MATH 3B WORKSHEET 2 ANSWER

DANNING LU

1. Quick Review

(1) State the definition of Riemann sum.
(2) State the definition of net area.

2. Practice Problems

2.1. Find the Riemann sum for arbitrary n. Note: There are multiple correct answers for each problem this problem set, as you can choose any endpoints you like. The answers showing here are assuming right endpoints.
(1) $f(x)=x^{2}, 0 \leqslant x \leqslant 3$.

$$
\sum_{i=1}^{n} \frac{3}{n}\left(\frac{3 i}{n}\right)^{2}
$$

(2) $f(x)=3 x-\frac{2}{x^{2}}, 3 \leqslant x \leqslant 4$.

$$
\sum_{i=1}^{n} \frac{1}{n}\left(3\left(3+\frac{i}{n}\right)-\frac{2}{\left(3+\frac{i}{n}\right)^{2}}\right)
$$

(3) $f(x)=\frac{2 x}{x^{2}+1}, 1 \leqslant x \leqslant 3$.

$$
\sum_{i=1}^{n} \frac{2}{n} \frac{2\left(1+\frac{2 i}{n}\right)}{\left(1+\frac{2 i}{n}\right)^{2}+1}
$$

(4) $f(x)=x^{2}+\sqrt{1+2 x}, 4 \leqslant x \leqslant 7$.

$$
\sum_{i=1}^{n} \frac{3}{n}\left(\left(4+\frac{3 i}{n}\right)^{2}+\sqrt{1+2\left(4+\frac{3 i}{n}\right)}\right)
$$

(5) $f(x)=\sqrt{\sin x}, 0 \leqslant x \leqslant \pi$.

$$
\sum_{i=1}^{n} \frac{\pi}{n} \sqrt{\sin \frac{\pi i}{n}}
$$

2.2. Find the region whose area is evaluated by the given limit. Note: There are multiple correct answers for each question in this problem set, as explained in the class.
(1) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{3 n} \cdot\left(\frac{3 i}{n}\right)^{3}$

$$
f(x)=\frac{1}{9} x^{3}, 0 \leqslant x \leqslant 3
$$

(2) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3}{n} \sqrt{1+\frac{3 i}{n}}$

$$
f(x)=\sqrt{x}, 1 \leqslant x \leqslant 4
$$

(3) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{64 n^{2}}{27 i^{3}}$

$$
f(x)=\left(\frac{4}{3 x}\right)^{3}, 0 \leqslant x \leqslant 1
$$

(4) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{4 n} \tan \frac{i \pi}{4 n}$

$$
f(x)=\tan x, 0 \leqslant x \leqslant \frac{\pi}{4}
$$

2.3. Use geometric results to evaluate the net area.

(1) $y=3 x, a \leqslant x \leqslant b$, when
(a) $0<a<b$:

$$
A=\frac{1}{2}(b-a)(3 a+3 b)
$$

Hint: The graph looks like a trapezoid.
(b) $a<0<b$:

$$
A=\frac{3}{2} b^{2}-\frac{3}{2}(-a)^{2}
$$

Hint: The graph looks like two triangles. Notice that you need to do subtraction since you are caring about net areas.
(c) $a<b<0$:

$$
A=-\frac{1}{2}(b-a)(-3 a-3 b)
$$

Hint: The graph looks like a trapezoid, but notice that the net area is the negation of the area of the trapezoid. Be careful with signs.
(2) $y=-\sqrt{1-x^{2}}$:
(a) $-1 \leqslant x \leqslant 1$:

$$
A=-\pi / 2
$$

(b) $\frac{1}{2} \leqslant x \leqslant 1$:

$$
A=\frac{\sqrt{3}}{8}-\frac{\pi}{6}
$$

Hint: The area is actually a sector of angle $\pi / 3$ minus a triangle.
(c) ${ }^{*}-1 \leqslant x \leqslant a$, where $-1<a<1$:

$$
A=-\left(\frac{1}{2} a \sqrt{1-a^{2}}+\frac{1}{2}(\pi-\arccos a)\right)
$$

Hint: Same idea, but with careful calculation.
2.4. *Estimate the deviation of Riemann sum. Let A be the area under the graph of an increasing continuous function f from a to b, and let L_{n} and R_{n} be the approximations to A with n subintervals using left and right endpoints, respectively.
(1) How are A, L_{n}, and R_{n} related? Give a ranking for them for all the n 's.
$L_{1}<L_{2}<\ldots<L_{n}<L_{n+1}<\ldots<A<\ldots<R_{n+1}<R_{n}<\ldots<R_{2}<R_{1}$
(2) Show that

$$
R_{n}-L_{n}=\frac{b-a}{n}[f(b)-f(a)]
$$

Try to explain the geometric meaning of this equation.
Hint: Write down the expression for R_{n} and L_{n}, and then subtract them. Try to cancel out the same terms when you do the subtraction.
Geometric meaning: The n rectangles representing $R_{n}-L_{n}$ can be reassembled to form a single rectangle who has width Δx and length $f(b)-f(a)$.
(3) Deduce that

$$
R_{n}-A<\frac{b-a}{n}[f(b)-f(a)] .
$$

Hint: Since $A>L_{n}$ we have $R_{n}-A<R_{n}-L_{n}$. Then we apply the previous result.
(4) If we want to find the area under the curve $y=2^{x}$ from 1 to 3 , use the above results to find a value n such that the Riemann sum has a maximum deviation of 0.0001 .

$$
(3-1)\left(2^{3}-2^{1}\right) / 0.0001=140000
$$

