steve is happy™ and G for “George is happy.”
‘What English sentences are represented by the following expressions?
@ (SVG)yA SV =G).

) [S V(G A=S)]vV =G,

() SVIGA(SvV -G

7. Identify the premises and conclusions of the following deductive argu-
ments and analyze their logical forms. Do you think the reasoning is valid?
(Although you will have only your intuition to guide you in answering
this last question, in the next section we will develop some techniques for
determining the validity of arguments.)

(a) Jane and Pete won't both win the math prize. Pete will win either
the math prize or the chemistry prize. Jane will win the math prize.
Therefore, Pete will win the chemistry prize. '

(b) The main course will be either beef or fish. The vegetable will be either
peas or corn. We will not have both fish as a main course and corn as a
vegetable. Therefore, we will not have both beef as a main course and
peas as a vegetaule.

(c) Either John or Bill is telling the truth. Either Sam or Bill is Iying.
Therefore, either John is telling the truth or Sam is lying.

(d) Either sales will go up and the boss will be happy, or expenses will go
up and the boss won’t be happy. Therefore, sales and expenses will not
both go up.

1.2. Truth Tables

We saw in Section 1.1 that an argument is valid if the premises cannot all be
true without the conclusion being true as well. Thus, to understand how words
such as and, or, and not affect the validity of arguments, we must see how they
contribute to the truth or falsity of statements containing them.

When we evaluate the truth or falsity of a statement, we assign to it one of
the labels true or false, and this label is called its truth value. It is clear how the
word and contributes to the troth value of a statement containing it. A statement
of the form P A Q can only be true if both P and Q are true; if either P or Q
is false, then P A Q will be false too. Because we have assumed that P and
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Figure 1

O both stand for statements that are either true or false, we can summarize all
the possibilities with the table shown in Figure 1. This is called a truth table
for the formula P A Q. Each row in the truth table represents one of the four

| possible combinations of truth values for the statements P and Q. Although
these four possibilities can appear in the table in any order, it is best to list them

~ systematically so we can be sure that no possibilities have been skipped. The
truth table for — P is also quite easy to construct because for —P to be true,
P must be false. The table is shown in Figure 2.

P -P
F T
T F
Figure 2

The truth table for P v Q is a little trickier. The first three lines should
certainly be filled in as shown in Figure 3, but there may be some question
about the last line. Should P v @ be true or false in the case in which P and Q
are both true? In other words, does P v @ mean “P or (, or both” or does it

~mean “P or Q but not both”? The first way of interpreting the word or is called

' the inclusive or (because it includes the possibility of both statements being

: true), and the second is called the exclusive or. In mathematics, or always means

. inclusive or, unless specified otherwise, so we will interpret V as inclusive or.

f. ~We therefore complete the truth table for P v Q as shown in Figure 4. See
exercise 3 for more about the exclusive or.

F Qg Pvg P QO PvQ

F F F F F F

F 7T T F T T

T F T T F T

T T ? T T T
Figure 3 Figure 4

“ Using the rules summmarized in these truth tables, we can now work out truth

* tables for more complex formulas. Al we have to do is work out the truth
‘values of the component parts of a formula, starting with the individual letters
and working up to more complex formulas a step at a time. '
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Example 1.2.1. Make a truth table for the formula —(P v = Q).

Solution
-0 Pv-=Q —=(Pv-=0)

PR3 Ty
e T =B o
Ham
o B s B
T 1 3

The first two columns of this table list the four possible combinations of
truth values of P and Q. The third column, listing truth values for the formula
— (2, 1s found by simply negating the truth values for ( in the second column.
The fourth column, for the formula P v —(Q, is found by combining the truth
values for P and — ¢ listed in the first and third columns, according to the
truth value rule for v summarized in Figure 4. According to this rule, P v —Q
will be false only if both P and — are false. Looking in the first and third
columns, we see that this happens only in row two of the table, so the fourth |
column contains an F in the second row and T’s in all other rows. Finally, the [
truth values for the formula —(P v —Q) are listed in the fifth column, which L
is found by negating the truth values in the fourth column. (Note that these :::
columns had to be worked out in order, because each was used in computing
the next.) '

Example 1.2.2. Make a truth table for the formula =(P A Q) vV —R.

Solution

PAQ —(PArQ) —-R —(PAQ)V—-R

el 3T [y
e I el T BT
Hm AT AT
I B B B e
e H 33
oo AT
e e e e R

Note that because this formula contains three letters, it takes eight lines to
list all possible combinations of truth values for these letters. (If a formula
contains » different letters, how many lines will its truth table have?)

Here’s a way of making truth tables more compactly. Instead of using separate
columns to list the truth values for the component parts of a formula, just list
those truth values below the corresponding connective symbol in the original
formula. This is illustrated in Figure 5, for the formula from Example 1.2.1.
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o+ Tn the first step, we have listed the truth values for P and Q below these letters
__Where they appear in the formula. In step two, the truth values for —Q have
" peen added under the — symbol for — 0. In the third step, we have combined the
" truth values for P and —Q to get the truth values for P v —(, which are listed
' under the Vv synibol. Finally, in the last step, these truth values are negated and
“listed under the initial — symbol. The truth values added in the last step give the
: ﬁuth vahue for the entire formula, so we will call the symbol under which they
'-'are listed (the first — symbol in this case) the main connective of the formula.
N otice that the truth values listed under the main connective in this case agree
:with the values we found in Example 1.2.1.

Q).

combinations of
s for the formula

: second column, Step 1 Step 2

nbinix(f the truth P QO —(Pv=0) P Q —(Pv~=0)
alccor ng to the F F F F F F F TF
ais rule, P v ~Q F T F T F T F FT
he first and third T F T F T F T TF
ble, so the fourth T T T T T T T FT
rows. Finally, tl:he Step 3 Step 4
h column, which P Qg ~(Pv—-0Q) P QO —(Pv-(Q)
(Note that these F F FTTF F F FETTF
sed in computing F T FFFT ¥F T TFFFT

T F TTTF T F FTTTF

T T TTFT T T FTTFT
7}V =R, Figure 5

_Now that we know how to make truth tables for complex formulas, we’re

V- ady to return to the analysis of the validity of arguments. Consider again our

st example of a deductive argument:

Tt will either rain or snow tomorrow.
’s too warm for snow.
Therefore, it will rain.

we have scen, if we let P stand for the statement “It will tain tomorrow”
.0 for the statement “Tt will snow tomorrow,” then we can represent the

Kes eight lines o mment symbolically as follows:

ars. (If a formula PvQ
le have?) -0
P (The symbol .. means therefore.)

Jofusing separate
i formula, just list
sol in the original
m Example 1.2.1.

€ can now see how truth tables can be used to verify the validity of this
ent. Figure 6 shows a truth table for both premises and the conclusion
he argument. Recall that we decided to call an argument valid if the
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premises cannot all be true without the conclusion being true as well. Looking at
Figure 6 we see that the only row of the table in which both premises come
out true is row three, and in this row the conclusion is also true. Thus, the trath
table confirms that if the premises are all true, the conclusion must also be true,
so the argument is valid.

Premises Conclusion
P g FVvQg —Q P
F F F T F
F T T F F
T F T T T
T 7T T E T
Figure 6

Example 1.2.3. Determine whether the following arguments are valid.

1. Either John isn’t stupid and he is lazy, or he’s stupid.
John is stupid.
Therefore, John isn’t lazy.

2. The butler and the cook are not both innocent.
Either the butler is lying or the cook is innocent.
Therefore, the butler is either lying or guilty.

Solutions

1. Asin Example 1.1.3, we let S stand for the statement “John is stupid” and
L stand for “John 1s lazy.” Then the argument has the form:
(~SALYVS
S
.. — L
Now we make a truth table for both premises and the conclusion. (You

should work out the intermediate steps in deriving column three of this table
to confirm that it 1s correct.)

Premises Conclusion
S L (=SALyvs § =1
F F F F T
F T T F T
T F T T T
T T T T I3

Both premises are true in lines three and four of this table. The conclusion
is also true in line three, but it is false in line four. Thus, it is possible for

e
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both premises to be true and the conclusion false, so the argument is invalid.
In fact, the table shows us exactly why the argument is invalid. The problem
occurs in the fourth line of the table, in which S and L are both true — in other
words, John is both stapid and lazy. Thus, if John is both stupid and lazy,
then both premises will be true but the conclusion will be false, so 1t would
be a mistake to infer that the conclusion must be true from the assumption
that the premises are true.

7. Let B stand for the statement “The butler is innocent,” C for the statement
“The cook is innocent,” and L for the statement “The butler is lying.” Then
the argument has the form:

well. Looking at
premises come
. Thus, the truth
st also be true,

—(BACY
LvC

are valid. - Lv—B

Here is the truth table for the premises and conclusion:

Premises Conclusion
—(BAC) LwvC L v—B

1n is stupid” and

T |
SR Tm AT A
R I I e I Y
mmaH A S A
HRAmAa A A
HoAama A Aas

The premises are both true only in lines two, three, four, and six, and in
each of these cases the conclusion is true as well. Therefore, the argument
1s valid.

sonclusion. (You

hree of this table - If you expected the first argument in Example 1.2.3 to turn out to be valid,

' it’s probably because the first premise confused you. It’s a rather complicated
' statement, which we represented symbolically with the formula (=S A L) v §.
- According to our truth table, this formula is false if § and L are both false, and
- true otherwise. But notice that this is exactly the same as the truth table for the
- simpler formula L Vv S! Because of this, we say that the formulas (=S A L) v §
cand L v § are equivalent. Equivalent formulas always have the same truth
value no matter what statements the letters in them stand for and no matter
‘what the truth values of those statements are. The equivalence of the premise
(=S A Lyv S and the simpler formula L v § may help you understand why

;. The conclusion
it is possible for
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the argument is invalid. Translating the formula L v S back into English, we
see that the first premise could have been stated more simply as “John is either
lazy or stupid (or both).” But from this premise and the second premise (that
John is stupid), it clearly doesn’t follow that he’s not lazy, because he might be
both stupid and lazy.

Example 1.2.4. Which of these formulas are equivalent?
=-{P A Q), P A=0, —Pv—=0.

Solution
Here’s a truth table for all three statements. (You should check it yourself!)

=(PAQ) —-PA=Q =Pv-Q

= =1 T oty
H T TR
o3 3
o S
SN

The third and fifth columns in this table are identical, but they are different
from the fourth column. Therefore, the formulas —(P A Q) and =P v ~Q
are equivalent, but neither is equivalent to the formula —P A —Q. This should
make sense if you think about what all the symbols mean. For example, suppose
P stands for the statement “The Yankees won last night” and Q stands for
“The Red Sox won last night” Then —(P A Q) would mean “The Yankees
and the Red Sox did not both win last night,” and =P v =0 would mean
“Either the Yankees or the Red Sox lost last night”; these statements clearly
convey the same information. On the other hand, =P A —Q would mean “The
Yankees and the Red Sox both lost last night,” which is an entirely different
statement. '

You can check for yourself by making a truth table that the formula—P A =
from Example 1.2.4 is equivalent to the formula —=(P v Q). (To see that this
equivalence makes sense, notice that the statements “Both the Yankees and
the Red Sox lost last night” and “Neither the Yankees nor the Red Sox won
last night” mean the same thing.) This equivalence and the one discovered in
Example 1.2.4 are called DeMorgan’s laws.

In analyzing deductive arguments and the statements that occur in them it
is helpful to be familiar with a number of equivalences that come up often.
Verity the equivalences in the following list yourself by making truth tables,
and check that they make sense by translating the formulas into English; as we
did in Example 1.2 4.
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ato English, we DeMorgan’s laws
5 “John is either
\d premise (that

use he might be

—(P A Q)is equivalent to =P v = (.
(P v Q) is equivalent to =P A = (.

Commufative laws
P A Qisequivalentto O A P.

P v Qisequivalent to Q vV P.

Associative laws ‘
P A(Q A R)isequivalentto (P A Q) A R.

g it yourself!} P v (@ V R)isequivalentto (P v Q) VvV R.

B Idempotent laws
P A P is equivalent to P.

P v P is equivalent to P.

: " Distributive laws
: P A(QV R)isequivalent to (P A'Q) V(P A R).

hey are different
P v (Q A R)isequivalent to (P VvV @) A (P V R).

) and =PV —Q
~ (). This should
xample, suppose
nd Q stands for
n “The Yankees
- would mean
atements clearly
vould mean “The
antirely different

Absorption laws
P v (P A Q)is equivalent to P.
P A (P v @)is equivalent to P.

- Double Negation law

- f is equivalent to P

- Notice that because of the associative laws we can leave out parentheses in
-.-'i:fdrmulas of the forms P A QO A R and P v @ Vv R without worrying that the
resulting formula will be ambiguous, because the two possible ways of filling

in the parentheses lead to equivalent formulas. '
Many of the equivalences in the list should remind you of similar rules in-
volving +, -, and — in algebra. As in algebra, these rules can be applied to more
tomplex formulas, and they can be combined to work out more complicated
equivalences. Any of the letters in these equivalences can be replaced by more
complicated formulas, and the resulting equivalence will still be true. For ex-
ample, by replacing P in the double negation law with the formula Q v —R,
you can see that ——(Q v —R) is equivalent to Q Vv —R. Also, if two formulas
are equivalent, you can always substitute one for the other in any expression
d the results will be equivalent. For example, since ——P is equivalent to

rmula—P A —Q
(To see that this
the Yankees and
he Red Sox won
me discovered in

. occur in them it
t come up often.
king truth tables,
ito English, as we
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P, if =—P occurs in any formula, you can always replace it with P and the
resulting formula will be equivalent to the original.

Example 1.2.5. Find simpler formulas equivalent to these formulas:

1. =(P v —0Q).
2. (@ A-P)v P,
Solutions
L. =(PVv—Q) ’
1s equivalentto —P A ——=Q (DeMorgan’s law),
which is equivalentto ~P A Q (double negation law).

You can check that this equivalence is right by making a truth table for

—P A Q and seeing that it is the same as the truth table for —~.(P V=)

found in Example 1.2.1.

2. 2(QA-PYV P
18 equivalentto (—=Q Vv ——P) Vv P (DeMorgan’s law),

which is equivalentto (—=Q v PYv P (double negation law),
which is equivalentto —Q v (P v P) (associative law),
which is equivalent to —-Q v P (idempotent law).

Some equivalences are based on the fact that certain formulas are either
always true or always false. For example, you can verify by making a truth
table that the formula @ A (P vV —P) is equivalent to just (. But even before
you make the truth table, you can probably see why they are equivalent. In every
line of the truth table, P v — P will come out true, and therefore Q A (P v - P)
will come out true when Q is also true, and false when ( is false. Formulas that
are always true, such as P v —P, are called tautologies. Similarly, formulas
that are always false are called contradictions. For example, P A —P is a
contradiction.

Example 1.2.6. Are these statements tautologies, contradictions, or neither?

PNV (QV—=P), PA—(QV—Q), PVv—(0v-0).

Solution
First we make a truth table for all three statements.

PVv(@V—P) PA-QV-Q) PVv—(QV=0)

H = oy
e B sl B of |
H == A
sl Bl ol s|
e B M= ke s|
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From the truth table it is clear that the first formula is a tautology, the second
“a contradiction, and the third neither. In fact, since the last column is identical
to the first, the third formula is equivalent to P.

We can now state a few more useful laws involving tautologies and contradic-
| tions. You should be able to convince yourself that all of these laws are correct by
thinking about what the truth tables for the statements involved would Iook like.

it with P and the

ormulas:

Tautology laws

_ P A (a tautology) is equivalent to P.
organ’s law),

le negation law). P v (a tautology) 1s a tautology.

—(a tautology) is a contradiction.

. a truth table for
e for ~(P v - Q)

Contradiction laws
P A (a contradiction) is a contradiction.
P v (a contradiction) is equivalent to P.

[organ’s law), —(a contradiction) is a tautology.

e negation law),
siative law),
ipotent law).

:.Example 1.2.7. Find simpler formulas equivalent to these formulas:

1 PV(QA—P).

rmulas are either 2 —(PV(QA—RYAQ.

»y making a truth
). But even before
quivalent. In every
e Q A (P vV —P)
lse. Formulas that
imilarly, formulas
ple, PA—P is a

Solutions

1. PV (QA—P)
isequivalentto (P VvV QYA (P V =P) (distributive law),
" which is equivalentto P v Q (tautology law).
The last step uses the fact that P v =P is a tautology.
P V@ATR)Y AL
is equivalentto (—P A ~{Q A—=R)DA Q (DeMorgan’s law),

which is equivalent to (=P A (= Q VvV == R)) A O (DeMorgan’s law),
“which is equivalent to (=P A(=QV RNA Q (double negation law),
which is equivalent to =P A{((—Q VvV R)A Q)  (associative law),
which is equivalent to =P A(Q A(—Q V R))  (commutative law),
which is equivalent to =P A((Q A =0)V {0 A R))

tions, or neither?

v = ().

(distributive law),
(OvV—=0) ‘which is equivalent to =P A (Q A R) (contradiction law).
S _
F ‘The last step uses the fact that Q A —Q is a contradiction. Finally, by the
T -associative law for A we can remove the parentheses without making the
T

formula ambiguous, so the original formula is equivalent to the formula
T PAQAR.
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Sentential Logic

Exercises

Make truth tables for the following formulas:
(a) =P v Q.

By SV G A =SV -G).

Make truth tables for the following formulas:
(@) =[P A(QV-P)].

®) (PV QA (=P VR).

- I this exercise we will use the symbol + to mean exclusive or. In other

words, P + @ means “P or 0, but not both.”

(a) Make a truth table for P + Q.

(b} Find a formula using only the connectives A, v, and — that is equiv-
alent to P + Q. Justify your answer with a truth table.

. Find a formula using only the connectives A and — that is equivalent to

P v Q. Justify your answer with a truth table,

Some mathematicians use the symbol + to mean nor. In other words,

P | Q means “neither P nor 0.”

(a) Make a truth table for P | Q.

(b) Find a formula using only the connectives A, V, and ~ that is equiv-
alentto P | Q.

(¢) Find formulas using only the connective | that are equivalent to ~ P,
Pv Q,and P A Q.

- Some mathematicians write £ | Q to mean “P and Q are not both true.”

(This connective is called nand, and is used in the study of circuits in

computer science.)

(a) Make a truth table for P! Q.

(b) Find a formula using only the connectives A, v, and — that is equiv-
alentto P | Q.

(¢) Find formulas using only the connective | that are equivalent to =P,
Pv Q,and P A Q.

Use truth tables to determine whether or not the arguments in exercise 7

of Section 1.1 are valid.

. Use truth tables to determine which of the following formulas are equiv-

alent to each other:

@ (PAQ)V (=P A—Q).

(b) =P Vv Q.

€ (PV=Q)A(QV—P),

(d) ~(Pv Q).

(e} (QAP)v =P,

Use truth tables to determine which of these statements are tautologies,
which are contradictions, and which are neither:




