MATH 3B WORKSHEET 2 ANSWER

DANNING LU

1. Quick Review

(1) State the definition of Riemann sum.

(2) State the definition of net area.

2. PRACTICE PROBLEMS

2.1. Find the Riemann sum for arbitrary *n*. Note: There are multiple correct answers for each problem this problem set, as you can choose any endpoints you like. The answers showing here are assuming right endpoints.

(1) $f(x) = x^2, \ 0 \le x \le 3.$ $\sum_{i=1}^n \frac{3}{n} \left(\frac{3i}{n}\right)^2$ (2) $f(x) = 3x - \frac{2}{x^2}, \ 3 \le x \le 4.$ $\sum_{i=1}^n \frac{1}{n} \left(3\left(3 + \frac{i}{n}\right) - \frac{2}{(3 + \frac{i}{n})^2}\right)$ (3) $f(x) = \frac{2x}{x^2 + 1}, \ 1 \le x \le 3.$ $\sum_{i=1}^n \frac{2}{n} \frac{2\left(1 + \frac{2i}{n}\right)}{\left(1 + \frac{2i}{n}\right)^2 + 1}$ (4) $f(x) = x^2 + \sqrt{1 + 2x}, \ 4 \le x \le 7.$ $\sum_{i=1}^n \frac{3}{n} \left(\left(4 + \frac{3i}{n}\right)^2 + \sqrt{1 + 2\left(4 + \frac{3i}{n}\right)}\right)$ (5) $f(x) = \sqrt{\sin x}, \ 0 \le x \le \pi.$

$$\sum_{i=1}^{n} \frac{\pi}{n} \sqrt{\sin \frac{\pi i}{n}}$$

DANNING LU

2.2. Find the region whose area is evaluated by the given limit. Note: There are multiple correct answers for each question in this problem set, as explained in the class.

(1)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{3n} \cdot \left(\frac{3i}{n}\right)^{3}$$
$$f(x) = \frac{1}{9}x^{3}, \ 0 \le x \le 3$$

(2)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{3}{n}\sqrt{1 + \frac{3i}{n}}$$
$$f(x) = \sqrt{x}, \ 1 \le x \le 4$$

(3)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{64n^{2}}{27i^{3}}$$
$$f(x) = \left(\frac{4}{3x}\right)^{3}, \ 0 \le x \le 1$$

(4)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{\pi}{4n} \tan \frac{i\pi}{4n}$$
$$f(x) = \tan x, \ 0 \le x \le \frac{\pi}{4}$$

2.3. Use geometric results to evaluate the net area.

(1) $y = 3x, a \le x \le b$, when (a) 0 < a < b:

$$A = \frac{1}{2}(b - a)(3a + 3b)$$

Hint: The graph looks like a trapezoid.

(b) a < 0 < b:

$$A = \frac{3}{2}b^2 - \frac{3}{2}(-a)^2$$

Hint: The graph looks like two triangles. Notice that you need to do subtraction since you are caring about net areas.

(c)
$$a < b < 0$$
:

$$A = -\frac{1}{2}(b-a)(-3a-3b)$$

Hint: The graph looks like a trapezoid, but notice that the net area is the negation of the area of the trapezoid. Be careful with signs.

(2)
$$y = -\sqrt{1 - x^2}$$
:
(a) $-1 \le x \le 1$:
(b) $\frac{1}{2} \le x \le 1$:
 $A = -\pi/2$
 $A = \frac{\sqrt{3}}{8} - \frac{\pi}{6}$

Hint: The area is actually a sector of angle $\pi/3$ minus a triangle.

(c)
$$*-1 \le x \le a$$
, where $-1 < a < 1$:
 $A = -\left(\frac{1}{2}a\sqrt{1-a^2} + \frac{1}{2}(\pi - \arccos a)\right)$

Hint: Same idea, but with careful calculation.

2.4. *Estimate the deviation of Riemann sum. Let A be the area under the graph of an increasing continuous function f from a to b, and let L_n and R_n be the approximations to A with n subintervals using left and right endpoints, respectively.

(1) How are A, L_n , and R_n related? Give a ranking for them for all the n's.

$$L_1 < L_2 < \dots < L_n < L_{n+1} < \dots < A < \dots < R_{n+1} < R_n < \dots < R_2 < R_1$$

(2) Show that

$$R_n - L_n = \frac{b-a}{n} [f(b) - f(a)].$$

Try to explain the geometric meaning of this equation. Hint: Write down the expression for R_n and L_n , and then subtract them. Try to cancel out the same terms when you do the subtraction.

Geometric meaning: The *n* rectangles representing $R_n - L_n$ can be reassembled to form a single rectangle who has width Δx and length f(b) - f(a).

(3) Deduce that

$$R_n - A < \frac{b-a}{n} [f(b) - f(a)].$$

Hint: Since $A > L_n$ we have $R_n - A < R_n - L_n$. Then we apply the previous result.

(4) If we want to find the area under the curve $y = 2^x$ from 1 to 3, use the above results to find a value n such that the Riemann sum has a maximum deviation of 0.0001.

$$(3-1)(2^3-2^1)/0.0001 = 140000$$