MATH 6A WORKSHEET 3

DANNING LU

1. Limit and Continuity

- 1. Find the limit of f(x,y) as $(x,y) \to (0,0)$, if it exists; or state the reason if it does not exist:

 - (1) $f(x,y) = \frac{x^3y xy^3 x}{1 xy}$ (2) $f(x,y) = \frac{xy}{(x^2 + y^2)^{3/2}}$ (3) $f(x,y) = \frac{\sin(3x 2y + xy)}{3x 2y + xy}$ (4) $f(x,y) = \frac{2x^2 y^2}{x^2 + 2y^2}$ (5) $f(x,y) = (2x y)e^{\frac{1}{y 2x}}$ (6) $f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$ (7) $f(x,y) = \frac{\sin(3x^2 + y^2)}{x^2 + 2y^2}$

2. Find all points where the vector valued function

$$\mathbf{F}(x, y, z) = \left(\frac{x}{x^2 + y^2 + z^2}, \frac{y}{x^2 + y^2 + z^2}\right)$$

is not continuous.

3*. Let $\mathbf{x_0}$ be a point in \mathbb{R}^3 , and \mathbf{a} be a vector in \mathbb{R}^3 . Find all points in \mathbb{R}^3 such that the following two vector valued functions $\mathbb{R}^3 \to \mathbb{R}^3$ is continuous, respectively.

$$\mathbf{F}(\mathbf{x}) = \frac{\mathbf{x} - \mathbf{x_0}}{||\mathbf{x} - \mathbf{x_0}||}$$

$$\mathbf{G}(\mathbf{x}) = \frac{\mathbf{x} \times \mathbf{a}}{||\mathbf{x} \times \mathbf{a}||}$$

4**. Let f(x, y) be a function such that $\lim_{t\to 0} f(\lambda t, \mu t) = f(0, 0)$ for any real numbers λ, μ . Is this sufficient to say that f(x, y) is continuous at point (0, 0)?

2. Partial Derivatives

- 1. Find the partial derivatives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial y}$ ($\frac{\partial f}{\partial x}$), $\frac{\partial}{\partial x}$ ($\frac{\partial f}{\partial y}$) for each of the following functions:

 - (1) $f(x,y) = x^y + y \sin x$ (2) $f(x,y) = xe^{x^2 + 2xy y^2}$ (3) $f(x,y) = e^{xy} \cos x \ln(y x^2)$ (4) $f(x,y) = \arctan(x/y)$

What do you discover?