MATH 3B WORKSHEET 2

DANNING LU

- 1. Quick Review
- (1) State the definition of Riemann sum.
- (2) State the definition of net area.
 - 2. Practice Problems
- 2.1. Find the Riemann sum for arbitrary n.

(1)
$$f(x) = x^2, 0 \le x \le 3.$$

(2)
$$f(x) = 3x - \frac{2}{x^2}, 3 \leqslant x \leqslant 4.$$

(3)
$$f(x) = \frac{2x}{x^2+1}$$
, $1 \le x \le 3$.

(4)
$$f(x) = x^2 + \sqrt{1+2x}, 4 \le x \le 7.$$

(5)
$$f(x) = \sqrt{\sin x}, \ 0 \leqslant x \leqslant \pi.$$

2.2. Find the region whose area is evaluated by the given limit.

$$(1) \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{3n} \cdot \left(\frac{3i}{n}\right)^{3}$$

$$(2) \lim_{n \to \infty} \sum_{i=1}^{n} \frac{3}{n} \sqrt{1 + \frac{3i}{n}}$$

(3)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{64n^2}{27i^3}$$

(4)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{\pi}{4n} \tan \frac{i\pi}{4n}$$

2.3. Use geometric results to evaluate the net area.

(1)
$$y = 3x$$
, $a \le x \le b$, when (a) $0 < a < b$:

(b)
$$a < 0 < b$$
:

(c)
$$a < b < 0$$
:

(2)
$$y = -\sqrt{1 - x^2}$$
:
(a) $-1 \le x \le 1$:

(b)
$$\frac{1}{2} \leqslant x \leqslant 1$$
:

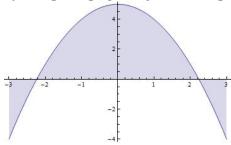
(c) *
$$-1 \le x \le a$$
, where $-1 < a < 1$:

- 2.4. *Estimate the deviation of Riemann sum. Let A be the area under the graph of an increasing continuous function f from a to b, and let L_n and R_n be the approximations to A with n subintervals using left and right endpoints, respectively.
 - (1) How are A, L_n , and R_n related? Give a ranking for them for all the n's.
 - (2) Show that

$$R_n - L_n = \frac{b-a}{n} [f(b) - f(a)].$$

Try to explain the geometric meaning of this equation.

(3) Deduce that


$$R_n - A < \frac{b-a}{n} [f(b) - f(a)].$$

(4) If we want to find the area under the curve $y = 2^x$ from 1 to 3, use the above results to find a value n such that the Riemann sum has a maximum deviation of 0.0001.

3. Quizzes

NAME:_____PERM:_____SECTION TIME:_____ Use left endpoints to estimate the net area under the curve $y=5-x^2$ between x=-3

Use left endpoints to estimate the net area under the curve $y = 5 - x^2$ between x = -3 and x = 3 by using 6 rectangles. Briefly explain the geometric meaning of the net area by using the graph of $y = 5 - x^2$ given below.

