MATH 3B WORKSHEET 3

DANNING LU

1. Quick Review

- (1) What is definite integral? State the relations and differences among the following terminologies: Area under the curve, Riemann sum, Definite integral.
- (2) State the Fundamental Theorem of Calculus.
 - (a)
 - (b)

2. DISCUSS PROBLEMS (MULTIPLE CHOICE PROBLEMS)

- (1) Water is pouring out of a pipe at the rate of f(t) gallons/minute. You collect the water that flows from the pipe between t = 2 and t = 4. The amount of water you collect can be represented by:

 - (a) $\int_{2}^{4} f(x) dx$ (b) f(4) f(2)
 - (c) (4-2)f(4)
 - (d) the average of f(4) and f(2) times the amount of time that elapsed
- (2) Suppose we are going to consider the disk of radius r as the region bounded between the graphs of the functions $\sqrt{r^2 - x^2}$, and $-\sqrt{r^2 - x^2}$. Which of the following statements is true?

- (a) The area of the region is given by the formula: $\int_{-r}^{r} 2\sqrt{r^2 x^2} dx$
- (b) The area of the disk can be written as a the limit of Riemann Sums of rectangles of length Δx and height $2\sqrt{r^2 - x_i^2}$ where the x_i are a partition of the interval [-r, r].

DANNING LU

- (c) Both (a) and (b).
- (d) The area cannot be found this way, because we cannot integrate the function $\sqrt{r^2 x^2}$.

or

- (3) A sprinter practices by running various distances back and forth in a straight line in a gym. Her velocity at t seconds is given by the function v(t). What does $\int_{0}^{60} |v(t)| dt$ represent?
 - (a) The total distance the sprinter ran in one minute
 - (b) The sprinter's average velocity in one minute
 - (c) The sprinter's distance from the starting point after one minute
 - (d) None of the above

(4) Suppose
$$f$$
 is a differentiable function. Then $\int_0^\infty f'(t) dt = f(x)$

- (a) Always
- (b) Sometimes
- (c) Never
- Justify your answer.
- (5) Suppose the function f(t) is continuous and always positive. If G is an antiderivative of f, then we know that G:
 - (a) is always positive.
 - (b) is sometimes positive and sometimes negative.
 - (c) is always increasing.
 - (d) There is not enough information to conclude any of the above.
- (6) Below is the graph of a function f.

Let
$$g(x) = \int_0^x f(t) dt$$
. Then for $0 < x < 2$, $g(x)$ is

- (a) increasing and concave up.
- (b) increasing and concave down.
- (c) decreasing and concave up.
- (d) decreasing and concave down.
- (a) g(0) = 0, g'(0) = 0 and g'(2) = 0
- (b) g(0) = 0, g'(0) = 4 and g'(2) = 0
- (c) g(0) = 1, g'(0) = 0 and g'(2) = 1
- (d) g(0) = 0, g'(0) = 0 and g'(2) = 1
- (7) You are traveling with velocity v(t) that varies continuously over the interval [a, b] and your position at time t is given by s(t). Which of the following represent your average velocity for that time interval:

(a)
$$\frac{\int_{a}^{b} v(t)dt}{(b-a)}$$

(b)
$$\frac{s(b) - s(a)}{b-a}$$

(c) $v(c)$ for at least one c between a and b

3. PRACTICE PROBLEM SETS

3.1. Use FTC(I) to evaluate the derivatives of the following functions.

(1)
$$g(x) = \int_0^x \sqrt{t + t^3} dt.$$

(2)
$$g(x) = \int_1^x \ln(1+t^2) dt.$$

(3) *
$$g(x) = \int_x^0 \sqrt{1 + \sec t} dt$$
.

(4) *
$$g(x) = \int_{1}^{e^{x}} \ln t dt.$$

(5) *
$$g(x) = \int_{\sin x}^{\sqrt{x}} \frac{z^2}{z^4 + 1} dz.$$

3.2. Evaluate the integrals.

- (1) $\int_1^3 (x^2 + 2x 4) dx$.
- (2) $\int_{-1}^{1} x^{100} dx$.
- (3) $\int_1^9 \sqrt{x} dx$.
- (4) $\int_{1}^{8} \frac{1}{\sqrt[3]{x}} dx.$
- (5) $\int_{\pi/6}^{\pi} \sin \theta d\theta$.
- (6) $\int_0^1 (u+2)(u-3)du$.
- (7) $\int_0^4 (4-t)\sqrt{t}dt.$
- (8) $\int \frac{2+x^2}{\sqrt{x}} dx.$
- (9) $\int -\cos x dx$.
- (10) $\int (2\sin x e^x) dx.$
- (11) $\int 2^s ds$.

4. Quizzes

Decide whether the following statements are True or False. Assume that f and g are continuous on the interval [a, b].

- ∫_a^b f(x)dx is the area bounded by the graph of f, the x-axis and the lines x = a and x = b.
 ∫_a^b f(x)dx is a number.
 ∫_a^b f(x)dx is an antiderivative of f(x).

- (4) $\int_{a}^{b} f(x) dx$ may not exist.
- (5) If $\int f(x)dx = \int g(x)dx$, then f(x) = g(x).
- (6) If f'(x) = g'(x), then f(x) = g(x).
- (7) If f(x) is negative on [a, b], then $\int_a^b f(x) dx$ might be zero.
- (8) There exist two constants m and M such that $m(b-a) \leq \int_a^b f(x) dx \leq M(b-a)$.
- (9) Since $(\sin x)' = \cos x$, we have $\int \cos x dy = \sin x$.
- (10) Since $(\sin x)'' = -\sin x$, the antiderivative of $\int -\sin x dx$ is $\sin x + C$, where C is a constant.