MATH 3B WORKSHEET 3 ANSWERS

DANNING LU DANNING.LU@MATH.UCSB.EDU

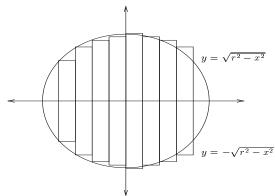
1. Quick Review

- (1) What is definite integral? State the relations and differences among the following terminologies: Area under the curve, Riemann sum, Definite integral.
- (2) State the Fundamental Theorem of Calculus.
 - (a)
 - (b)

2. Discuss Problems (Multiple Choice Problems)

- (1) Water is pouring out of a pipe at the rate of f(t) gallons/minute. You collect the water that flows from the pipe between t=2 and t=4. The amount of water you collect can be represented by:

 - (a) $\int_{2}^{4} f(x)dx$ (b) f(4) f(2)
 - (c) (4-2)f(4)
 - (d) the average of f(4) and f(2) times the amount of time that elapsed Answer: (a)
- (2) Suppose we are going to consider the disk of radius r as the region bounded between the graphs of the functions $\sqrt{r^2-x^2}$, and $-\sqrt{r^2-x^2}$. Which of the following statements is true?



(a) The area of the region is given by the formula: $\int_{-r}^{r} 2\sqrt{r^2 - x^2} dx$

- (b) The area of the disk can be written as a the limit of Riemann Sums of rectangles of length Δx and height $2\sqrt{r^2-x_i^2}$ where the x_i are a partition of the interval [-r, r].
- (c) Both (a) and (b).
- (d) The area cannot be found this way, because we cannot integrate the function $\sqrt{r^2-x^2}$.

Answer: (c)

- (3) A sprinter practices by running various distances back and forth in a straight line in a gym. Her velocity at t seconds is given by the function v(t). What does $\int_0^{60} |v(t)| dt$ represent?
 - (a) The total distance the sprinter ran in one minute
 - (b) The sprinter's average velocity in one minute
 - (c) The sprinter's distance from the starting point after one minute
 - (d) None of the above

Answer: (a)

- (4) Suppose f is a differentiable function. Then $\int_0^x f'(t) dt = f(x)$
 - (a) Always
 - (b) Sometimes
 - (c) Never

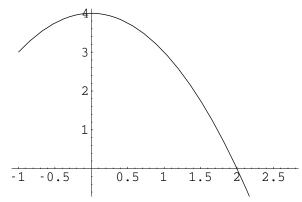
Justify your answer.

Answer: (b). From FTC(II) we know that $\int_0^x f'(t) dt = f(x) - f(0)$, so we know that the question holds if and only if f(0) = 0.

- (5) Suppose the function f(t) is continuous and always positive. If G is an antiderivative of f, then we know that G:
 - (a) is always positive.
 - (b) is sometimes positive and sometimes negative.
 - (c) is always increasing.
 - (d) There is not enough information to conclude any of the above.

Answer: (c). f is the derivative of G, thus f > 0 implies G' > 0, and therefore G is increasing.

(6) Below is the graph of a function f.



Let $g(x) = \int_0^x f(t) dt$. Then for 0 < x < 2, g(x) is

(a) increasing and concave up.

- (b) increasing and concave down.
- (c) decreasing and concave up.
- (d) decreasing and concave down.

Answer: (b).

- (a) g(0) = 0, g'(0) = 0 and g'(2) = 0
- (b) g(0) = 0, g'(0) = 4 and g'(2) = 0
- (c) g(0) = 1, g'(0) = 0 and g'(2) = 1
- (d) g(0) = 0, g'(0) = 0 and g'(2) = 1

Answer: (b).

- (7) You are traveling with velocity v(t) that varies continuously over the interval [a, b] and your position at time t is given by s(t). Which of the following represent your average velocity for that time interval:
 - (a) $\frac{\int_{a}^{b} v(t)dt}{(b-a)}$ (b) $\frac{s(b) s(a)}{b-a}$

 - (c) v(c) for at least one c between a and b

Answer: (a), (b) and (c). (c) holds because of the Mean Value Theorem.

3. Practice Problem Sets

3.1. Use FTC(I) to evaluate the derivatives of the following functions.

- (1) $g(x) = \int_0^x \sqrt{t + t^3} dt$. By FTC(I), we know that $g'(x) = \sqrt{x + x^3}$.
- (2) $g(x) = \int_1^x \ln(1+t^2)dt$. By FTC(I), we know that $g'(x) = \ln(1+x^2)$.
- (3) * $g(x) = \int_x^0 \sqrt{1 + \sec t} dt$. Since $g(x) = \int_x^0 \sqrt{1 + \sec t} dt = -\int_0^x \sqrt{1 + \sec t} dt$, by FTC(I) we know that $g'(x) = -\sqrt{1 + \sec x}$.
- $(4) * g(x) = \int_1^{e^x} \ln t dt.$ Let $h(u) = \int_1^u \ln t dt$, then by FTC(I) we have $h'(u) = \ln u$. And we have $g(x) = h(e^x)$. So by chain rule, $g'(x) = h'(e^x) \cdot (e^x)' = \ln(e^x) \cdot e^x = xe^x$.
- (5) * $g(x) = \int_{\sin x}^{\sqrt{x}} \frac{z^2}{z^4 + 1} dz$. Hint: $g(x) = \int_{\sin x}^{\sqrt{x}} \frac{z^2}{z^4 + 1} dz = \int_{\sin x}^{0} \frac{z^2}{z^4 + 1} dz + \int_{0}^{\sqrt{x}} \frac{z^2}{z^4 + 1} dz$. Answer: $g'(x) = \frac{x}{x^2 + 1} \cdot \frac{1}{2\sqrt{x}} \frac{\sin^2 x}{\sin^4 x + 1} \cdot \cos x$.

Note: As practice, please write the steps for u-substitutions.

3.2. Evaluate the integrals.

(1) $\int_{1}^{3} (x^2 + 2x - 4) dx$.

$$\int_{1}^{3} (x^{2} + 2x - 4) dx = \left[\frac{x^{3}}{3} + x^{2} - 4x \right] \Big|_{1}^{3} = \frac{26}{3}.$$

(2) $\int_{-1}^{1} x^{100} dx$.

$$\int_{-1}^{1} x^{100} dx = \left[\frac{x^{101}}{101}\right]_{-1}^{1} = \frac{2}{101}.$$

 $(3) \int_1^9 \sqrt{x} dx.$

$$\int_{1}^{9} \sqrt{x} dx = \left[\frac{2}{3}x^{3/2}\right]|_{1}^{9} = \frac{52}{3}.$$

(4) $\int_1^8 \frac{1}{\sqrt[3]{x}} dx$.

$$\int_{1}^{8} \frac{1}{\sqrt[3]{x}} dx = \left[\frac{3}{2}x^{2/3}\right] |_{1}^{8} = \frac{9}{2}.$$

(5) $\int_{\pi/6}^{\pi} \sin\theta d\theta$.

$$\int_{\pi/6}^{\pi} \sin\theta d\theta = [-\cos x]|_{\pi/6}^{\pi} = 1 + \frac{\sqrt{3}}{2}.$$

(6) $\int_0^1 (u+2)(u-3)du$.

$$\int_0^1 (u+2)(u-3)du = \int_0^1 (u^2 - u - 6)du = \left[\frac{u^3}{3} - \frac{u^2}{2} - 6u\right]\Big|_0^1 = -\frac{37}{6}.$$

(7) $\int_0^4 (4-t)\sqrt{t}dt$.

$$\int_0^4 (4-t)\sqrt{t}dt = \int_0^4 (4t^{1/2} - t^{3/2})dt = \left[\frac{8}{3}t^{3/2} - \frac{2}{5}t^{5/2}\right]\Big|_0^4 = \frac{128}{15}.$$

(8) $\int \frac{2+x^2}{\sqrt{x}} dx$.

$$\int \frac{2+x^2}{\sqrt{x}} dx = \int (2x^{-1/2} + x^{3/2}) dx = 4\sqrt{x} + \frac{2}{5}x^{5/2} + C.$$

(9) $\int -\cos x dx$.

$$\int -\cos x dx = -\sin x + C.$$

 $(10) \int (2\sin x - e^x) dx.$

$$\int (2\sin x - e^x)dx = -2\cos x - e^x + C.$$

(11) $\int 2^s ds$.

$$\int 2^s ds = \frac{1}{\ln 2} \cdot 2^s + C.$$