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Abstract: In this paper we studied the asymptotic behavior of the spectral flow of
a one-parameter family {Ds} of Dirac operators acting on the spinor bunldle S twisted
by a vector bundle E of rank k, with the parameter s ∈ [0, r] when r gets sufficiently
large. Our method uses the variation of eta invariant and local index theory technique.
The key is a uniform estimate of the eta invariant η̄(Dr) which is established via local
index theory technique and heat kernel estimate.

1 Introduction

Spectral flow of a one-parameter family of Dirac operators is first introduced by
Atiyah-Patodi-Singer in their index theorem for Dirac operators over manifolds with
boundary[1] [2] [3]. It is closely related to the η-invariant, which is defined for a Dirac
operator in the same theorem as the boundary correction term. Both spectral flow and
η-invariant has been found significant application in diverse fields in mathematics and
physics.

In this paper, we will consider a closed manifold M of an odd dimension n equipped
with its spinor bundle S and an hermitian vector bundle E of rank k. Let∇E be a unitary
connection on E and a a EndE-valued one-form on M which is unitary with respect to
the hermitian metric. Define a one-parameter family {∇s = ∇⊗1+1⊗∇E+1⊗sa}s∈[0,r]

of unitary connctions on the bundle E = S ⊗ E, where ∇ denotes the connection on S
induced by the Levi-Civita connection. Then this family of connetions induces a one-
parameter family {Ds} of Dirac operators on E . For simplicity we write the family of
connection as {∇s = ∇0 + sâ}s∈[0,1] by setting â = ra, and accordingly Ds = D0 + sc(â),
and denote by Fs the curvature of ∇s (note the rescaled s). The main problem discussed
in this paper is the asymptotic behavior of the spectral flow of this family. This problem
is initiated by Taubes in his proof of Weinstein conjecture in dimension 3 [13] and is
later discussed for the general cases in [12]. Our main result, stated below, provides
improvement of the estimate in [12] for the general cases.

Theorem 1. Let M be an odd dimensional compact spin manifold, and D0 be a Dirac
operator on it, and Ds = D0 + sc(â), 0 6 s 6 1, be the smooth curve of Dirac operators,
where â = ra is a Lie algebra u(k)-valued 1-form on M with parameter r > 0. Denote by
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R = supM{|F1|}, then there exists a constant C > 0, such that the spectral flow satisfies

|sf{Ds, [0, 1]} − (
1

2π
√
−1

)
n+1
2

∫ 1

0

∫
M

trCk [â ∧ Â(M) ∧ eFs ]nds| 6 cR
n
2

Generally speaking, for a one-parameter family {Ds}s∈[0,1] of Dirac operators, spectral
flow is the net number of eigenvalues that change sign while the parameter s varies from
0 to 1. On the other hand, the η-invariant η(Ds) for each single Dirac operator is a
measure of its spectral asymmetry. From this point of view, spectral flow is naturally
related to the change of η-invariant. To be more precise, the relation between spectral
flow and the change of (reduced) eta invariant over the interval [0, 1], is as follows:

sf{Ds} = −
∫ 1

0

dη̄(Ds)

ds
ds+ η̄(D1)− η̄(D0), (1)

where η̄(Ds) = 1
2
(η(Ds) + dimKer(Ds)) is called the reduced η-invariant in the sense of

Atiyah-Patodi-Singer as in[1]. Based on this relation, the proof of Theorem 1 consists of
the explicit calculation of the variation d

ds
η̄(Ds) via local index theory technique and the

uniform estimate of η(D1).
The relation (1) can also be viewed as a special case of the Atiyah-Patodi-Singer

index theorem by applying it on M × [0, 1]. This viewpoint indicates that the integrand
in the first term on its right-hand side, the variation of eta invariant, can be calculated
explicitly using the technique of local index theorem, Getzler rescaling introduced in [7].
The section 3 provides the detail of the calculation which is stated without proof in [12].
Furthermore the property of Getzler rescaling also plays a crucial role in the estimate of
eta invariant.

The second part of the estimate, done in Section 4, is actually focusing on η̄(D1) and
its dependence on the parameter r, which is considered to be large enough. Based on the
formula

η(D1) =
1√
π

∫ ∞
0

t−
1
2Tr[D1e

tD2
1 ]dt,

the estimate is separated into two parts: the small-time part
∫ t0

0
t−

1
2Tr[D1e

D2
1 ]dt, and the

large-time part
∫∞
t0
t−

1
2Tr[D1e

D2
1 ]dt. In the first part, the basic idea is applying Getzler

rescaling to approximate the trace Tr[D1e
tD2

1 ] for small time t by some rescaled heat
kernel at the fixed ”time” 1. Inspired by the work of Dai-Liu-Ma [5], we developed a
unifrom estimate for such a family of ”rescaled” heat kernel and therefore provide the
estimate of the small-time part. On the other hand, the large-time part, together with
dimKerD1, can be controlled by Tr[e−t0D

2
1 ], whose estimate could be provided by the

heat kernel estimate in [12]. The main result of this part can be summarized as

Theorem 2. Let M be an odd dimensional compact spin manifold, and D be a Dirac
operator acting on the bundle S⊗E, a be a Lie algebra u(k)-valued one-form on M , and
r > 0. Denote by R = supM{|F1|}. Then there exists a constant C ′ > 0, such that

|η̄(D + rc(a))| 6 C ′R
n
2
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when r > 0 is sufficiently large.

This problem, the asymptotic of eta invariant, has also been discussed recently by
Savale in [10] and [11], where he discussed in detail the asymptotic of the eta invariant
of the Dirac operators Ds acting on S ⊗ L where L is a line bundle. In [10], it is shown
that η̄(D+ rc(a)) ∼ o(r

n
2 ). In 2018, he has improved the estimate of the eta invariant in

[11] to η(D+ rc(a)) ∼ O(r
n−1
2 ) under some extra assumptions. In this case, the result of

Theorem 2 implies that η̄(D + rc(a)) ∼ O(r
n
2 ).

2 Preliminaries

This chapter is a short review of some well-known results on Clifford algebras and
the spin geometry that is involved in the proof of the main result

2.1 Clifford Algebra over odd-dimensional vector space

Definition 2.1. Let V be a vector space over a field K of dimension n endowed with a
non-degenerate bilinear form g. The Clifford algebra Cl(V, g) associated to g on V is an
associative algebra with unit, defined by

Cl(V, g) := T (V )/I(V, g)

where T (V ) =
⊕∞

r=1(⊗rV ) is the tensor algebra of V , and I(V, g) is the ideal generated
by all the elements of the form v ⊗ v + g(v, v)1.

Remark 2.2. 1. Given x, y ∈ V viewed as elements in the Clifford algebra, they
satisfy the relation

x · y + y · x = −2g(x, y)1

2. Given a g-orthonormal basis {e1, e2, . . . , en} of V, the following set

{ei1 · ei2 · · · · · eik |1 6 i1 6 i2 6 · · · 6 ik 6 n, 0 6 k 6 n}

is a basis of Cl(V, g), therefore dimCl(V, g) = 2n.

Notice from the remark above, Clifford algebra has the same dimension as the exterior
algebra ∧∗V . Furthermore, there is a canonical isomorphism of vector spaces between
them, which provides an essential preliminary for Getzler rescaling.

Propostion 2.3. The Clifford algebra Cl(V, g) can be identified with the exterior algebra
by the canonical isomorphism of vector spaces given by:

∧∗V → Cl(V, g)

ei1 ∧ ei2 ∧ · · · ∧ eik 7→ ei1 · ei2 · · · · · eik
Furthermore, the Clifford multiplication can be determined by the following formula: for
all v ∈ V and ϕ ∈ Cl(V, g),

v · ϕ = v∗ ∧ ϕ− i(v)ϕ (2)
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2.2 Spinor Bundle and Dirac Operator

Another essential relation is between the complex Clifford algebra Cl(n) and endo-
morphism group End(Sn) of the complex hermitian space Sn of spinors defined as follows.

Definition 2.4. The vector space of complex n-spinors is defined to be

Sn = C2[
n
2 ]

where [n
2
] denotes the integer part of n

2
. Elements of Sn are called complex spinors.

Propostion 2.5. The space of complex spinors are characterized by

Cl(n) =

{
End(Sn) if n is even;

End(Sn)⊕ End(Sn) if n is odd;
(3)

Because the main object in this paper, our discussion is in particular for n odd. One
can easily verify that the trace Tr behaves on the oodd elements of Cl(n) in exactly the
same way as supertrace Trs on the even elements of Cl(n) for n even, i.e.

tr[1] = 2[n
2

], tr[c(e1) . . . c(en)] = 2[n
2

](−
√
−1)

n+1
2 (4)

and that the trace of the other monomials in Cl(n) is 0. This is an essential observation
related with Getzler rescaling.

2.3 Spectral Flow and η-invariant

The concept of spectral flow for a smooth family of Dirac operators is first introduced
by Atiyah-Patodi-Singer in their study of index theory on manifolds with boundary in
[1][3].

Definition 2.6. If Ds, 0 6 s 6 1 is a curve of self-adjoint Fredholm operators, the
spectral flow sf{Ds} counts the net number of eigenvalues of Ds which change sign when
s varies from 0 to 1.

It was summarized in [6] the following properties of spectral flow.

Propostion 2.7. The spectral flow has the following properties:

(1) If Ds, 0 6 s 6 1, is a curve of self-adjoint Fredholm operators, and τ ∈ [0, 1], then

sf{Ds, [0, 1]} = sf{Ds, [0, τ]}+ sf{Ds, [τ, 1]}. (5)

4



(2) If Ds, 0 6 u 6 1, is a smooth curve of self-adjoint elliptic pseudodifferential op-
erators on a closed manifold, and η̄(Ds) = 1

2
(η(Ds) + dimKerDs) is the reduced

η invariant of Ds in the sense of Atiyah-Patodi-Singder, then η is smooth mode Z
and

sf{Ds} = −
∫ 1

0

dη̄(Ds)

ds
ds+ η̄(D1)− η̄(D0). (6)

(3) If Ds, 0 6 s 6 1, is a periodic one-parameter family of self adjoint Dirac-type
operators on a closed manifold, and D̃ is the corresponding Dirac-type operator on
the mapping torus, then

sf{Ds} = indD̃ (7)

2.4 Heat Kernel and η-invariant

First of all, for any single Dirac operator, we first define the corresponding η-function
as

ηDs(z) =
∑

λ∈Spec{Ds}

sgn(λ)|λ|−z =
∑

λ∈Spec{Ds}

λ

|λ|
|λ|−z

=
∑

λ∈Spec{Ds}

λ|λ|−z−1,

which can be written as
ηDs(z) =

∑
λ∈Spec{Ds}

λ(λ2)−
z+1
2 .

It can be shown that this function has a meromorphic extension on the complex
plane for z ∈ C, and, in particular, it is analytic at z = 0 which allows us to define the
η-invariant by evaluating the η-function at z = 0 as

η(Ds) = ηDs(0).

Note that for any real number λ 6= 0, one has

λ−z =
1

Γ(z)

∫ ∞
0

tz−1e−tλdt

We can write
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ηDs(z) =
∑

λs∈Spec(Ds)

λs
1

Γ( z+1
2

)

∫ ∞
0

t
z−1
2 e−tλ

2
sdt

=
1

Γ( z+1
2

)

∫ ∞
0

t
z−1
2

∑
λs∈Spec(Ds)

λse
−tλ2sdt

=
1

Γ( z+1
2

)

∫ ∞
0

t
z−1
2 Tr[Dse

−tD2
s ]dt.

It follows immediately that the η-invariant η(Ds) can be written as

η(Ds) =
1√
π

∫ ∞
0

t−
1
2Tr[Dse

−tD2
s ]dt.

And, also, one has

d

ds
ηDs(z) = − z

Γ( z+1
2

)

∫ ∞
0

t
z−1
2 Tr[D′se

−tD2
s ]dt (8)

These equations naturally involves the heat operator e−tD
2

and allow us to use heat
kernel.

Our motivation to look at the heat kernel comes from the Lidskii’s Theorem which
identified the trace of an operator with the integral of the trace of its kernel.

Theorem 2.8. If T : L2 → L2 is defined by a continuous kernel function T (x; y) by
(Tf)(x) =

∫
M
T (x, y)f(y)dy, then

Tr(T ) =

∫
M

trT (x, x)dx

This two formulas relates the η-invariant closely to the heat operator e−tD
2
u and the

kernel KD2
u
(t;x, y) of it defined by the following equaiton.

(e−tD
2
us)(x) =

∫
M

KD2
u
(t;x, y)s(y)dvoly (9)

Therefore, in the following sections, it will mainly involves the estimate of Tr[D′se
−tD2

s ]
and Tr[D1e

−tD1 ], which will be done by dealing with their corresponding kernels.

3 Variation of η-invariant

As mentioned above, the first term
∫

01
dη̄(Ds)
ds

ds (6) can be viewed as the integral
term in the APS index theorem ([1]) where the variation of η̄(Ds) corresponds to the
integrand. This observation motivates us to apply the technique for the local index
theorem introduced by Getzler in [7] to provide an explicit calculation which is done as
follows.
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3.1 Variation and the Trace of Heat Kernels

In this section we proved the following lemma which related the problem to the trace
of a heat kernel. Furthermore, this shows an essential observation that the variation of
η-invariant is actually a local invariant, which allows us to apply the technique used in
local index theorem.

Lemma 3.1. If {Ds}s∈[0,1] is a one-parameter family of Dirac operators and Tr[D′se
−tD2

s ]
has the asymptotic expansion for t near 0 as

Tr[D′se
−tD2

s ] = t−
n
2 Φ−n

2
+ t−

n
2

+1Φ−n
2

+1 + · · ·+ t−
1
2 Φ− 1

2
+O(t

1
2 ), (10)

then
d

ds
η(Ds) = −

Φ− 1
2√
π

(11)

Proof. Starting from the formula (8)

d

ds
ηDs(u) = − u

Γ(u+1
2

)

∫ ∞
0

t
u−1
2 Tr[D′se

−tD2
s ]dt,

the integral can be separated as∫ ∞
0

t
u−1
2 Tr[D′se

−tD2
s ]dt = (

∫ 1

0

+

∫ ∞
1

)t
u−1
2 Tr[c(â)e−tD

2
s ]dt.

The second term
∫∞

1
t
u−1
2 Tr[D′se

−tD2
s ]dt is analytic as a function of u. Whereas for

t ∈ (0, 1), applying the asymptotic expansion

Tr[D′se
−tD2

s ] = t−
n
2 Φ−n

2
+ t−

n
2

+1Φ−n
2

+1 + · · ·+ t−
1
2 Φ− 1

2
+O(t

1
2 ),

This allows us to write∫ 1

0

t
u−1
2 Tr[c(â)e−tD

2
s ]dt =

n−1
2∑
i=0

Φ−n
2

+i

∫ 1

0

tu−
n
2

+i−1

=

−n−1
2∑

i=0

Φ−n
2

+i

u− n−1
2

+ i
+ φ(u)

(12)

for Re(u) large enough, and the function φ(u) is holomorphic for Re(u) > −1
2
. This

formula also gives a meromorphic extension with only simple poles at −n−1
2
, −n−3

2
, . . . , 0.

Therefore, setting u = 0, it follows that

d

ds
η(Ds) =

Φ− 1
2√
π

(13)
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The next thing to be shown is

Propostion 3.2. The coefficient of t−
1
2 in the asymptotic expansion can be computed

explicitly by

Φ− 1
2

= lim
t→0

t
1
2Tr[c(â)e−tD

2
s ]

=

∫
M

lim
t→0

t
1
2 c(â)KD2

s
(t;x, x)dvolx

Remark 3.3. The second equality above follows from Lidskii’s Theorem 2.8. Once the
limit limt→0 t

1
2 c(â)KD2

s
(t;x, x) has been computed, the first equality would automatically

hold.

3.2 Localization of the Problem

It now follows from the construction of the asymptotic expansion of heat kernel that
the coefficients Φ−n

2
,Φ−n

2
+1, . . . , are determined by local information [9]. This allows us

to localize the problem as follows.
Fix a point x and let X ∈ Rn be the normal coordinates around x with local or-

thonormal frame {ei}ni=0. Let a > 0 be the injectivity radius of the manifold (M, g), and
δ ∈ (0, a

4
). We denote by BM(x, δ) and BTxM(0, δ) the open balls in M and TxM wieh

center x0 and radius δ, respectively. Then the exponential map expx : TxM → M is a
diffeomorphism from BTxM(0, δ) to BM(x, δ). From now on, we identify BTxM(0, δ) with
BM(x, δ). Thus X = 0 at x. Since M is compact, there exists {xi}ki=0 s.t. {BM(xi, δ)}ki=0

is an open covering of M . We can also identify BM(xi, δ) with BTxiM(0, δ).
We now fix a point x0 and let X ∈ Rn be the normal coordinates around x0. Further-

more, we trivialize the bundle E in the normal neighborhood by parallel translation along
radial geodesics from x0. In fact, by extending everything trivially outside the normal
neighborhood, we can assume that M = Rn with a metric which is Euclidean outside a
compact set. The bundle is now trivialized as Rn × Sn ⊗ Ck.

From now on, we consider heat kernel as an element in C∞(R+×Rn×Rn;End(Sn)⊗
End(Ck)) defined for s ∈ C∞(Rn, Sn ⊗ Ck) by

(e−tD
2
ss)(X) =

∫
Rn
K(t;X, Y )s(Y )dvol. (14)

Since End(Sn) = Cl(n), it allows us to write

K(t;X, Y )s(Y ) =
∑
I

(aI(t;X, Y )c(eI)s)(X) (15)

In particular on the diagonal, we have

K(t;X,X) =
∑
I

aI(t;X)c(eI) ∈ End(Sn)⊗ End(Ck) (16)

This expression will allow us to apply Getzler rescaling and provides an essential
observation in the Lemma 3.4.
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3.3 Getzler Rescaling and the McKean-Singer Cancellation

Let {ei}ni=1 be a local orthonormal frame around x0, and I = (i1, i2, . . . , ik) be multi-
index. The heat kernel K(t,X,X) as an endomorphism on the fibre Sx, it can be written
as

KD2
s
(t,X,X) =

∑
|I| even

aI(t;X)c(eI), (17)

where aI(t,X) ∈ End(Ck)
Hence, for the operator D′se

−tD2
s , whose kernel is exactly c(â)KD2

s
(t;X, Y ). It follows

from the formula (17) that

t
1
2

√
−1c(â)KD2

s
(t;X,X) = c(â)

∑
|I| even

aI(t;X)c(eI)

=
∑
|I| odd

bI(t;X)c(eI)
(18)

In the Clifford algebra C(Rn) with n odd, there is a property of essential importance
for us shown in [4]:

tr[1] = 2
n−1
2 , tr[e1 . . . en] = 2

n−1
2 (−

√
−1)

n+1
2 (19)

while the trace of the other monomials in Cl(n) is 0. Let’s denote the multi-index
(1, 2, . . . , n) by In

So it follows that only the top degree term contribute to the trace of the kernel, i.e.

tr[c(â)KD2
s
(t;X,X)] = trCk [bIn(t;X)]tr[c(eIn)] = 2

n−1
2 (−

√
−1)

n+1
2 trCk [bIn(t;X)] (20)

The Getzler rescaling could also possess a similar property, capturing the McKean-
Singer ”fantastic cancellation”. In addition to its action on function on the coordinate
components for a function f on R+ × Rn as (δεf)(t, x) = f(εt, ε

1
2x), it also applies a

rescaling on the elements of Clifford algebra, which incorporates the Clifford degrees.
Applying the identification between Clifford algebra and exterior algebra, we can As

mentioned above, Clifford algebra could be identified with the exterior algebra ∧∗V , with
the Clifford multiplication defined in 2.3. From now on, we can identify Cl(Tx0M) with
∧∗(Tx0M) and the effect of Getzler rescaling on Clifford algebra could be determined by

δε(e
i1 ∧ ei2 ∧ · · · ∧ eip) = ε−

p
2 ei1 ∧ ei2 ∧ · · · ∧ eip (21)

This will induce its effect on Clifford multiplication

cε(ei) = δεc(ei)δ
−1
ε = ε−

1
2 ei ∧ −ε

1
2 ι(ei) (22)

Taking limit of the a rescaled Clifford multiplication, we have

lim
ε→0

ε
n
2 δε(c(eI))δ

−1
ε =

{
0, if |I| < n

e1 ∧ e2 ∧ · · · ∧ en, if I = (1, 2, . . . , n)
(23)
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This provides the property of Getzler rescaling that captures the McKean-Singer
cancellation, stated as following:

Lemma 3.4. For any a(t;x) =
∑
|I| odd

aI(t;x)c(eI),

lim
t→0

Tr(a(t; 0))dvol = 2(n−1)/2(−
√
−1)(n+1)/2 lim

ε→0
εn/2[(δεaI)(t;x)cε(eI)](n);

where [](n) means taking the degree n term (the top degree term), and cε(eI) = δε(c(eI))δ
−1
ε .

3.4 Variation of η-invariant

Apply the lemma above, we have

Lemma 3.5. The trace of the kernel function c(â)KD2
s

can be calculated by the following
equation

Tr[c(â)KD2
s
] = 2(n−1)/2(−

√
−1)(n+1)/2trCk [lim

ε→0
εn/2t

1
2 cε(â)(δεKD2

s
)(t;X,X)] (24)

On the other hand, ε
n
2 δε(c(â)KD2

s
)(t;X,X) is the kernel of the rescaled operator

εδεD
2
sδ
−1
ε , whose limit can be computed explicitly as follows.

As beginning, we have the Lichnerowicz formula for the operator Ds.

Propostion 3.6 (Lichnerowicz Formula). For the Dirac operators Ds, s ∈ [0, 1]

D2
s = ∇∗s∇s + c(Fs) +

K

4
,

where Fs is the curvature of the connection As on the vector bundle E and c(Fs) =∑
i<j

Fs(ei, ej)c(ei)c(ej).

Based on this formula, it can be shown that

Propostion 3.7. The limit of the rescaled operator εδε(D
2
s)δ
−1
ε as ε approached to 0 is:

lim
ε→0

εδε(D
2
s)δ
−1
ε = L + Fs, (25)

where

L = −(∂xi +
1

4
Ωijx

j)2

is the generalized harmonic oscillator.
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Proof. Applying Getzler rescaling on the operator D2
s , it follows from the Lichnerowicz

formula that

δε(D
2
s)δ
−1
ε = εδε(∇∗s∇s)δ

−1
ε +

εR

4
+ εcε(F )

It is not hard to see that
lim
ε→0

εcε(Fs) = Fs ∧ .

On the other hand, noticing that the curvature of the connection ∇s is

∇2
s = ∇2 ⊗ 1 + 1⊗ Fs

=
1

2

∑
i<j,k<l

Rijklc(e
k)c(el) + Fs,

the action of the covariant derivative ∇s,ei can be expressed in local coordinate as

∇s,ei = ∂xi +
1

4

∑
j,k<l

Rijklx
j + g(x) +O(|x|2),

where Rjikl = (R(ei, ej)ek, el) is the Riemann curvature tensor on M at the point x0, and
g(x) = O(|x|) ∈ C∞(Rn, End(E)).

Thus

lim
ε→0

ε
1
2 δε(∇s,ei)δ

−1
ε = ∂xi +

1

4

∑
j,k<l

Rijklx
j +O(ε

1
2 )

Therefore,

lim
ε→0

εδε(∇∗s∇s)δ
−1
ε = lim

ε→0
εδε(∇s,ei∇s,ei −∇s∇s,eiei)δ

−1
ε

= −(∂xi +
1

4

∑
j,k<l

Rijklx
j)2

Therefore, we have
lim
ε→0

εδε(D
2
s)δ
−1
ε = L + Fs,

where

L = −(∂xi +
1

4
Ωijx

j)2, with Ωij =
∑
k<l

Rijkle
k ∧ el

is the generalized harmonic oscillator.

Using the lemma

Lemma 3.8. The heat kernel of the generalized harmonic oscillator is given by

KL (t;X, 0) =
1

(4πt)
n
2

det
1
2 (

tΩ/2

sinh Ω/2
)exp(− 1

4t
(

tΩ/2

tanh tΩ/2
)ijx

ixj)
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Thus the heat kernel of the limit operator is

K0(t;x, 0) = KL (t;x, 0)e−tFs

Thus we have

Propostion 3.9. The variation of η-invariant is

d

ds
η̄(Ds) = (

1

2π
√
−1

)
n+1
2

∫
M

[â ∧ Â(
Ω

2π
) ∧ exp(Fs)](n) (26)

Proof. Firstly, it follows from the lemma above that

lim
t→0

t
1
2 c(â)KD2

s
(t; 0, 0) = (−2

√
−1)

n−1
2 [lim

ε→0
t
1
2 ε

n
2 (δε(c(â)KD2

u
))(t;x, 0)](n)

= (
√
−1)−1(−2

√
−1)

n−1
2 [lim

t→0
t
1
2 â ∧K0(t, 0, 0)](n)

= −
√
−1(−2

√
−1)

n−1
2 [lim

t→0

1

(4π)
n
2 t

n−1
2

â ∧ det
1
2 (

tΩ/2

sinh Ω/2
)e(tFs)](n)

=
√
π(

1

2π
√
−1

)
n+1
2 [â ∧ Â(

Ω

2π
) ∧ exp(Fs)](n)

On the other hand, according to the lemma 3.1 that

d

ds
η̄(Ds) =

1√
π

∫
M

trCk [lim
t→0

t
1
2 c(â)KD2

s
(t; 0, 0)]

= (
1

2π
√
−1

)
n+1
2

∫
M

trCk [â ∧ Â(
Ω

2π
) ∧ exp(Fs)](n)

When the twisted part E is a line bundle, i.e. k = 1, Fs = srda. It has been pointed
out in [12] that

Remark 3.10. When the twisted part E is a line bundle, i.e. k = 1, the 1-form â is
purely imaginary-valued and it has been asserted in [12] that the leading order term in
this part is given by

(
1

4π
√
−1

)
n+1
2

1

(n+1
2

)!
r
n+1
2

∫
M

a ∧ (da)
n−1
2 , (27)

which also gives the leading order term of the asymptotic spectral flow.
When k > 1, the 1- form â is u(k)-valued. First write A0 as A0 = d + ω, then

As = d+ ω + ra and therefore

Fs = r2(a ∧ a) + r(da+ ω ∧ a) + (dω + ω ∧ ω). (28)

So, similarly, we have
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Remark 3.11. When the twisted part E is vector bundle of rank k > 1, the 1-form â is
u(k)-valued and the leading order term in this part is given by

(
1

4π
√
−1

)
n+1
2

1

(n+1
2

)!
rn

∫
M

trCk [a
n]. (29)

4 The Estimate of η-Invariant

The second part of the estimate is the asymptotic of η-invariant i.e. η(D1) = η(D +
c(â)). As mentioned before, we can relate η-invariant with heat operator by

η(D1) =
1√
π

∫ ∞
0

t−
1
2Tr[D1e

−tD2
1 ] (30)

Based on the following observation, we will separate the estimate into two parts as
following for each part, we have a strategy to deal with it.

η(D1) =
1√
π

(

∫ ∞
t0

t−
1
2Tr[D1e

−tD2
1 ]dt+

∫ t0

0

t−
1
2Tr[D1e

−tD2
1 ]dt) (31)

For the consistency of the notation for the cases that E is a line bundle or a vector
bundle, we introduce another parameter R to replace r, defined as R = supM{|F1|}, its
dependence on r is as follows

R ∼

{
r, for k = 1;

r2 for k > 1.
(32)

The choice of the constant t0 depends on R as t0 = 1
2R

. Since the case that E is a
line bundle has been discussed by Savale in [10], we will mainly focus on the case E is a
vector bundle of rank k > 1. However all the following estimate also works for that case
and provides an estimate that is weaker than that in [10].

Short-time

In this part, we need an estimate of the kernel of the operator D1e
−tD2

1 for small time
t ∈ (0, t0], especially for its dependence on the parameter r > 0. It has been pointed out in

[4] that its asymptotic expansion starts with the term t
1
2 . This guaranteed the regularity

of this part. In order to get a better observation on the dependence of the parameter r,
we apply Getzler rescaling to covert problem to a uniform estimate of the heat kernel of
a family of rescaled Dirac operators at a fixed time 1. This kind of estimate has been
done in [5]. Combining these approaches together, we can get the desired estimate.

We first introduced an auxiliary Grassmann variable to make the operator D1e
−uD2

1

as a part of a heat operator and then use Getzler rescaling to convert the estimate of
heat kernel for small time to a uniform estimate of heat kernel at fixed time for a family

13



of Dirac operators with a small rescaling parameter t. And the estimate is given by
applying the approached introduced in [5]. An exponential is also applied to guarantee
the convergence of the rescaled operators.

4.1 Localization of the Problem

Fix a point x and let X ∈ Rn be the normal coordinates around x with local or-
thonormal frame {ei}ni=0. Let a > 0 be the injectivity radius of the manifold (M, g), and
δ ∈ (0, a

4
). We denote by BM(x, δ) and BTxM(0, δ) the open balls in M and TxM wieh

center x0 and radius δ, respectively. Then the exponential map expx : TxM → M is
a diffeomorphism from BTxM(0, δ) to BM(x, δ). From now on, we identify BTxM(0, δ)
with BM(x, δ). Thus X = 0 at x. Since M is compact, there exists {xi}ki=0 s.t.
{Ui = BM(xi, δ)}ki=0 is an open covering of M . We can also identify BM(xi, δ) with
BTxiM(0, δ).

Before the estimate, we first use the finite propagation speed to localize the problem.
Let f : R→ [0, 1] be a smooth even function such that:

f(v) =

{
1 for |v| 6 δ

2

0 for |v| > δ
(33)

We then define

Definition 4.1. For u > 0, z ∈ C, set

Gu(z) =
1√
2π

∫ +∞

−∞
e
√
−1vz exp (−v

2

2
)f(
√
uv)dv

Hu(z) =
1√
2πu

∫ +∞

−∞
e
√
−1vz exp (− v

2

2u
)(1− f(v))dv

(34)

Clearly,
Gu(
√
uD1) +Hu(D1) = exp (−uD2

1) (35)

Let G(u;x, y) and H(u;x, y) be the smooth kernels associated to Gu(
√
uD1) and

Hu(D1).
First we have

Propostion 4.2. For any m ∈ N, u0 > 0, ε > 0, there exists C > 0 such that for any
x, y ∈M , u > 0,

|H(u;x, y)|Cm 6 Cr2m+2n+2 exp (− δ2

10u
) (36)

Proof. First we have, for any m ∈ N, there exists Cm > 0 depending on δ such that

sup
z∈R
|z|m|Hu(z)| 6 Cm exp (− δ2

10u
) (37)
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We now prove that for differential operators P,Q of order m,m′ with compact support
in Ui, Uj respectively, there exists C > 0 such that for u > u0,

‖PHu(D1)Qs‖L2 6 Crm+m′ exp (− δ2

10u
)‖s‖L2 (38)

For this purpose we first show that

‖s‖Hm+1 6 C ′m

m+1∑
j=0

rm+1−j‖Dj
1s‖L2 (39)

Let Q be a differential operator of order m ∈ N, notice that

[D1, Q] = [D,Q] + [c(â), Q] (40)

where the first part is a differential operator of order m and the second is of order m− 1.
Also, we have

‖s‖H1 6 C(‖D1s‖L2 + r‖s‖L2) (41)

Apply this inequality on Qs, we have

‖Qs‖H1 6 C(‖D1Qs‖L2 + r‖Qs‖L2)

6 C(‖QD1s‖L2 + ‖[D1, Q]s‖L2 + r‖Qs‖L2)

6 C(‖QD1s‖L2 + r‖Qs‖Hm)

6 C(‖D1s‖Hm + r‖Qs‖Hm)

(42)

This implies that

‖s‖Hm 6 Cm(‖D1s‖Hm−1 + r‖s‖Hm−1) (43)

Repeating this inequality on ‖D1s‖Hm−1 , we have

‖s‖Hm 6 Cm(‖D1s‖Hm−1 + r‖s‖Hm−1)

6 Cm((‖D2
1s‖Hm−2 + r‖D1s‖Hm−2) + r(‖D1s‖Hm−2 + r‖s‖Hm−2))

6 · · · 6 Cm

m∑
j=0

rm−j‖Dj
1s‖L2

(44)

Apply this to PHu(D1)Qs, there exists a constant C > 0

‖PHu(D1)Qs‖L2 6 C‖Hu(D1)Qs‖Hm

6 C

m∑
j=0

rm−j‖Dj
1Hu(D1)Qs‖L2

6 C

m∑
j=0

rm−j‖Q∗Dj
1Hu(D1)s‖L2

(45)
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And once again, we have for each 0 6 j 6 m

‖Q∗Dj
1Hu(D1)s‖L2 6 C

m∑
j=0

‖Dj
1Hu(D1)s‖Hm′

6 C
m∑
j=0

m′∑
k=0

rm
′−k‖Dj

1D
k
1Hu(D1)s‖L2

(46)

Combining the inequalities above, one has

‖PHu(D1)Qs‖L2 6 C
m+m′∑
j=0

rm+m′−j‖Dj
1Hu(D1)s‖L2 (47)

Finally, we have that for differential operators P,Q of order m,m′ with compact
support in Ui, Uj respectively, there exists C > 0 such that for u > u0,

‖PHu(D1)Qs‖L2 6 Crm+m′ exp (− δ2

10u
)‖s‖L2 (48)

Applying Sobolev inequality we have

‖Hu(D1)s‖Cm ≤ Cr2n+2+m exp (−δ
2

u
) (49)

Using finite propagation speed [8], it is clear that for x, y ∈M , G(u;x, y) only depends
on the restriction of D1 to BM(x, δ), and is zero if d(x, y) > δ.

Once again, fix a point x0 and let X ∈ Rn be the normal coordinates around x0.
Furthermore, we trivialize the bundle E in the normal neighborhood by parallel transla-
tion along radial geodesics from x0 via the Levi-Civita connection ∇ and A1 respectively.
Furthermore, by extending everything trivially outside the normal neighborhood, we can
assume that M = Rn with a metric which is Euclidean outside a compact set. The
bundle is now trivialized as Rn × (Sn ⊗ Ck).

5 Auxiliary Grassmann Variable

As in [4], we first introduce a auxiliary Grassmann variable z which anticommutes
with e1, . . . en, considered as elements of c(TM). It allows us to write

exp(−tD2
1 +

z
√
t

2
D1) = e−tD

2
1 + z

√
tD1e

−tD2
1

whose kernel is
P (t;x, y) = P 0(t;x, y) + z

√
tKD2

1
(t;x, y) (50)
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where P 0(t;x, y) is the heat kernel of D2
1 and KD2

1
(t;x, y) is the kernel of the operator

D1e
−tD2

1 .
It follows from Lidskii Theorem that

Tr[D1e
−tD2

1 ] =

∫
M

tr[P 1(t;x, x)]dvolx (51)

Thus, for this kind of operators, we define Trz as following

Definition 5.1. For A, B ∈ c(TM), we define

Trz[A+ zB] = Tr[B] (52)

Thus we have
Trz[P (t;x, x)] =

√
tT r[P 1(t;x, x)] (53)

On the other hand, Bismut and Freed shown in [4] that there is a C∞ function b1/2(x)
on M such that as t→ 0,

tr[P 1(t;x, x)] = b1/2(x)t1/2 +O(t3/2, x) (54)

and O(t3/2, x) is uniform on M.
For our problem, we need to look further for its uniform dependence on the parameter

r.
Furthermore, by introducing z, we can apply the method introduced in [5] to the

operator exp(−tD2
1 + z

√
tD1) = e−tD

2
1 + z

√
tD1e

−tD2
1 and finally give the estimate of

η-invariant. It is guaranteed by the following propositions.

Propostion 5.2. For an operator T = A+zB, where A commutes with z, it is invertible
if and only if A is invertible and its inverse is

(A+ zB)−1 = A−1 − zA−1BA−1 (55)

Proof. If T is invertible, assume T−1 = U + zV . Then

TT−1 = (A+ zB)(U + zV )

= AU + (zBU + A(zV ))
(56)

Then AU = I and zBU + A(zV ) = 0 and therefore, A is invertible. Now we can write,

T−1 = (A+ zB)−1 = [A(I + zA−1B)]−1

= (I + zA−1B)−1A−1

= A−1 − zA−1BA−1

(57)

Conversely, if A is invertible, the equation (5.2) gives T−1 explicitly.
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Apply this proposition to the operator D2
1 − z√

t
D1 and take higher powers, we have

(λ−D2
1 +

z√
t
D1)−1 = (λ−D2

1)−1 − z√
u
D1(λ−D2

1)−2

Taking k-th power of it, it follows that

Corollary 5.3. Let k be any positive integer,

(λ−D2
1 +

z√
u
D1)−k = (λ−D2

1)−k − z√
u
kD1(λ−D2

1)−k−1 (58)

It then follows as in [5], that

Propostion 5.4. For any k ∈ N∗, we have

e−uD
2
1+z
√
uD1 =

(−1)k−1(k − 1)!

2π
√
−1uk−1

∫
Γ

e−uλ(λ−D2
1 +

z√
u
D1)−kdλ (59)

where Γ = {x+ ε
√
−1|x > −ε} ∪ {−ε+ y

√
−1| − ε 6 y 6 ε} ∪ {x− ε

√
−1|x > −ε} is a

contour with ε > 0

This formula is generalized from [5] for the operators with the auxiliary Grassmann
variable z.

5.1 Getzler Rescaling and Exponential Transformation

As in [4], an alternative description of trz[P (t;x, x)] is

P (t;x, x) =
∑
|I| even

aI(t, x)c(cI) +
∑
|I| odd

bI(t, x)c(eI) (60)

where I = {i1, i2, . . . , ik} is multi-index. This gives an important observation from the
property of Clifford multiplication:

trz[P (t;x, x)] = 2
n−1
2 (−

√
−1)

n+1
2 trCk [b1...n(t, x)] (61)

5.2 Getzler’s rescaling

Combining with Getzler rescaling, we have

Lemma 5.5.

tr[t
n
2 (δtP

1)(1, 0, 0)] = 2−
n−1
2 (−

√
−1)−

n+1
2 trz[P (t, 0, 0)]e1 ∧ e2 ∧ · · · ∧ en +O(t) (62)

On the other hand, if we denote by D1,t the rescaled Dirac operator

D1,t = t
1
2 δt(D1)δ−1

t = Dt + t
1
2 ct(â) (63)

we have,
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Lemma 5.6. The kernel of the rescaled heat operater exp(−uD2
1,t + z

√
u

2
D1,t) is

t
n
2 (δtP )(u;x, y) = t

n
2 (δtP

0)(u;x, y) + z
√
ut

n+1
2 (δtP

1)(u;x, y) (64)

where the t
n
2 (δtP

0)(u;x, y) is the heat kernel of the operator D2
1,t and t

n+1
2 (δtP

1)(u;x, y)

is the kernel of the operator D1,te
−uD2

1,t

With Getzler rescaling we have

1. related the trace of the kernel function with the kernel of the rescaled operater

2. converted the estimate of heat kernel in small time to a uniform estimate of the
heat kernel of a family of rescaled operators with a small rescaling parameter t.

5.3 Conjugation by the Exponential Transformation

Before doing that, we still have another obstruction, the convergence of the operator
tδt(exp(−uD2

1 + z
√
u

2
D1))δ−1

t . This is solved by the exponential transformation introduced
as following.

Noticing that conjugation preserves the trace of operators, we first conjugate the
operator by the exponential transformation

e
zxic(ei)

2 = 1 +
zxic(ei)

2
(65)

Which gives the operator

L = e
zxic(ei)

2 (−D2
1 +

z√
u
D1)e−

zxic(ei)

2 = −D2
1 + zL1

where

L1 =
1√
u

[(〈 ∂
∂xj

, ei〉c(ej)∇1,ei −D1) + xic(∇ejei)∇1,ej −
1

2
c(∇∗∇(xiei))] (66)

Applying Getzler rescaling now on the operator L gives

Lt = tδt(L)δ−1
t = D2

1,t +
z√
u
L1
t (67)

It follows that there exists a constant C > 0 independent of the parameters r, t.

‖Lt‖0,1
t 6 Crt (68)

From now on, we’ll keep focus on the operator e−uLt with the corresponding kernel

Kt(u;x, y) = K0
t (u;x, y) + z

√
uK1

t (u;x, y)

19



whereK0
t (u;x, y) = t

n
2 (δtK

0)(u;x, y) is the kernel of the operator e−uD
2
1,t andK1

t (u;x, y) =

t
n+1
2 (δtK

1)(u;x, y) is the kernel of the operator

H1 = D1,te
−uD2

1,t + [
zxic(ei)

2
, e−uD

2
1,t ].

It can be seen from this observation that the kernel K1
t (u, ;x, y) has the same trace

as P 1
t (u;x, y). Furthermore, the operator Lt is convergent as t→ 0 and tr[K1

t (u;x, y)] =
tr[P 1

t (u, x, x)].
To apply the approach introduced in [5], we have the corresponding lemmas for the

operator Lt by applying the conjugation and Getzler rescaling.

Lemma 5.7. For any λ ∈ Γ, where the contour Γ is defined as above, we have that the
operator λ− Lt is invertible and

(λ− Lt)−k = (λ−D2
1,t)
−k +

z√
u

k∑
i=1

(λ−D2
1,t)
−iL1

t (λ−D2
1,t)
−k+i−1 (69)

Thus we have

Lemma 5.8. For any k ∈ N∗, one has

e−uLt =
(−1)k−1(k − 1)!

2π
√
−1uk−1

∫
Γ

e−uλ(λ− Lt)−kdλ

=
(−1)k−1(k − 1)!

2π
√
−1uk−1

∫
Γ

e−uλ(λ−D2
1,t)
−kdλ

+
z(−1)k−1(k − 1)!

2π
√
−1uk−

1
2

∫
Γ

e−uλ
k∑
i=1

(λ−D2
1,t)
−iL1

t (λ−D2
1,t)
−k+i−1dλ

(70)

where Γ = {x+ ε
√
−1|x > −ε} ∪ {−ε+ y

√
−1| − ε 6 y 6 ε} ∪ {x− ε

√
−1|x > −ε} is a

contour with ε > 0 as we defined before.

So fix x ∈ M , apply the Getzler rescaling δt under the normal coordinate around
x, when the rescale parameter t is small enough, t−1K1

t (1;x, x) = t−1/2tr[K1(t;x, x)] +
O(t1/2). So from the estimate of K1

t (1;x, x) we can give an estimate of t−1/2tr[K1(t;x, x)].

5.4 A Uniform Heat Kernel Estimate near Diagonal

The setup above allowed us to use the method introduce by Dai-Liu-Ma in [5]. In
this part we are going to prove

Theorem 5.9. For any u0 > 0, there exists a C > 0 and N ∈ N such that for any
t ∈ (0, t0] and u > u0 and x ∈ Tx0X = Rn,

sup
X,Y ∈Rn

|K1
t (u;X, Y )| 6 CrR

n−1
2 t(1 + |X|+ |Y |)Nexp(εu) (71)

sup
X,Y ∈Rn

|K0
t (u; 0, x)| 6 CR

n
2 (1 + |X|+ |Y |)Nexp(εu) (72)
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The estimate given by (71) will immediately give an estimate of η-invariant.
The idea is to give an estimate to a properly chosen Sobolev normH2n+2 forK0

t (u;x, y)
and K1

t (u;x, y), which can provide a bound for their L∞-norm.

5.5 The Sobolev Norm Hm
t

Recall as in the chapeter 3, we defined the rescaled connection by

∇1 = ∇⊗ 1 + 1⊗ A1

∇1,t = t
1
2 δt∇1δ

−1
t = ∇t ⊗ 1 + 1⊗ A1,t

(73)

We first introduce the rescaled Sobolev norms for the sections, operators and kernels.

Definition 5.10. For s ∈ C∞(M,E ), set

‖s‖2
t,m =

m∑
l=0

n∑
i1,...,il=1

‖∇1,t,ei1
, . . . ,∇1,t,eil

s‖L2 (74)

In order to guarantee that our Sobolev constant is independent of the parameter r,
we need to compare this Sobolev norm is equivalent to the “usual” Sobolev norm for
sections induced by the Sobolev norm in the following sense. For smooth section s of the
bundle E , we define its Hm Sobolev ‖s‖m as the Hm Sobolev norm of |s| as a smooth
function. This is provided by the following lemma.

Lemma 5.11. The Sobolev norm defined in (74) is equivalent to the usual Sobolev norm
on any closed ball BRn(0, q), i.e. for t ∈ [0, t0] there exists a constant C > 0 independent
of the parameters r, t such that

1

C(1 + q)m
‖s‖t,m 6 ‖s‖m 6 C(1 + q)m‖s‖t,m (75)

Proof. Given any s ∈ C∞(Rn, Sn ⊗ Ck),

‖∇1,t,eis‖L2 = ‖(∇ei ⊗ 1 + 1⊗ A1,t(ei))s‖L2 . (76)

From the choice of the orthonormal frame and the trivialization of the bundle E , the
connection A1 can be written as

A1 = d+
n∑
i=1

αidx
i,

where {αi} is u(k)-valued function that can be determined by the curvature F1 via

αi|x =

∫ 1

0

ρxjF1(∂j, ∂i)(ρx)dρ
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As a result, given t ∈ [0, t0], we have

t
1
2 δt(A1(ei)) =

n∑
j=1

δt(αj〈∂j, ei〉)

=
n∑

j,k=1

t
1
2 δt(

∫ 1

0

ρxkF1(∂k, ∂j)〈∂j, ei〉(ρx)dρ)

=
n∑

j,k=1

t
1
2 (

∫ 1

0

ρt
1
2xkF1(∂k, ∂j)〈∂j, ei〉(ρt

1
2x)dρ)

=
n∑

j,k=1

t(

∫ 1

0

ρxkF1(∂k, ∂j)〈∂j, ei〉(ρt
1
2x)dρ).

(77)

Therefore, given any q > 0, there exists a constant C ′ > 0 independent of the param-
eters r, t, and q, such that for s ∈ C∞(BRn(0, q), Sn ⊗ Ck),

1

C ′(1 + q)
‖s‖1 6 ‖∇1,t,eis‖L2 6 C ′(1 + q)‖s‖1. (78)

Thus there exists a constant C > 0 independent of the parameters r, t, q such that

1

C ′(1 + q)
‖s‖1 6 ‖s‖1,t 6 C ′(1 + q)‖s‖1, (79)

This implies that the Sobolev norm defined in (74) is equivalent to the usual Sobolev
norm on any closed ball BTM(0, q), i.e. there exists a constant C > 0 independent of the
parameters r, t such that

1

C(1 + q)m
‖s‖t,m 6 ‖s‖m 6 C(1 + q)m‖s‖t,m.

This norm also induced the inner-product 〈s, s′〉 on C∞(Rn,Ex0). Denote by Hm
t the

Sobolev space of order m with norm ‖·‖t,m. And let H−1
t be the Sobolev space of order

−1 and let ‖·‖t,−1 be the norm on H−1
t defined by

‖s‖t,−1 = sup
‖s′‖t,1=1

|〈s, s′〉| (80)

This norms of sections induce the corresponding norms of operators.

Definition 5.12. If A ∈ L (Hm, Hm′) for some integers m,m′, we denote by ‖A‖m,m
′

t

the norm of A induced by ‖·‖t,m and ‖·‖t,m′, i.e.

‖A‖m,m
′

t = sup
‖s‖t,m=1

‖As‖t,m′ (81)
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5.6 The Uniform Heat Kernel Estimate

With these norms, the estimate of the operators is given via the estimate to the norm
‖QxQ

′
yK

0
t (u;x, y)‖ and ‖QxQ

′
yK

1
t (u;x, y)‖ with Q,Q′ ∈ Q = {∇t,ei1

. . .∇t,eij
}j6n+1.

QxQ
′
yK

1
t (u;x, y) and QxQ

′
yK

1
t (u;x, y) are the kernels of the operator

QH1Q′ = −(−1)k−1(k − 1)!

2π
√
−1uk

∫
Γ

e−uλ
k∑
i=1

Q(λ−D2
1,t)
−iL1

t (λ−D2
1,t)
−k+i−1Q′dλ. (82)

Noticing that for Q1, Q2, . . . , Qm ∈ {∇t,ei}ni=1 the operators

Qi1Qi2 . . . Qil(λ−D2
1,t)
−iL1

t (λ−D2
1,t)
−k+i−1

are linear combination of the following two types of operators:

(λ−D2
1,t)
−1R1(λ−D2

1,t)
−1R2 . . . (λ−D2

1,t)
−1L1

t (λ−D2
1,t)
−1 . . . Rm′(λ−D2

1,t)
−1

(λ−D2
1,t)
−1R1(λ−D2

1,t)
−1R2 . . . (λ−D2

1,t)
−1R(λ−D2

1,t)
−1 . . . Rm′(λ−D2

1,t)
−1

where the operator R is of the form [Qj1 , [Qj2 , . . . , [Qjl , L
1
t ]]], and Ri is of the form

[Qj1 , [Qj2 , . . . , [Qjl , D
2
1,t]]].

We will give a uniform estimate for both these two types of the operators above.
Recall from the Lichnerowicz formula (3.6), D2

1,t = ∇∗1,t∇1,t + c(F1) + tδtK
4

, where

∇1 = ∇⊗ 1 + 1⊗ A1 ∇1,t = t
1
2 δt∇1δ

−1
t

In order to achieve the uniform estimate of its dependence on the parameter r, the
most important observation is to let:

Mt = ∇∗1,t∇1,t +
tδtK

4
(83)

This allows us to write D2
1,t = Mt + tct(Fs) with the following property.

Lemma 5.13. For t 6 t0 the spectrum of Mt would be the same as that of L0
t which is

contained in [0,+∞). And for λ ∈ Γ, we have

(λ−D2
1,t)
−1 = (λ−Mt)

−1

∞∑
k=0

(tct(F1)(λ−Mt)
−1)k (84)

Remark 5.14. The series in (84) is uniformly convergent and the leading order term in
r is given by the power of F1∧. Since F1∧ is nilpotent, the dependence on R contributed
by it is up to R

n−1
2 -th power. With this observation, we can start the estimate by giving

estimate to the operators of the form QMtQ
′. As in [5], this is done by giving estimate

to all the operators involved in it as stated as following.
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Theorem 5.15. There exists constants C1, C2, C3 > 0 such that for t ∈ (0, t0] and any
s, s′ ∈ C∞0 (Rn, Sx0), we have

〈Mts, s〉t,0 > C1‖s‖2
t,1 − C2‖s‖2

t,0 (85)

|〈Mts, s
′〉t,0| 6 C3‖s‖t,1‖s′‖t,1 (86)

Proof. It follows from the Lichnerowicz formula (3.6) that

〈Mts, s〉t,0 = 〈∇∗1,t∇1,ts, s〉+ 〈tK
4
s, s〉

= 〈∇1,ts,∇1,ts〉+ 〈tK
4
s, s〉

(87)

The equation (85) and (86) now follows directly from it.

Then we have

Theorem 5.16. There exists C > 0 such that for t ∈ (0, t0] and λ ∈ Γ, we have

‖(λ−Mt)
−1‖0,0

t 6 C (88)

‖(λ−Mt)
−1‖−1,1

t 6 C(1 + |λ|2) (89)

Proof. The inequality (88) follows directly from the Lemma5.13.
For λ0 ∈ R, λ0 6 −2C2t, (λ0 −Mt)

−1 exists and we have

‖(λ0 −Mt)
−1‖−1,1

t 6
1

C1

(90)

Now for any λ ∈ Γ, we have

(λ−Mt)
−1 = (λ0 −Mt)

−1 − (λ− λ0)(λ−Mt)
−1(λ0 −Mt)

−1 (91)

and thus we have

‖(λ−Mt)
−1‖−1,0

t 6
1

C1

(1 +
1

ε
|λ− λ0|) (92)

Therefore, we have
‖(λ−Mt)

−1‖−1,1
t 6 C(1 + |λ|2) (93)

Propostion 5.17. Take m ∈ N∗, there exists Cm > 0, such that for t ∈ (0, t0] and
Q1, Q2, . . . , Qm ∈ {∇t,ei , Xi}ni=1 and s, s′ ∈ C∞(Rn, Sx0), we have

|〈[Q1, [Q2, . . . , [Qm,Mt]] . . . ]s, s
′〉t,0| 6 Cm‖s‖t,1‖s′‖t,1 (94)
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Proof. Noticing that

[∇1,t,ei ,Mt] = [∇1,t,ei ,∇∗1,t∇1,t] + tδt(ei(K))

The last term tδt(ei(K)) is obviously small for t small. The first term are differential
operators of order 2 and 1 respectively, with some curvature terms, as follows

[∇1,t,ei ,∇∗1,t∇1,t] = t
3
2 δt([∇1,ei ,∇∗1∇1])δ−1

t .

It follows from our discussion in the previous section that this operator consists only of
differential operators of at most 2 with some curvature terms independent of r.

By iteration, we know that [Q1, [Q2, . . . , [Qm,Mt] . . . ] has the same structure and we
get the desired estimate.

Therefore, the inequality holds.

Now with the estimates above, we first get.

Theorem 5.18. For any t ∈ (0, t0], λ ∈ Γ and m ∈ N∗, (λ−Mt)
−1 maps Hm

t into Hm+1
t .

Moreover, for any α ∈ Zn, there exist N ∈ N and Cα,m > 0, such that

‖Zα(λ−Mt)
−1s‖t,m+1 6 Cα,m(1 + |λ|2)N

∑
α′6α

‖Zα′s‖t,m (95)

Proof. ForQ1, Q2, . . . , Qm ∈ {∇t,ei}ni=1, andQm+1, Qm+2, . . . , Qm+|α| ∈ {xi}ni=1, Q1Q2 . . . Qm+|α|(λ−
Mt)

−1 can be written as a linear combination of the operators of the type

[Q1, [Q2, . . . [Qm′ , (λ−Mt)
−1]] . . . ]Qm′+1 . . . Qm′+|α|

Let Rt = {[Qj1 , [Qj2 , . . . [Qjl ,Mt]] . . . ]}. Clearly, any commutator [Q1, [Q2, . . . [Qm′ , (λ−
Mt)

−1]] . . . ] is a linear combination of operators of the form

(λ−Mt)
−1R1(λ−Mt)

−1R2 . . . Rm′(λ−Mt)
−1 (96)

with R1, R2, . . . , Rm′ ∈ Rt. By the proposition above, the norm ‖Rj‖1,−1
t is uniformly

bounded. And by 5.16 we find that there exists a constant C > 0 and N ∈ N such that
the norm ‖‖0,1

t < C(1 + |λ|2)N .

Now, taking the extra term rtct(da) into account, we have

Propostion 5.19. For any m ∈ N∗, Q ∈ Qm, there exist Cm > 0 and M ∈ N∗ such that
for any λ ∈ Γ, we have

‖Q(λ−D2
1,t)
−m‖0,0

t 6 Cmr
n−1
2 (1 + |λ|2)M (97)

Furthermore, we have
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Propostion 5.20. For any m ∈ N∗, Q ∈ Qm, there exist Cm > 0 and M ∈ N∗ such that
for any λ ∈ Γ and s ∈ C∞(Rn, Sx0), we have

‖Q(λ−D2
1,t)
−iL1

t (λ−D2
1,t)
−k+i−1s‖0,t 6 Cmr

n+1
2 t

1
2 (1 + |λ|2)M (98)

Proof. (Theorem 5.9)
It now follows from 5.8 and 5.20 that

‖QH1‖0,0
t 6 Cmr

n+1
2 t

1
2 eεu (99)

In addition to that, the rescaled Sobolev norm is equivalent to the usual Sobolev
norm within a closed ball, i.e. there exists C > 0 such that for s ∈ C∞(X)(Rn, Sx0),
supp{s} ⊂ BRn(0, q), m > 0,

1

C
(1 + q)−m‖s‖t,m 6 ‖s‖m 6 C(1 + q)m‖s‖t,m (100)

Together with Sobolev inequality, it follows that

sup
|X|,|Y |<q

|K1(u;X, Y )| 6 CrR
n−1
2 t

1
2 (1 + q)n+2eεu (101)

sup
|X|,|Y |<q

|K0(u;X, Y )| 6 CR
n−1
2 (1 + q)n+2eεu (102)

Thus we get the desired estimate in Theorem 5.9.

Large time

While the previous part has actually provided the estimate for
∫ t0

0
t−

1
2Tr[D1e

−tD2
1 ]dt,

this part is focusing on
∫ +∞
t0

t−
1
2Tr[D1e

−tD2
1 ]dt.

First of all, for the integral
∫∞
t0
t−

1
2Tr[D1e

−tD2
1 ]dt, we can show that

Lemma 5.21.

|
∫ ∞
t0

t−
1
2Tr[D1e

−tD2
1 ]dt| 6

∫ ∞
t0

t−
1
2 |Tr[D1e

−tD2
1 ]|dt

6
∫ ∞
t0

t−
1
2

∑
λ∈Spec{D1}

|λe−tλ2|dt

<

√
π

2
Tr[e−

t0
2
D2

1 ].

(103)

Proof. For a single eigenvalue λ of D1 and t > t0, e−tλ
2
6 e−

(t+t0)λ
2

2 , thus
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∫ ∞
t0

t−
1
2 |λe−tλ2|dt 6

∫ ∞
t0

t−
1
2 |λ|e−

(t+t0)λ
2

2 dt

= e−
t0λ

2

2

∫ ∞
t0

t−
1
2 |λe−

tλ2

2 |dt

6

√
π

2
e−

t0λ
2

2 .

Taking the sum over the spectrum of D1, it follows that∫ ∞
t0

∑
λ∈Spec{D1}

|λ|e−tλ2 <
√
π

2
Tr[e−

t0
2
D2

1 ],

and therefore the entire inequality above holds.

The estimate given by Taubes in [12], which is stated as follows will provide the

first-step estimate of Tr[e−
t0D

2
1

2 ].

Propostion 5.22. There exists a constant c > 0

|KD2
1
(t, x, 0)| < c(

1

4πt
)
n
2 ecRt

Proof. Firstly, note that

d〈s1, s2〉 = 〈∇1s1, s2〉+ 〈s1, ∇̄1s2〉 (104)

Take an arbitrary s ∈ S0, such that |s| = 1
Then we have

d

du
KD2

1
(u;x, 0)s = −D̂2KD2

1
(u;x, 0)s

Thus we have

d

du
|KD2

1
(u;x, 0)s| = d

du
〈KD2

1
(u;x, 0)s,KD2

1
(u;x, 0)s〉1/2x

=〈KD2
1
(u;x, 0)s,KD2

1
(u;x, 0)s〉−1/2

x 〈 d
du
KD2

1
(u;x, 0)s,KD2

1
(u;x, 0)s〉1/2x

=|KD2
1
(u;x, 0)s|〈−D̂2KD2

1
(u;x, 0)s,KD2

1
(u;x, 0)s〉1/2x

=|KD2
1
(u;x, 0)s|(〈−∇∗∇KD2

1
(u;x, 0)s,KD2

1
(u;x, 0)s〉x

− 〈K
4
KD2

1
(u;x, 0)s,KD2

1
(u;x, 0)s〉x

− 〈c(F1)KD2
1
(u;x, 0)s,KD2

1
(u;x, 0)s〉x)

1
2
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Then it follows from the fact |a| > 0 and R, F1 are both bounded on the compact
manifold M that

d

du
|KD2

1
(u;x, 0)s| 6|KD2

1
(u;x, 0)s|−1(〈−∇∗∇KD2

1
(u;x, 0)s,KD2

1
(u;x, 0)s〉

1
2
x

− 〈c(F1)KD2
1
(u;x, 0)s,KD2

1
(u;x, 0)s〉

1
2
x )

6|KD2
1
(u;x, 0)s|−1(〈−∇∗∇KD2

1
(u;x, 0)s,KD2

1
(u;x, 0)s〉

1
2
x

+ C(1 +R)〈KD2
1
(u;x, 0)s,KD2

1
(u;x, 0)s〉x)

where C > 0 is a constont.
On the other hand,

d|KD2
1
(u;x, 0)s| = 〈KD2

1
(u;x, 0)s,KD2

1
(u;x, 0)s〉−1/2

x 〈∇KD2
1
(u;x, 0)s,KD2

1
(u;x, 0)s〉x

= |KD2
1
(u;x, 0)s|−1〈∇KD2

1
(u;x, 0)s,KD2

1
(u;x, 0)s〉x

Then

d∗d|KD2
1
(u;x, 0)s| =− tr(∇d|KD2

1
(u;x, 0)s|)

=− |KD2
1
(u;x, 0)s|−1〈∇∗∇KD2

1
(u;x, 0)s,KD2

1
(u;x, 0)s〉

+ |KD2
1
(u;x, 0)s|−3〈∇KD2

1
(u;x, 0)s,KD2

1
(u;x, 0)s〉2

− |KD2
1
(u;x, 0)s|−1〈∇KD2

1
(u;x, 0)s,∇KD2

1
(u;x, 0)s〉

6|KD2
1
(u;x, 0)s|−1〈∇∗∇KD2

1
(u;x, 0)s,KD2

1
(u;x, 0)s〉

Therefore we have the inequality

∂

∂u
|KD2

1
(u;x, 0)| 6 −d∗d|KD2

1
(u;x, 0)s|+ CR〈KD2

1
(u;x, 0)s,KD2

1
(u;x, 0)s〉1/2x ) (105)

Set f(u, x) = e−C(1+R)u|KD2
1
(u;x, 0)|, then

∂

∂u
f(u, x) 6 −d∗df(u, x)

In Taubes’ paper it set up this inequality for the heat kernel KD2
1
(u;x, y), where y is

fixed. For g(u, x) = e−C(1+R)u|K1
D2

1
(u;x, y)|, we have

∂

∂u
g(u, x) 6 −d∗dg(u, x)

From the fact
lim
u→0

KD2
1
(u;x, y) = Idxδy(x)
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it follows that g(u, x) 6 ( 1
4πu

)n/2e−
d2(x,y)2

4u and thus

|KD2
1
(u;x, y)| 6 κ(

1

4πu
)n/2eκRue−

d2(x,y)
4u

It now follows that ∫ ∞
t0

t−
1
2Tr[D1e

−tD2
1 ]dt < C1(

1

2πt0
)
n
2 eC1Rt0 (106)

From our choice of t0 = 1
2R

, it now follows that

Propostion 5.23. There exists a constant C > 0 independent of r, such that

Tr[e−t0D
2
1 ]dt < CR

n
2 . (107)

This induces the estimate of the rest part of the reduced η-invariant.

Theorem 5.24. There exists a constant C > 0, such that

|dimKer(D1) +

∫ ∞
t0

t−
1
2Tr[D1e

−tD2
1 ]dt| 6 CR

n
2

5.7 The Estimate of η-invariant

Now the proof of Theorem 2 follows from the uniform estimate of K1(u;X, Y ), the
equation (31) and the Proposition 5.23

Theorem 2. Let M be an odd dimensional compact spin manifold, and D be a Dirac
operator acting on the bundle S⊗E, a be a Lie algebra u(k)-valued one-form on M , and
r > 0. Denote by R = supM{|F1|}. Then there exists a constant C ′ > 0, such that

|η̄(D + rc(a))| 6 C ′R
n
2

when r > 0 is sufficiently large.

Proof. Note that

η̄(D1) =
1

2
(dimKer(D1) + η(D1))

=
1

2
(dimKer(D1) +

∫ ∞
0

t−
1
2Tr[D1e

−tD2
1 ])dt

=
1

2
(dimKer(D1) +

∫ ∞
t0

t−
1
2Tr[D1e

−tD2
1 ]dt+

∫ t0

0

t−
1
2Tr[D1e

−tD2
1 ]dt).
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From the estimate achieved above, it follows that there exists constants C1, C2 > 0
such that

|dimKer(D1) +

∫ ∞
t0

t−
1
2Tr[D1e

−tD2
1 ]dt| 6 C1R

n
2 ,

|
∫ t0

0

t−
1
2Tr[D1e

−tD2
1 ]dt| 6 C2R

n−1
2 .

Combining the estimates above provides the desired estimate for the reduced η-
invariant.

In conclusion, suming up all the results above, it eventually provides our estimate of
the asymptotic spectral flow.

Theorem 1. Let M be an odd dimensional compact spin manifold, and D0 be a Dirac
operator on it, and Ds = D0 + sc(â), 0 6 s 6 1, be the smooth curve of Dirac operators,
where â = ra is a Lie algebra u(k)-valued 1-form on M with parameter r > 0. Denote by
R = supM{|F1|}, then there exists a constant C > 0, such that the spectral flow satisfies

|sf{Ds, [0, 1]} − (
1

2π
√
−1

)
n+1
2

∫ 1

0

∫
M

trCk [â ∧ Â(M) ∧ eFs ]nds| 6 cR
n
2
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