MATH 3B REVIEW SECTION

DANNING LU
DANNING.LU@MATH.UCSB.EDU

1. Area between curves

Find the area between the curves $f(x)$ and $g(x)$ where:
(1) $f(x)=-x^{3} / 2+2 x^{2}, g(x)=-x^{2}+4 x,-1 \leqslant x \leqslant 3$.
(2) $f(x)=\cos x, g(x)=\sin 2 x=2 \sin x \cos x, 0 \leqslant x \leqslant \pi / 2$.
(3) $f(x)=\arccos x, g(x)=\arcsin x,-\pi / 2 \leqslant x \leqslant \pi / 2$.
2. Integrate by parts
(1) Integrate $\int_{4}^{4 \sqrt{3}} 6 \arctan (8 / x) d x$.
(2) Integrate $\int\left(3 t+t^{2}\right) \sin (2 t) d t$.
(3) Integrate $\int t^{7} \sin \left(2 t^{4}\right) d t$.

3. Partial fractions

(1) Integrate $\int \frac{x^{3}-2 x^{2}}{x^{4}+5 x^{2}+4} d x$.
(2) Integrate $\int \frac{x^{6}-1}{x^{3}+x^{2}-x-1} d x$.
(3) Integrate $\int \frac{x^{4}+2 x^{2}+1}{x^{3}+2 x^{2}+4 x+8} d x$.

4. VOLUME OF REVOLUTION

Use both disk method and shell method to find the integral of the following solid of revolution:
(1) The area bounded by $x y=10, x+y=7$, rotating about $y=-2$.
(2) The area bounded by $x=y^{2} / 4, y=1, x=5$, rotating about $x=-1$.
(3) (Hard) The area bounded by $y^{2}=\ln x, x=e$, rotating about $x=-1$.

