MATH 3B WORKSHEET 4

DANNING LU
DANNING.LU@MATH.UCSB.EDU

1. Quick Review

Table of Indefinite integrals:
(1) (C is a constant) $\int C f(x) d x=$
(2) $\int[f(x)+g(x)] d x=$
(3) $\left(k\right.$ is a constant) $\int k d x=$
(4) $\int x^{n} d x=$
(5) $\int e^{x} d x=$
(6) (b is a constant) $\int b^{x} d x=$
(7) $\int \sin x d x=$
(8) $\int \cos x d x=$
(9) $\int \sec ^{2} x d x=$
(10) $\int \csc ^{2} x d x=$
(11) $\int \sec x \tan x d x=$
(12) $\int \csc x \cot x d x=$
(13) $\int \frac{1}{x^{2}+1} d x=$
(14) $\int \frac{1}{\sqrt{1-x^{2}}} d x=$

Some useful trigonometry identities:
(1) definitions of tan, cot, sec, csc:
(2) Three Pythagorean identities:
(3)

	$-x$	$\frac{\pi}{2}-x$	$\pi-x$	$x+\frac{\pi}{2}$	$x-\frac{\pi}{2}$
\sin					
\cos					
\tan					
\cot					
\sec					
\csc					

(4) $\sin (x+y)=$
(5) $\sin (x-y)=$
(6) $\cos (x+y)=$
(7) $\cos (x-y)=$
(8) $\sin (2 x)=$
(9) $\cos (2 x)=$
2. Practice Problems

2.1. Find the Integrals.

(1) $\int\left(3+\frac{4}{5} x^{4}+\frac{7}{6} x^{7}\right) d x$
(2) $\int(u+1)\left(u^{2}+1\right) d u$
(3) $\int \frac{1+x+x^{2}}{\sqrt{x}} d x$
(4) $\int\left(x^{2}+1+\frac{1}{1+x^{2}}\right) d x$
(5) $\int\left(\frac{1+r}{r}\right)^{2} d r$
(6) $\int_{0}^{1}\left(x^{10}+10^{x}\right) d x$
(7) $\int_{0}^{\pi / 4} \sec \theta \tan \theta d \theta$
(8) $\int_{\pi / 6}^{\pi / 4} \frac{1+\cos ^{2} \theta}{\cos ^{2} \theta} d \theta$
(9) * $\int \cot ^{2} x d x$
(10) $\int_{0}^{\pi / 3} \frac{\sin \theta+\sin \theta \tan ^{2} \theta}{\sec ^{2} \theta} d \theta$
(11) $\int_{\sqrt{2} / 2}^{\sqrt{3} / 2} \frac{d r}{\sqrt{1-r^{2}}}$
(12) $\int_{0}^{3 \pi / 2}|\sin x| d x$
(13) $\int_{0}^{4}|(x-1)(x-2)(x-3)| d x$

2.2. The Net Change Theorem.

(1) The current in a wirer is defined as the derivative of the charge: $I(t)=Q^{\prime}(t)$. What does $\int_{a}^{b} I(t) d t$ represent?
(2) If oil leaks from a tank at a rate of $r(t)=100 e^{-0.01 t}$ gallons per minute at time t in minutes. How much oil will leak in the first two hours?
(3) If x is measured in feet and $f(x)$ is measured in newtons, what are the units for $\int_{0}^{100} f(x) d x$? For $f^{\prime}(x)$? For $\int_{0}^{100} x^{2} f(x) d x$?
(4) A ball is having velocity $v(t)=\sqrt{3} \sin t+2$ in feet per second, where t is measured in seconds. The ball is starting at $s(0)=5$. Where is the ball at $t=\frac{19 \pi}{6}$? What's the total distance travelled during this period?
3. Quizzes

NAME:
PERM:
SECTION TIME:

$$
g(x)=\int_{\tan x}^{\sec x} 5 t d t .
$$

(1) Use the Fundamental Theorem of Calculus (I) to find out $g^{\prime}(x)$.
(2) Check your answer by first use the Fundamental Theorem of Calculus (II) to find out $g(x)$, then take the derivative of that.

