MATH 6A WORKSHEET 7

DANNING LU

1. More on Optimization

Question from last worksheet:
(1) Find the absolute maximum and minimum values of $f(x, y)=x^{2}+y^{2}-2 x$ on the set D, which is the closed triangular region with vertices $(2,0),(0,2)$ and $(0,-2)$.
(2) Find the points on the surface $y^{2}=9+x z$ that are closest to the origin. (As an exercise, use two methods to solve this question. You can view z as a function of x and y, or you can use the Lagrange Multipliers.)
(3) A model for the yield Y of an agricultural crop as a function of the nitrogen level N and phosphorus level P in the soil (measured in appropriate units) is

$$
Y(N, P)=k N P e^{-N-4 P}
$$

where k is a positive constant. What levels of nitrogen and phosphorus result in the best yield? New question:
(4) A plane with equation $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1(a, b, c>0)$ together with the positive coordinate planes forms a tetrahedron of volume $V=\frac{1}{6} a b c$. Find the plane that minimizes V if the plane is constrained to pass through a point $P(7,4,6)$.

2. Path integral for real-valued functions

Compute $\int_{\mathbf{c}} f d s$.
(1) $f(x, y, z)=2 x y-z, \mathbf{c}(t)=<2 \sin t, 2 \cos t, 7 t>$.
(2) $f(x, y)=x^{3} y^{30}$, \mathbf{c} is the unit circle in \mathbb{R}^{2}.
(3) $f(x, y, z)=x+2 y-z^{2}$, \mathbf{c} consists of the path $t \mathbf{i}+t^{2} \mathbf{j}$ from $(0,0,0)$ to $(1,1,0)$, followed by the straight line to $(1,-1,1)$.
(4) $* f(x, y)=x^{3}+y^{3}, \mathbf{c}$ is the part of the curve $x^{2 / 3}+y^{2 / 3}=1$ in the first quadrant.

