MATH 6A WORKSHEET 4 ANSWER

DANNING LU

(1) Find the equation of the plane tangent to the sphere $x^{2}+y^{2}+z^{2}=1$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$. For extra practice, do this in two ways, one by solving for z and consider the two cases $z_{0} \geq 0$ and $z_{0}<0$, and the other by viewing the sphere as a level surface.

Answer:
(a) Method 1: Assume that $z_{0}>0$. (It will be similar if $z_{0}<0$.) Then we can write $z=\sqrt{1-x^{2}-y^{2}}$. Let $f(x, y)=\sqrt{1-x^{2}-y^{2}}$, we have $f_{x}=\frac{-x}{\sqrt{1-x^{2}-y^{2}}}$ and $f_{y}=\frac{-y}{\sqrt{1-x^{2}-y^{2}}}$. Hence the linear approximation is $d z=-\frac{x_{0}}{\sqrt{1-x_{0}^{2}-y_{0}^{2}}} d x-\frac{y_{0}}{\sqrt{1-x_{0}^{2}-y_{0}^{2}}} d y$. So the equation for the tangent plane is

$$
z-z_{0}=-\frac{x_{0}}{\sqrt{1-x_{0}^{2}-y_{0}^{2}}}\left(x-x_{0}\right)-\frac{y_{0}}{\sqrt{1-x_{0}^{2}-y_{0}^{2}}}\left(y-y_{0}\right) .
$$

(b) Method 2: Let $G(x, y, z)=x^{2}+y^{2}+z^{2}$. Then the sphere is the level surface $G=1$. By the properties of gradient, we know that $\mathbf{n}=\nabla G\left(x_{0}, y_{0}, z_{0}\right)=$ $\left\langle 2 x_{0}, 2 y_{0}, 2 z_{0}\right\rangle$ is a normal vector for the tangent plane. Hence the equation for the tangent plane can be expressed by $\mathbf{n} \cdot\left(\langle x, y, z\rangle-\left\langle x_{0}, y_{0}, z_{0}\right\rangle\right)=0$, i.e.,

$$
2 x_{0}\left(x-x_{0}\right)+2 y_{0}\left(y-y_{0}\right)+2 z_{0}\left(z-z_{0}\right)=0 .
$$

You can verify that they are the same equation by using the fact that $z_{0}=$ $\sqrt{1-x_{0}^{2}+y_{0}^{2}}$ and $x_{0}^{2}+y_{0}^{2}+z_{0}^{2}=1$.
(2) A soccer player is running in the field, where his position is described by the following equation:

$$
r(t)=\left\langle 16 \sin ^{3} t, 13 \cos t-5 \cos (2 t)\right\rangle .
$$

Find the velocity and acceleration of the soccer player.
Answer:

$$
\begin{gathered}
v(t)=r^{\prime}(t)=\left\langle 48 \sin ^{2} t \cos t,-13 \sin t+10 \sin (2 t)\right\rangle \\
a(t)=v^{\prime}(t)=\left\langle 96 \sin t \cos ^{2} t-48 \sin ^{3} t,-13 \cos t+20 \cos (2 t)\right\rangle .
\end{gathered}
$$

(3) A skier is on the mountain with equation

$$
h=100-0.4 y^{2}-0.3 x^{2},
$$

where h denotes the height.
(a) The skier is located at the point with $x y$-coordinates $(1,1)$, and wants to ski downhill along the steepest possible path. In which direction (indicated by a vector $\langle a, b\rangle$ in the $x y$-plane) should the skier begin skiing?
(b) The skier begins skiing in the direction given by the $x y$-vector (a, b) you found in part (3a) so the skier heads in a direction in space given by the vector (a, b, c). Find the value of c.
(c) A hiker located at the same point on the mountain decides to begin hiking downhill in a direction given by a vector in the xyplane that makes an angle θ with the vector (a, b) you found in part (3a). How big should θ be if the hiker wants to head downhill along a path whose slope is at most 0.5 (in absolute value)?
Answer:
(a) Since gradient is steepest climb, steepest descend should be negative gradient.

$$
\langle a, b\rangle=\nabla h(1,1)=\langle .8, .6\rangle
$$

(b)

$$
c=\nabla h(1,1) \cdot\langle .8, .6\rangle=-1 .
$$

(c) If θ is the angle between the path of hiker (denoted by u) with the path of skier, then $\pi-\theta$ will be the angle between the path of hiker and the gradient. Since we have

$$
\frac{\partial h}{\partial u}=\nabla f \cdot u=\|\nabla f\| \cdot\|u\| \cdot \cos (\pi-\theta)
$$

So we need

$$
-.5 \leqslant \cos (\pi-\theta)<0,
$$

which gives $\pi / 3 \leqslant \theta<\pi / 2$.
(4) Estimate $\cos (0.01) e^{0.02}$.

Answer: Let $f(x, y)=\cos x e^{y}$. Then $f_{x}=-\sin x e^{y}$ and $f_{y}=\cos x e^{y}$. The linear approximate at $(0,0)$ is

$$
f(\Delta x, \Delta y) \approx 1+0 \cdot(\Delta x-0)+1 \cdot(\Delta y-0) .
$$

Make $\Delta x=0.01$ and $\Delta y=0.02$ and we get $\cos (0.01) e^{0.02} \approx 0.02$.
(5) Use differentials to estimate the amount of tin in a closed tin can with diameter 3 inch and height 4 inch if the top and bottom is 0.02 inch thick and the side is 0.01 inch thick.

Answer: We know that the volume of the tin can is expressed by $V=\pi r^{2} h$, where r and h denote the radius and height, respectively. Hence we know by linear approximation,

$$
d V=(2 \pi r h) d r+\left(\pi r^{2}\right) d h .
$$

By substituting $r=1.5, h=4, d r=0.01, d h=0.02 \times 2=0.04$ we get volume of tin is $d V=0.66 i n^{3}$.
(6) The gas law for a fixed mass m of an ideal gas at absolute temperature T, pressure p and volume V is given below:

$$
p V=n R T
$$

where R is a constant. Show that

$$
\frac{\partial p}{\partial V} \frac{\partial V}{\partial T} \frac{\partial T}{\partial p}=-1
$$

Answer:
Since

$$
\begin{aligned}
p & =\frac{n R T}{V} \\
\frac{\partial p}{\partial V} & =-\frac{n R T}{V^{2}}
\end{aligned}
$$

Since

$$
\begin{gathered}
V=\frac{n R T}{p} \\
\frac{\partial V}{\partial T}=\frac{n R}{p}
\end{gathered}
$$

Since

$$
\begin{aligned}
T & =\frac{p V}{n R} \\
\frac{\partial T}{\partial p} & =\frac{V}{n R}
\end{aligned}
$$

Hence we have

$$
\frac{\partial p}{\partial V} \frac{\partial V}{\partial T} \frac{\partial T}{\partial p}=-\frac{n R T}{V^{2}} \frac{n R}{p} \frac{V}{n R}=-\frac{n^{2} R^{2} T V}{n R p V^{2}}=-\frac{n R T}{p V}=-1
$$

(7) Suppose you need to know an equation of the tangent plane to a surface S at the point $P(2,1,3)$. You don't have an equation for S but you know that the curves

$$
\begin{gathered}
r_{1}(t)=\left(2+3 t, 1-t^{2}, 3-4 t+t^{2}\right) \\
r_{2}(u)=\left(1+u^{2}, 2 u^{3}-1,2 u+1\right)
\end{gathered}
$$

both lie on S. Find an equation of the tangent plane at P.

Note: typo here: should be $r_{2}(u)$ instead of $r_{2}(t)$.
Answer: Since $r_{1}(0)=r_{2}(1)=(2,1,3)$, and $r_{1}^{\prime}(0)=\langle 3,0,-4\rangle, r_{2}^{\prime}(1)=\langle 2,6,2\rangle$, we know that these two vectors all lie in the tangent plane. Thus we can get a normal vector

$$
n=\langle 3,0,-4\rangle \times\langle 2,6,2\rangle=\langle 24,-14,18\rangle
$$

So the equation for the tangent plane is $24(x-2)-14(y-1)+18(z-3)=0$, which simplifies to $12 x-7 y+9 z=44$.
(8) Find the tangent plane of the function $u(s, t)$ given by $u=x^{4} y+y^{2} z^{3}$ and $x=s e^{t}, y=s^{2} e^{-t}$ and $z=s \sin t$ at point $(s, t)=(1,0)$.

Answer: When $(s, t)=(1,0)$, we have $x=1, y=1$ and $z=0 . \frac{\partial u}{\partial x}(1,1,0)=4$, $\frac{\partial u}{\partial y}(1,1,0)=1$ and $\frac{\partial u}{\partial z}(1,1,0)=0 . u(1,1,0)=1$

$$
\begin{aligned}
\frac{\partial u}{\partial s}(1,0) & =\frac{\partial u}{\partial x}(1,1,0) \frac{\partial x}{\partial s}(1,0)+\frac{\partial u}{\partial y}(1,1,0) \frac{\partial y}{\partial s}(1,0)+\frac{\partial u}{\partial z}(1,1,0) \frac{\partial z}{\partial s}(1,0)=4 \cdot 1+1 \cdot 2+0 \cdot 0=6 \\
\frac{\partial u}{\partial t}(1,0) & =\frac{\partial u}{\partial x}(1,1,0) \frac{\partial x}{\partial t}(1,0)+\frac{\partial u}{\partial y}(1,1,0) \frac{\partial y}{\partial t}(1,0)+\frac{\partial u}{\partial z}(1,1,0) \frac{\partial z}{\partial t}(1,0)=4 \cdot 1+1 \cdot(-1)+0 \cdot 0=3 .
\end{aligned}
$$

So the tangent plane is given by $u=1+6(s-1)+3(t-0)$, or $u=6 s+3 t-5$.
(9) (a) Write down the transition function $\boldsymbol{\Phi}$ from spherical coordinate to Cartesian coordinate. (i.e., this is a function that you input the spherical coordinate and get Cartesian coordinate)
(b) Find the derivative $D \boldsymbol{\Phi}$.
(c) A curve has the form $(1+2 t, \pi / 2-t, \pi+3 t)$ in spherical coordinate. Find the starting point of the curve when $t=0$ in Cartesian coordinate, and find the velocity vector at $t=0$ expressed in Cartesian coordinate.
(d) Do the same for cylindrical coordinate.

Answer:
(a) Spherical coordinate:
(i)

$$
\boldsymbol{\Phi}(\rho, \theta, \phi)=(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)
$$

(ii)

$$
D \boldsymbol{\Phi}=\left[\begin{array}{ccc}
\sin \phi \cos \theta & -\rho \sin \phi \sin \theta & \rho \cos \phi \cos \theta \\
\sin \phi \sin \theta & \rho \sin \phi \sin \theta & \rho \cos \phi \sin \theta \\
\cos \phi & 0 & -\rho \sin \phi
\end{array}\right]
$$

(iii)

$$
D \boldsymbol{\Phi}(1, \pi / 2, \pi)=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
-1 & 0 & 0
\end{array}\right]
$$

so the velocity vector equals

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
-1 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
0 \\
-3 \\
2
\end{array}\right] .
$$

(b) Cylinder coordinate:
(i)

$$
\mathbf{\Phi}(r, \theta, z)=(r \cos \theta, r \sin \theta, z)
$$

(ii)

$$
D \boldsymbol{\Phi}=\left[\begin{array}{ccc}
\cos \theta & -r \sin \theta & 0 \\
\sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(iii)

$$
D \boldsymbol{\Phi}(1, \pi / 2, \pi)=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

so the velocity vector equals

$$
\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] .
$$

(10) The contour map of a function is given below.

Draw the gradient at point $(-2,0)$. Estimate the partial derivatives at the same point. (Assume that the difference between adjacent lines is 1 , and dark shadow represent lower value.)

Answer: gradient should be perpendicular to the curve, pointing to the lower left. I would guess $-1<f_{x}<-0.7$ and $f_{y} \approx-0.5$.

1. Quizzes

NAME:
PERM:
This time you can just write your final answer. However, you still need to simplify them.

Let

$$
\begin{gathered}
f(x, y)=\cos \left(x^{2}-y\right) \ln \left(y^{3}-x\right) \\
g(x, y, z)=\frac{e^{x^{2} z}}{x y z}
\end{gathered}
$$

Find partial derivatives:

$$
\begin{equation*}
f_{x}=-2 x \sin \left(x^{2}-y\right) \ln \left(y^{3}-x\right)-\frac{\cos \left(x^{2}-y\right)}{y^{3}-x} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
f_{y}=\sin \left(x^{2}-y\right) \ln \left(y^{3}-x\right)+\frac{3 y^{2} \cos \left(x^{2}-y\right)}{y^{3}-x} \tag{2}
\end{equation*}
$$

(3)

$$
g_{x}=\frac{e^{x^{2} z}\left(2 x^{2} z-1\right)}{x^{2} y z}
$$

$$
\begin{equation*}
g_{y}=-\frac{e^{x^{2} z}}{x y^{2} z} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
g_{z}=\frac{e^{x^{2} z}\left(x^{2} z-1\right)}{x y z^{2}} \tag{5}
\end{equation*}
$$

