
Danning Lu The Rising Sea Exercises for Chapter 3

1 Toward Schemes

Exercise 3.1.A. Suppose that π : X → Y is a continuous map of differentiable manifolds
(as topological spaces not a priori differentiable). Show that π is differentiable if differ-
entiable functions pull back to differentiable functions, i.e., if pullback by π gives a map
OY → π∗OX .

Proof: Assume π(p) = q and the local charts at p ∈ X and q ∈ Y are (U, φ;x1, ..., xm) and
(V, ψ : y1, ..., yn). Further assume that π(U) = V . View yj as functions on V (which are
clearly differentiable), by assumption π∗yj must be differentiable. This implies the function
(π∗y1, ..., π∗yn) is differentiable, which is just the map ψ ◦ π ◦ φ−1.

Exercise 3.1.B. Show a morphism of differential manifolds π : X → Y with π(p) = q
induces a morphism of stalks π# : OY,q → OX,p. Show that π#(mY,q) ⊂ mX,p.

Proof: For {V, g} ∈ OY,q, define π#({V, g}) = {π−1(V ), π∗g} where π∗g(x) := g(π(x)) for
all x ∈ π−1(V ). Now we have to verify that this is well defined. In fact, if {V, g} ∼ {V ′, g′},
then there exist W ⊂ V ∩ V ′ such that g|W = g′|W . Then π∗g|π−1(W ) = π∗g

′|π−1(W ), which

means that {π−1(V ), π∗g} ∼ {π−1(V ′), π∗g′}. Since mY,q = {{V, g} : g(q) = 0}, the second
result comes naturally by our construction.

2 The Underlying Set of Affine Schemes

Exercise 3.2.A. 1. Describe the set Spec k[ε]/(ε2).

2. Describe the set Spec k[x](x).

Proof:

1. Spec k[ε]/(ε2) = {[(ε)]}.

2. Spec k[x](x) = {[(x)], [(0)]}.

Exercise 3.2.B. Show that R[x]/(x2 + ax+ b) ∼= C if x2 + ax+ b is irreducible in R.

Proof: Trivial.

Exercise 3.2.C. Describe the set A1
Q.

Proof: A1
Q = {(f) : f irreducible in Q[x]}.

Exercise 3.2.D. If k is a field, show that Spec k[x] has infinitely many points.

Proof: Assume p1, ..., pn are all the nonzero prime ideals in k[x], assume that there are
finitely many of them. Assume that fi ∈ pi for all i = 1, ..., n with deg fi ≥ 1. Then
f := f1f2...fn + 1 has degree greater than or equal to n, which means that it’s not a unit.
Since k[x] is UFD, f can be divided by at least one irreducible element, p say, which can not
belong to any of the pi’s. Then (p) is a new prime ideal, which leads to contradiction.
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Exercise 3.2.E. Show that all of the prime ideals of C[x, y] has one of the following forms:
(0), (x− a, y − b) and (f) when f is irreducible.

Proof: Assume that p is a prime ideal which is not principle. Then there must be at least
two irreducibles f(x, y), g(x, y) ∈ p which are not differ by a unit. By considering the degree
of y as an Euclidean function, we can find 0 6= h(x) ∈ (f(x, y), g(x, y)) ⊂ p. Since p is prime,
we know that all the linear divisors of h(x), x−a say, is in p. Thus only one linear term is of
this form. Similarily we can find y− b ∈ p for some b. Now we claim that p = (x− a, y− b),
since if f(x, y) ∈ p− (x− a, y − b), we have 0 6= f(a, b) ∈ p, which is a unit.

Exercise 3.2.F. Show that the Nullstellensatz 3.2.5 implies the Weak Nullstellensatz. 3.2.4.
weak Nullstellensatz: If k is an algebraically closed field then the maximal ideals of
k[x1, ..., xn] are precisely (x1 − a1, ..., xn − an).
Nullstellensatz: If k is a field then the maximal ideals of k[x1, ..., xn] have residue fields
finite extension of k.

Proof: Assume k algebraically closed, and m a maximal ideal of A := k[x1, ..., xn]. By
Nullstellensatz we know A/m is just k. Let φ : A � A/m be the natural surjection. Then
for any f ∈ m, 0 = φ(f(x1, ..., xn)) = f(φ(x1), ..., φ(xn)). Let ai = φ(xi), we conclude that
m ⊂ (x1 − a1, ..., xn − an) 6= A. Since m is maximal, m = (x1 − a1, ..., xn − an), which
completes the proof.

Exercise 3.2.G. Any integral domain A which is a finite k-algebra (i.e., a k-algebra that
is finite dimensional vector space over k) must be a field.

Proof: Assume that 0 6= x ∈ A. Consider the linear transformation ×x : A → A when
viewing A as a vector space over k. It’s kernel must be zero since A is an integral domain.
Thus it must be an isomorphism since A is finite dimensional. Hence we can find the inverse
of x, which completes the proof.

Exercise 3.2.H. Describe the maximal ideal of Q[x, y] corresponding to (
√

2,
√

2) and
(−
√

2,−
√

2). Describe the maximal ideal of Q[x, y] corresponding to (
√

2,−
√

2) and (−
√

2,
√

2).
What are the residue fields in each case?

Proof: The first maximal ideal should be (x2− 2, x− y). The second is (x2− 2, x+ y). The
residue fields are both isomorphic to Q[x]/(x2 − 2), which is just Q[

√
2].

Exercise 3.2.I. Consider the map of sets φ : C2 → A2
Q defined as follows. (z1, z2) is sent to

the prime ideal of Q[x, y] consisting of polynomials vanishing at (z1, z2).
(a) What is the image of (π, π2)?
*(b) Show that φ is surjective.

Proof: (a) Assume that f(x, y) ∈ Q[x, y] vanishes at (π, π2). Then f(x, x2) ∈ Q[x] vanishes
at π, which makes it a zero polynomial. Hence (x2 − y) ⊃ φ(π, π2). The other inclusion is
obvious.
(b) (c.f. Exercise 9.4.D) Since C[x, y] = Q[x, y] ⊗Q C, and the fact that the map SpecC →
SpecQ i surjective, by Exercise 9.4.D we know that the map ψ : SpecC[x, y]→ SpecQ[x, y]
is surjective, the restriction of which on the closed points is just φ. Now for any prime ideal
p ⊂ Q[x, y], there is at least one preimage under ψ, which must be one of the following three
cases by Exercise 3.2.E:
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1. Of the form (x− a, y − b), in which case we are done.

2. The zero ideal. Since the transcendental degree of C/Q is of continuous cardinarity,
we can find at least two of them, a, b, say, and thus φ(a, b) = (0).

3. Of the form (f) for some irreducible element f ∈ C[x, y]. If (f) ∩ Q[x, y] = (0),
then we come back to the previous situation. Hence we can assume that there exist
g ∈ C[x, y] such that h := fg ∈ Q[x, y]. Without loss of generality we can assume
f(x, y) =

∑n
k=0 gk(y)xk with gk ∈ C[y] for all k = 0, ..., n, with n > 0. Since gn(y) = 0

has finitely many roots, we can pick q ∈ Q such that gn(π + q) 6= 0. Thus f(x, π + q)
is not zero function and we can find at least one root α.

Now I claim that (f) ∩Q[x, y] = (x− α, y − π − q) ∩Q[x, y].

The left hand side is clearly a subset of the right hand side, since (x− α, y − π − q) is
clearly a maximal ideal containing (f).

Now assume the inclusion is strict, by the fact that Q[x, y] is of dimension 2, we must
have (x − α, y − π − q) maximal. Then Q[x, y]/(x − α, y − π − q) must be a finite
extension of Q by Nullstellensatz. But π is transcendental over Q, which leads to
contradiction.

Exercise 3.2.J. Suppose A is a ring, and I an ideal of A. Let φ : A → A/I. Show that
φ−1 gives an inclusion-preserving bijection between prime ideals of A/I and prime ideals in
A containing I.

Proof: Direct verification. If p is a prime ideal in A/I, consider f, g ∈ A such that
fg ∈ φ−1p. Thus fg is in p. Then f̄ ∈ p or ḡ ∈ p. Let’s assume that f̄ ∈ p. Then f ∈ φ−1p,
which means that φ−1p is a prime ideal in A. The other direction is similar.

Exercise 3.2.K. Suppose S is a multiplicative subset of A. Describe an order-preserving
bijection of the prime ideals of S−1A with the prime ideals of A that don’t meet the multi-
plicative subset S.

Proof: To boring to write it down.

Exercise 3.2.L. Give an isomorphism of rings (C[x, y]/(xy))x ' C[x]x.

Proof: Define φ : (C[x, y]/(xy))x → C[x]x given by f(x, y) 7→ f(x, 0). Both rings are
localizing at x so this map is well defined. We also need to check that the map does
not depend on the choice of f(x, y), which is not hard. The map is obviously surjective.
Now consider f(x, y) ∈ (C[x, y]/(xy))x such that f(x, 0) = 0. Then f(x, y) = yg(y) =
(xyg(y))/x = 0, which proves injectivity.

Exercise 3.2.M. If φ : B → A is a map of rings, and p is a prime ideal of A, show that
φ−1(p) is a prime ideal of B.
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Proof: Let f, g ∈ B such that fg ∈ φ−1(p). Thus φ(f)φ(g) = φ(fg) ∈ p. Since p is prime,
we have either φ(f) ∈ p or φ(g) ∈ p, which means that f ∈ φ−1(p) or g ∈ φ−1(p).

Exercise 3.2.N. Let B be a ring.

1. Suppose I ⊂ B is an ideal. Show that the map SpecB/I → SpecB is the inclusion of
3.2.7.

2. Suppose S ⊂ B is a multiplicative set. Show that the map SpecS−1B → SpecB is the
inclusion of 3.2.8.

Proof: The corresponding ring map B → B/I (resp. B → S−1B) gives the same bijection
in 3.2.7 (resp. 3.2.8).

Exercise 3.2.O. Consider the map of complex manifolds sending C→ C via x 7→ y = x2.
We interpret the ”source” as the x-line, and the ”target” y-line. Interpret the corresponding
map of rings as given by C[y] → C[x] by y = x2. Verify that the preimage above the point
a ∈ C is the points ±

√
a ∈ C, using the definition given above.

Proof: a ∈ C is interpreted by a maximal ideal (y−a) ⊂ C[y]. Assume that (x−b) ⊂ C[x] is
a preimage of (y−a). Then y−a = x2−a ∈ (x−b), which means that (x−b)(x−c) = x2−a
for some c ∈ C. Hence c = −b = ±

√
a.

Exercise 3.2.P. Suppose k is a field, and f1, ..., fn ∈ k[x1, ..., xm] are given. Let φ :
k[y1, ..., yn]→ k[x1, ..., xm] be the ring homomorphism defined by yi 7→ fi.

1. Show that φ induces a map of sets Spec k[x1, ..., xm]/I → Spec k[y1, ..., yn]/J for any
ideals I ⊂ k[x1, ..., xm] and J ⊂ k[y1, ..., yn] such that φ(J) ⊂ I.

2. Show that the map of part (1) sends the point (a1, ..., am) ∈ km to (f1(a1, ..., am), ..., fn(a1, ..., am)) ∈
kn.

Proof:

1. φ(J) ⊂ I provides that we can induce a ring map φ̄ : k[y1, ..., yn]/J → k[x1, ..., xm]/I,
thus induces the map described.

2. Let I = (x1 − a1, ..., xm − am). We want to find φ−1(I). Assume φ−1(I) := J :=
(y1 − b1, ..., yn − bn). Then we induce a ring map φ̄ : k[y1, ..., yn]/J → k[x1, ..., xm]/I.
But both the source and target are isomorphic to k, which makes φ̄ be the identity
map on k, since it clearly can not be the zero map. So consider yi ∈ k[y1, ..., yn]/J . It
is mapped to fi(x1, ..., xm) ∈ k[x1, ..., xm]/I, which is fi(a1, ..., am) ∈ k. On the other
hand, it is directly mapped to bi. Thus bi = fi(a1, ..., am), which proves the claim.

Exercise 3.2.Q. Consider the map of sets π : An
Z → SpecZ, given by the ring map Z →

Z[x1, ..., xn]. If p is prime, describe a bijection between the fiber π−1([(p)]) and An
Fp

.
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Proof: The fiber π−1([(p)]), corresponds to all prime ideals of Z[x1, ..., xn], which pull backs
to (p) under π, thus corresponds to all prime ideals of Z[x1, ..., xn] that contains the ideal (p),
which corresponds to all prime ideals of Z[x1, ..., xn]/(p) according to Exercise 3.2.J, which
is just An

Fp
.

Exercise 3.2.R. Ring elements that have a power that is 0 are called nilpotents.

1. Show that if I is an ideal of nilpotents, then the inclusion SpecB/I → SpecB of
Exercise 3.2.J is a bijection. Thus nilpotents dont affect the underlying set.

2. Show that the nilpotents of a ring B form an ideal. This ideal is called the nilradical,
and is denoted N = N(B).

Proof:

1. We just need to show that all prime ideals contains nilpotents, and the result will
follow from Exercise 3.2.J. In fact, since 0 is in any ideal, so any nilpotents should be
contained in any prime ideals since its power is contained.

2. Step-by-step verification, which can easily be found in any textbook.

Exercise 3.2.S. The nilradical N(A) is the intersection of all the prime ideals of A. Geo-
metrically: a function on SpecA vanishes at every point if and only if it is nilpotent.

Proof: Can be easily found in other textbooks.

Exercise 3.2.T. Suppose we have a polynomial f(x) ∈ k[x]. Instead, we work in k[x, ε]/(ε2).
What then is f(x+ ε)?

Proof: f(x + ε) = f(x) + εf ′(x). In fact, since f(x) is polynomial, we have the Taylor

expansion f(x) =
∑n

i=0 f
(i)(x) ε

i

i!
, where n is the degree of f(x). Hence the result holds since

ε2 = 0.

3 Visualizing schemes I: generic points

4 The underlying topological space of an affine scheme

Exercise 3.4.A. Check that the x-axis is contained in V (xy, yz). (The x-axis is defined by
y = z = 0, and the y-axis and z-axis are defined analogously.)

Proof: xy ∈ (y, z) ⊂ (x− a, y, z) for every a ∈ C. Same thing with yz

Exercise 3.4.B. Show that if (S) is the ideal generated by S, then V (S) = V ((S)).
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Proof: By definition, clearly V ((S)) ⊂ V (S). Now assume [p] ∈ V (S). Then for any
f ∈ (S), f =

∑
siai for some si ∈ S, ai ∈ A. By assumption si ∈ p. Thus f ∈ p since p is

an ideal.

Exercise 3.4.C. 1. Show that ∅ and SpecA are both open in SpecA.

2. If Ii is a collection of ideals, show that ∩iV (Ii) = V (
∑

i Ii). Hence the union of any
collection of open sets is open.

3. Show that V (I1) ∪ V (I2) = V (I1I2). Hence the intersection of any finite number of
open sets is open.

Proof:

1. V (0) = SpecA and V (1) = ∅.

2. If [p] ∈ ∩iV (Ii), then ∀i ∈ Λ, fi ∈ Ii, f ∈ p, thus for a typical element
∑

i fi ∈
∑

i Ii,∑
i fi ∈ p. On the other hand, if [p] ∈ V (

∑
i Ii), then

∑
i fi ∈

∑
i Ii for all fi ∈ Ii. In

typical let fj = 0 when j 6= i we get what we want.

3. If [p] ∈ V (I1I2) − V (I1), which means that there exist u ∈ I1 such that u /∈ p. Then
since ∀v ∈ I2, uv ∈ p, and the fact that p is a prime ideal, we have v ∈ p, and so
[p] ∈ V (I2). The other inclusion is obvious since I1I2 ⊂ I1 and I1I2 ⊂ I2.

Exercise 3.4.D. Define radical of an ideal I to be

√
I := {r ∈ A : rm ∈ I for some n ∈ Z+}.

Show that
√
I is an ideal. Show that V (

√
I) = V (I). We say an ideal is radical if it equals

its own radical. Show that
√√

I =
√
I, and prime ideals are radical.

Proof:

1. If r ∈
√
I, then there exist m > 0 such that rm ∈ I, then for any a ∈ A we have

(ra)m = rmam ∈ I, which indicates that ra ∈
√
I. If r1, r2 ∈

√
I such that rm1

1 , rm2
2 ∈ I

for some m1,m2 > 0, then (r1+r2)
m1+m2−1 ∈ I by binomial expansion, which indicates

that r1 + r2 ∈
√
I.

2. If [p] ∈ V (I), then for any f ∈
√
I, fm ∈ p for some m > 0. Since p is prime, f ∈ p.

Thus V (I) ⊂ V (
√
I). The other inclusion is trivial since

√
I ⊃ I.

3. Clearly
√√

I ⊃
√
I. Now if r ∈

√√
I. Then rm ∈

√
I for some m > 0, which means

rmn = (rm)n ∈ I for some n > 0.

4. For any prime ideal p, and p ∈ √p, then pm ∈ p for some m > 0. But since it is a
prime ideal, we must have p ∈ p.
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Exercise 3.4.E. If I1, ..., In are ideals of a ring A, show that
√
∩ni=1Ii = ∩ni=1

√
Ii.

Proof: For f ∈
√
∩ni=1Ii, there exist m > 0 such that fm ∈ Ii (∀i), which indicates that

f ∈ ∩ni=1

√
Ii.

For f ∈ ∩ni=1

√
Ii, there exist mi > 0 such that fmi ∈ Ii. Let m = maxmi and we have

fm ∈ ∩ni=1Ii, and so f ∈
√
∩ni=1Ii.

Exercise 3.4.F. Show that
√
I is the intersection of all the prime ideals containing I.

Proof: By Exercise 3.2.J, all the prime ideals containing I corresponds to the prime ideals
of A/I with preserve of inclusion, the intersection of which is the nilradical of A/I, which
corresponds to

√
I by definition.

Exercise 3.4.G. Describe the topological space A1
k.

Proof: Since k[x] is PID, then all the ideals have the form (f). Clearly [(0)] is in all V (f)’s.
All the other points in A1

k is are maximal ideals of the form [(x− a)] for some a ∈ k, or a in
short. a ∈ V ((f)) if and only if f(a) = 0. We know that a function can only have finitely
many roots, and we can always find a function with exactly finitely many preassigned roots.
Hence we conclude that all the closed sets in A1

k are the whole set, empty set, or any finitely
many points union [(0)].

Exercise 3.4.H. By showing that closed sets pull back to closed sets, show that π :
SpecA → SpecB is a continuous map. Interpret Spec as a contravariant functor from
Rings to Tops.

Proof: π−1(V (I)) = {[p] ∈ SpecA : I ⊂ π(p)} = {[p] ∈ SpecA : π−1(I) ⊂ p} = V (π−1(I)).
Hence π is continuous.

Clearly the Spec functor preserves identity and composition.

Exercise 3.4.I. Suppose that I, S ⊂ B are an ideal and multiplicative subset respectively.

1. Show that SpecB/I is naturally a closed subset of SpecB. If S = {1, f, f 2, ...} (f ∈ B),
show that SpecS−1B is naturally an open set of SpecB. Show that for arbitrary S,
SpecS−1B need not be open or closed.

2. Show that the Zariski topology on SpecB/I (resp. SpecS−1B) is the subspace topology
induced by inclusion in SpecB.

Proof:

1. SpecB/I is just V (I) of SpecB. SpecS−1B = SpecB − V (f).

Consider the localization Z→ Q and the corresponding map SpecQ→ SpecZ. [(0)] ∈
SpecZ is not open or closed.
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2. Every closed set V (J) of SpecB/I (resp. SpecS−1B) is the intersection of the vanishing
set of pullback of J and SpecB/I (resp. SpecS−1B).

Exercise 3.4.J. Suppose I ⊂ B is an ideal. Show that f vanishes on V (I) if and only if
f ∈
√
I.

Proof: ⇐: If f ∈
√
I, then fn ∈ I for some n > 0. For any [p] ∈ V (I), we have fn ∈ p,

and so f ∈ p since p is prime.
⇒: If f vanishes on V (I), then f ∈ p for all [p] ∈ V (I), hence f ∈ ∩[p]∈V (I)p =

√
I by

Exercise 3.4.F.

Exercise 3.4.K. Describe the topological space Spec k[x](x).

Proof: Spec k[x](x) = {[(x)], [(0)]}. Clearly the whole set and the empty set is in the
topology. Now since [(x)] ∈ V (x) while [(0)] /∈ V (x), we know {[(0)]} is in the topology.
Since (0) ⊂ (x), {[(x)]} can not be in the topology.

5 A base of the Zariski topology on SpecA: Distin-

guished open sets

Exercise 3.5.A. Show that the distinguished open sets form a base for the (Zariski) topol-
ogy.

Proof: Given S ⊂ A, claim that SpecA−V (S) = ∪f∈SD(f). In fact, if [p] ∈ D(f) for some
f ∈ S, then f /∈ p, then [p] /∈ V (S). On the other hand, if [p] /∈ V (S), then f /∈ p for some
f ∈ S, which means that [p] ∈ D(f).

Exercise 3.5.B. Suppose fi ∈ A as i runs over some index set J . Show that ∪i∈JD(fi) =
SpecA if and only if ({fi}i∈J) = A, or equivalently, if there are ai, all but finitely many
nonzero, such that

∑
aifi = 1.

Proof: By proof of 3.5.A, ∪i∈JD(fi) = SpecA−V ({fi : i ∈ J}) = SpecA−V (({fi}i∈J)).
The result hold by the fact that if I is an ideal of A, V (I) = ∅ if and only if I = A.

Exercise 3.5.C. Show that if SpecA is an infinite union of distinguished open sets ∪i∈JD(fi),
then in fact is a union of finitely number of these.

Proof: By Exercise 3.5.B, ∪i∈JD(fi) = SpecA if and only if there are ai, all but finitely
many nonzero, such that

∑
aifi = 1. Hence (fi)ai 6=0 = A, and by using Exercise 3.5.B again

we know that ∪ai 6=0D(fi) = SpecA.

Exercise 3.5.D. Proof that D(f) ∩D(g) = D(fg).

Proof: If [p] ∈ D(fg), then fg /∈ p, and thus f, g /∈ p, hence [p] ∈ D(f) ∩D(g).
On the other hand, if [p] ∈ D(f)∩D(g), then f, g /∈ p, thus fg /∈ p since p is prime, and

so [p] ∈ D(fg).
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Exercise 3.5.E. Show that D(f) ⊂ D(g) if and only if fn ∈ (g) for some n ≥ 1, if and
only if g is an invertible element of Af .

Proof: ⇒: If D(f) ⊂ D(g), then V (g) ⊂ V (f). Since f vanishes on V (f), thus it vanishes
on V (g), and by Exercise 3.4.J, f ∈

√
(g), which means that fn ∈ (g) for some n ≥ 1.

⇐: If fn ∈ (g) for some n ≥ 1, then f ∈
√

(g), and by Exercise 3.4.J, f vanishes on
V (g), thus V (g) ⊂ V (f), and so D(f) ⊂ D(g).

The second if and only if is obvious.

Exercise 3.5.F. Show that D(f) = ∅ if and only if f ∈ N.

Proof: D(f) = ∅ if and only if D(f) ⊂ D(0), if and only if f ∈ N by Exercise 3.5.E.

6 Topological (and Noetherian) properties

Exercise 3.6.A. If A = A1×...×An, describes a homomorphism SpecA1

∐
...
∐

SpecAn →
SpecA for which each SpecAi is mapped to a distinguished open set D(fi) of SpecA. Thus
Spec

∏n
i=1Ai =

∐n
i=1 SpecAi as topological spaces.

Proof: WLOG, we can assume that n = 2. We claim that all prime ideals p of A has the
form p1 × A2 or A1 × p2 for some prime ideals pi ⊂ Ai. Now, let f1 = (1, 0) and f2 = (0, 1),
we know that f1f2 = 0 ∈ p. Since p is prime, we know one of fi’s is in p. WLOG we assume
f1 ∈ p. Then f1A = A1 × 0 ⊂ p. Consider the natural projection π : A → A2. By Exercise
3.2.J, π(p) is a prime ideal of A2, which completes the claim. Besides, D(f1) contains prime
ideals of A that contains A1 but not A2, which corresponds to SpecA2 under our map.

On the other hand (in remark), if SpecA is not connected, then it can written as a disjoint
union of two closed subsets, namely V (I1) and V (I2). Thus, V (I1I2) = V (I1) ∪ V (I2) =
SpecA meaning I1I2 ⊂ N(A), while V (I1+I2) = V (I1)∩V (I2) = ∅ meaning 1 ∈ I1+I2. Now
we can choose ai ∈ Ii such that a1+a2 = 1. Then a1a2 ⊂ N(A) meaning (a1a2)

n = 0 for some
n. Let b1 =

∑n−1
k=0 C(2n, k)a2n−k1 ak2 ∈ I1 and b2 =

∑n−1
k=0 C(2n, k)a2n−k2 ak1 ∈ I2, where C(−,−)

is the combination number. Then b1 + b2 =
∑2n

k=0C(2n, k)a2n−k1 ak2 = (a1 + a2)
2n = 1, and

b1b2 = 0. Thus b1 + b2 = 1 = (b1 + b2)
2 = b21 + 2b1b2 + b22 = b21 + b22. Let k = b1− b21 = b22− b2.

Then k ∈ I1 ∩ I2. Let c1 = b1 − k ∈ I1 and c2 = b2 + k ∈ I2. Thus c1c2 = 0. Then
c1 + c2 = b1 + b2 = 1, and c21 = (b1 − k)2 = b21 − 2b1k + k2 = b21 = b1 − k = c1. Similarly
c22 = c2. Now consider the ring map A→ (c1)×(c2) via a 7→ (c1a, c2a). This map is injective,
since if (c1a, c2a) = 0, we have a = (c1+c2)a = 0. It is also surjective, since for any (c1u, c2v)
in range, we have (c1u+ c2v) 7→ (c1(c1u+ c2v), c2(c1u+ c2v)) = (c1u, c2v). Hence the map is
ring isomorphism, which proves the claim.

Exercise 3.6.B. 1. Show that in an irreducible topological space, any nonempty open
set is dense.

2. If X is a topological space, and Z (with the subspace topology) is an irreducible subset,
then the closure Z̄ in X is irreducible as well.

Proof:

9
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1. Assume U is a nonempty open set of an irreducible topological space X, and p is a
point outside of U . For any open neighborhood V of p such that U ∩ V = ∅, we have
U c∪V c = X, thus by irreducibility one of them must be the whole space, which means
that one of U and V must be empty, which leads to contradiction.

2. Let U and V be two closed subsets in Z̄ such that U ∪ V = Z̄. Then U ∩Z and V ∩Z
are closed in Z, and their union is Z. Since Z is irreducible, U ∩Z = Z or V ∩Z = Z.
WLOG let’s assume it’s the first case. Then U = Z̄ since U is closed, which proofs the
claim.

Exercise 3.6.C. If A is an integral domain, show that SpecA is irreducible.

Proof: Assume that V (I) and V (J) are two closed subsets, the union of which is the
whole set SpecA. Then we have SpecA = V (IJ), which means IJ = (0), and hence one of
them must be 0.

Exercise 3.6.D. Show that an irreducible topological space is connected.

Proof: If not, then the two connected components are closed and their union is the whole
space. However, non of them is the whole space, which contradicts to the irreducible hy-
pothesis.

Exercise 3.6.E. Give (with proof!) an example of a ring A where SpecA is connected but
reducible.

Proof: Let A = C[x, y]/(xy). Consider U1 = V (x) and U2 = V (y). they are closed subsets,
the union of which is V ((xy)) = V (0) = SpecA. However, neither of the Ui’s the whole
space, thus proving that SpecA not irreducible. However, V (x) = (C[x, y]/(xy))/(x) =
C[y], which is connected, and so is V (y). So SpecA is connected, based on the fact that
[(0)] ∈ V (x) ∩ V (y).

Exercise 3.6.F. 1. Suppose I = (wz − xy, wy − x2, xz − y2) ⊂ k[w, x, y, z]. Show that
Spec k[w, x, y, z]/I is irreducible, by showing that k[w, x, y, z]/I is an integral domain.

2. Note that the generators of the ideal of part (1) may be rewritten as the equations
ensuring that

rank

(
w x y
x y z

)
≤ 1,

Generalize part (1) to the ideal of rank one 2× n matrices.

Proof:

10
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1. Consider the ring map f : k[w, x, y, z] → k[a, b] via w 7→ a3, x 7→ a2b, y 7→ ab2,
z 7→ b3. We claim that the kernel is I. In fact, it is easy to verify that I is in the
kernel. Now consider u in the kernel. We can find v ∈ k[w, x, y, z] such that u− v ∈ I,
and v does not contain any terms having wz, wy or xz as factor. That leaves with
the following options: wixj , xiyj, yizj, zi (i > 0, j ≥ 0). They will be mapped to
a3i+2jbj, a2i+jb2j+i, aib2i+3j, b3i, respectively. They are linearly independent: all ambn

are linearly independent for different m.n, and different i, j’s in different options give
different m,n’s, since the options coincides with m > 2n, n/2 < m ≤ 2n, 0 < 2m ≤ n,
m = 0, respectively. Thus we can conclude that v = 0, which completes our claim.

Now that we have k[w, x, y, z]/I isomorphic to a subring of the integral domain k[a, b],
which means that itself must also be an integral domain, which proves irreducibility
by Exercise 3.6.C.

2. cf Exercise 8.2.J

Exercise 3.6.G. 1. Show that SpecA is quasicompact.

2. Show that in general SpecA can have nonquasicompact open sets.

Proof:

1. Given an open cover of SpecA, we can always find an open finer cover consisting of
distinguished open sets D(fi). By Exercise 3.5.D, there is a finite subcover, which gives
a way to find a finite subcover of the original cover.

2. Let A = k[x1, x2, ...] and m = (x1, ...). Then SpecA − V (m) = ∪∞i=1D(xi), which does
not have finite subcover.

Exercise 3.6.H. 1. If X is a topological space that is a finite union of quasicompact
spaces, show that X is quasicompact.

2. Show that every closed subset of a quasicompact topological space is quasicompact.

Proof: Could be found in any topology textbook.

Exercise 3.6.I. Show that the closed points of SpecA correspond to the maximal ideals.

Proof: If [p] is a closed point, then it is V (I) for some ideal I, then we have that the only
prime ideal containing I is p. However, there must be a maximal ideal containing I, and
hence it must be p, which means that p must be maximal.

On the other hand, if m is maximal, {[m]} = V (m).

Exercise 3.6.J. 1. Suppose that k is a field, and A is a finitely generated k-algebra.
Show that closed points of SpecA are dense, by showing that if f ∈ A, and D(f) is a
nonempty (distinguished) open subset of SpecA, then D(f) contains a closed point of
SpecA.

11
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2. Show that if A is a k-algebra that is not finitely generated the closed points need not
be dense.

Proof:

1. If f is a zero divisor, then D(f) = SpecA, which makes the conclusion trivial. Now
assume that f is not a zerodivisor.

By Nullstellensatz, closed points of Spec of a finitely generated k-algebra B corresponds
to maximal ideals of B (Exercise 3.6.I), as those for which the residue field is a finite
extension of k. Now, SpecAf must has a closed point [m], which corresponds to a
maximal ideal m of Af whose residue field is a finite extension of k, provided that Af
is also finitely generated as a k-algebra. Now since the natural map A→ Af gives an
injective map A/(m|A) → Af/m. Hence A/(m|A) is a subring of a finite extension of
k, thus itself is a finite extension of k, and by Nullstellensatz again, we know that m|A
is maximal, and by Exercise 3.6.J we get our conclusion.

2. Consider Spec k[x](x). The only closed point is [(x)]. It is not dense, since the closure
is still itself, not the whole set.

Exercise 3.6.K. Suppose that k is an algebraically closed field, and A = k[x1, ..., xn]/I
is a finitely generated k-algebra with N(A) = {0}. Consider the set X = SpecA as a
subset of An

k . The space An
k contains the ”classical” points kn. Show that functions on X

are determined by their values on the closed points (by the weak Nullstellensatz 3.2.4, the
classical points kn ∩ SpecA of SpecA).

Proof: If f and g are two different functions on X, then f − g 6= 0. Now since
N(A) = {0}, we know that f − g does not vanish on some point of X by Remark 3.2.13.
That means D(f−g) is not empty. Now apply Exercise 3.6.J we know that D(f−g) contains
some closed points of X, which are the ”classical” points.

Exercise 3.6.L. If X = SpecA, show that [q] is a specialization of [p] if and only if p ⊂ q.
Hence show that V (p) = {[p]}.

Proof: [q] is a specialization of [p], by definition, if and only if q ∈ {p}, if and only if (∀I
such that p ∈ V (I), q ∈ V (I)), if and only if (∀I such that I ⊂ p, I ⊂ q), if and only if
p ⊂ q.

V (p) = {[q] ∈ SpecA : p ⊂ q} = {[q] ∈ SpecA : [q] is a specialization of [p]} = {[p]}.

Exercise 3.6.M. Verify that [(y − x2)] ∈ A2 is a generic point for V (y − x2).

Proof: By Exercise 3.6.L, [(y − x2)] = V ((y − x2)) = V (y − x2)}.

Exercise 3.6.N. Suppose p is a generic point for the closed subset K. Show that it is near
every point q of K (every neighborhood of q contains p), and not near any point r not in K
(there is a neighborhood of r not containing p).

12
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Proof: If q ∈ K, and there is a neighborhood U of q that does not contain p, then U c is a
closed set containing p, thus must contain K, which leads to contradiction, since q ∈ K.

Kc is a neighborhood of r not containing p.

Exercise 3.6.O. Show that every point x of a topological space X is contained in an
irreducible component of X.

Proof: Consider the partially ordered set S of irreducible closed subsets of X containing
x. By Zorn’s lemma, {{x}} is a totally ordered subset of S, thus contained in a maximal
totally ordered subset {Zα}. ∪Zα must be irreducible, since if U, V are closed subsets of X
such that U ∪V = ∪Zα, then for any α, U ∩Zα = Zα or V ∩Zα = Zα, and thus one of them
must equal to the union. By our choice, Zα is an irreducible component.

Exercise 3.6.P. Show that A2
C is a Noetherian topological space: any decreasing sequence

of closed subsets of A2
C = SpecC[x, y] must eventually stabilize. Show that C2 with the

classical topology is not a Noetherian topological space.

Proof: As described in 3.4.3, the closed sets of SpecC[x, y] are the union of finitely many
of ”curves” and finitely many of closed points, if not the whole space. Hence the descending
chain must stabilize, since if there’s one element in the chain that is not the whole set, then
it has finitely many closed subsets.

C2 in the classical topology is clearly not Noetherian, since the chain {B(0, 1/n)} is a
counterexample.

Exercise 3.6.Q. Show that every connected component of a topological space X is the
union of irreducible components of X. Show that any subset of X that is simultaneously
open and closed must be the union of some of the connected components of X. If X is a
Noetherian topological space, show that the union of any subset of the connected components
of X is always open and closed in X. (In particular, connected components of Noetherian
topological spaces are always open, which is not true for more general topological spaces,
see Remark 3.6.13.)

Proof:

1. Let U be a connected component of X. Then every point of U belongs to an irreducible
component, which must be connected, hence it must be a subset of U . Then U is the
union of all such irreducible components.

2. Let S be simultaneously open and closed in X. Then every point p of S belongs to a
connected component Tpwhich must be contained in S. (If not, then both Tp ∩ S and
Tp− S are simultaneously open and closed in Tp, which make it not connected.) Then
S is the union of all such connected components.

3. We first proof that X should be the union of finitely many irreducible components.
If not, let C be the set of all closed subsets of X that is union of infinitely many
irreducible components. It is clearly not empty, since X ∈ C. For any C ∈ C, C can
not be irreducible, and so C = A∪B with A,B closed and strictly subset of C, one of

13
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which must contain infinitely many components. Hence we can find a decreasing and
non-stabilizing chain of closed sets, which contradicts with the Noetherian hypothesis
of X.

So the union of any subset of the connected components of X must be the union of
irreducible components of X, which must be finitely many of them. Since irreducible
components are closed, so shall their finite union. Hence the union must be closed,
and open since it’s complement is closed.

Exercise 3.6.R. Show that a ring A is Noetherian if and only if every ideal of A is finitely
generated.

Proof: ⇒: If there is an ideal I that is not finitely generated, then we can find an ascending
chain of ideal {Ii} such that I0 = (0), and Ii+1 generated by Ii and an element in I − Ii.
This chain of ideal will not stabilize, which contradicts the Noetherian hypothesis.
⇐: If there is a chain of ideals {Ii} that does not stabilize, then ∪Ii is an ideal that is

not finitely generated, since otherwise the generators will be contained in ∪Ni=0Ii for some
N >> 0, which makes Ik = IN for all k > N , contradiction!

Exercise 3.6.S. If A is Noetherian, show that SpecA is a Noetherian topological space.
Describe a ring A such that SpecA is not a Noetherian topological space.

Proof: If SpecA is not Noetherian, then there exist a strictly descending sequence of
closed subsets V (I1) ⊃ V (I2) ⊃ ..., which gives a strictly ascending sequence of ideals of A:
I1 ⊂ I2 ⊂ ..., which contradicts the Noetherian hypothesis of A.

Spec k[x1, x2, ...] is not Noetherian since V (x1) ⊃ V (x1, x2) ⊃ ... is strictly descending.

Exercise 3.6.T. Show that every open subset of a Noetherian topological space is quasi-
compact. Hence if A is Noetherian, every open subset of SpecA is quasicompact.

Proof: Assume that U is open in a Noetherian topological space X, along with an open
cover {Uα}. Let U be the set of unions of finite subsets of {Uα}. U must have a maximal
element, since otherwise we can obtain a strictly increasing sequence of open sets. Assume
A = U1∪ ...∪Un is a maximal element. Then A ⊃ U , since otherwise there exist x ∈ (U−A),
and so we can find x ∈ Uβ ⊂ {Uα}, and thus A∪Uβ is strictly larger than A, which leads to
contradiction.

Exercise 3.6.U. Show that if M is a Noetherian A-module, then any submodule of M is
a finitely generated A-module.

Proof: If M ′ is a submodule of M that is not finitely generated, then we can pick an
increasing sequence of submodules of M as follows: M0 is the zero submodule, and Mi+1

is generated by Mi and one element of M − Mi. This sequence can not stabilize, since
all Mi’s are finitely generated, thus strictly contained in M ′, but that contradicts with the
Noetherian hypothesis.

14
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Exercise 3.6.V. If 0→ M ′ → M → M ′′ → 0 is exact, show that M ′ and M ′′ are Noethe-
rian if and only if M is Noetherian.

Proof: We first proof that if φ : M → M ′′ with kerφ = M ′, then N ⊂ N ′ ⊂ M , and
N ∩M ′ = N ′ ∩M ′ and φ(N) = φ(N ′) implies N = N ′. In fact, assume x ∈ (N ′ − N). If
φ(x) /∈ φ(N) then we are done since then φ(N) 6= φ(N ′). Now assume φ(x) ∈ φ(N). Then
there exist y ∈ N such that φ(x) = φ(y). So (x− y) ∈ kerφ = M ′. Then (x− y) ∈ N ′ ∩M ′,
but (x− y) /∈ N , which makes N ′ ∩M ′ 6= N ∩M ′, contradiction!
⇐: Given an ascending submodules {Mi} of M , we obtain ascending submodules {Mi ∩

M ′} of M ′ and {φ(Mi)} of M ′′, which will all stabilize by Noetherian hypothesis. And thus
by our previous result, {Mi} will also stabilize.
⇒: Submodules of M ′ are also submodules of M , so M being Noetherian guarantees

M ′ being Noetherian. Submodules of M ′′ will pull back to submodules of M , preserving
ordering, and so M being Noetherian guarantees M ′′ being Noetherian.

Exercise 3.6.W. Show that if A is a Noetherian ring, then A⊕n is a Noetherian A-module.

Proof: Proof by induction. It clearly works for n = 1. For n > 1, consider the exact
sequence

0→ A→ A⊕n → A⊕(n−1) → 0.

A and A⊕(n−1) are Noetherian by induction hypothesis, and hence A⊕n is Noetherian by
Exercise 3.6.V.

Exercise 3.6.X. Show that if A is a Noetherian ring and M is a finitely generated A-
module, then M is a Noetherian module. Hence by Exercise 3.6.U, any submodule of a
finitely generated module over a Noetherian ring is finitely generated.

Proof: We have the short exact sequence

0→M ′ → A⊕n →M → 0,

where A⊕n has basis the generators of M , the second map as natural inclusion, and M ′ as
the kernel. By Exercise 3.6.W, A⊕n is Noetherian, and by Exercise 3.6.V, so shall M .

7 The functionI(·), taking subsets of SpecA to ideals of

A

Exercise 3.7.A. Let A = k[x, y]. If S = {[(y)], [(x, y − 1)]} (see Figure 3.10), then I(S)
consists of those polynomials vanishing on the y-axis, and at the point (1, 0). Give generators
for this ideal.

Proof: I(S) = (xy, y(y − 1)). In fact, since V ((xy, y(y − 1))) = V (y) ∪ V (x, y − 1) = S,
I(S) = I(V ((xy, y(y − 1)))) =

√
(xy, y(y − 1)) = (xy, y(y − 1)) by Exercise 3.7.D.

Exercise 3.7.B. Suppose S ⊂ A3
C is the union of the three axes. Give generators for the

ideal I(S).
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Proof: I(S) = (xyz). In fact, since V (xyz) = V (x) ∪ V (y) ∪ V (z) is the union of the three
axes, I(S) = I(V ((xyz))) =

√
(xyz) = (xyz) by Exercise 3.7.D.

Exercise 3.7.C. Show that V (I(S)) = S̄. Hence V (I(S)) = S for a closed set S.

Proof: By definition V (I(S)) is closed, and contains S, hence contains S̄. However, S̄ =
V (J) contains S, so we must have J ⊂ I(S), which ensures S̄ = V (J) ⊃ V (I(S)).

Exercise 3.7.D. Prove that if J ⊂ A is an ideal, then I(V (J)) =
√
J .

Proof: f ∈ I(V (J)), if and only if f vanishing on V (J) by definition, if and only if f ∈
√
J

by Exercise 3.4.J.

Exercise 3.7.E. Show that V (·) and I(·) give a bijection between irreducible closed subsets
of SpecA and prime ideals of A. From this conclude that in SpecA there is a bijection
between points of SpecA and irreducible closed subsets of SpecA (where a point determines
an irreducible closed subset by taking the closure). Hence each irreducible closed subset
of SpecA has precisely one generic point any irreducible closed subset Z can be written
uniquely as {z}.

Proof: For a prime ideal p, I(V (p)) =
√
p = p, and hence the map V from prime ideals to

closed subsets of A is an injective map with a left inverse I. Moreover, the image of V is all
irreducible closed subsets, since if V (p) = V (I) ∪ V (J), with V (I), V (J) $ V (p), we have

I, J % p, and thus ∃x, y such that x ∈ I − p, y ∈ J − p, but then xy ∈ IJ ⊂
√
IJ = p which

leads to contradiction.
Moreover, {[p]} = V (I({p})) = V (p), which means that the point [p] is mapped bijec-

tively to the prime ideal p, which corresponed to V (p) = {[p]}.

Exercise 3.7.F. A prime ideal of a ring A is a minimal prime ideal (or more simply, minimal
prime) if it is minimal with respect to inclusion. (For example, the only minimal prime of
k[x, y] is (0).) If A is any ring, show that the irreducible components of SpecA are in
bijection with the minimal prime ideals of A. In particular, SpecA is irreducible if and only
if A has only one minimal prime ideal; this generalizes Exercise 3.6.C.

Proof: By Exercise 3.7.E there is a bijection between prime ideals of A and irreducible
closed subsets of SpecA, and if p ⊂ q then V (p) ⊃ V (q). The result follows.

Exercise 3.7.G. What are the minimal prime ideals of k[x, y]/(xy) (where k is a field)?

Proof: Claim: any prime ideal p ⊂ k[x, y] containing (xy) must contain (x) or (y). We will
prove this by contradiction. In fact, if (x) * p, then there exist f ∈ p such that f /∈ (x),
which means that f(x, y) = xg(x, y) + h(y). Thus yf = xyg + yh ∈ p. Since (xy) ∈ p,
yh ∈ p. Assuming (y) /∈ p, we have h ∈ p since p is prime. Hence there exist u(y) ∈ p, such
that u(y) is an irreducible polynomial of y. Since u(y) 6= y, we know that u(y) = yv(y) + c
where v(y) ∈ k[y] and c ∈ k. Then xu− xyv = cx ∈ p, which leads to contradiction.

Hence we conclude that the minimal prime ideals are (x) and (y).
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