MATH 6A WORKSHEET 8

DANNING LU

(1) Evaluate the integrals. (a)
$$\int_{-2}^{1} \int_{-1}^{2} 32x^3y^3dxdy$$
.

(b)
$$\int_{1}^{2} \int_{2}^{4} \frac{x}{y} dy dx$$
.

(c)
$$\iint_D x \cos(2x+y) dA$$
 where D is the region $0 \leqslant x \leqslant \pi/3, \ 0 \leqslant y \leqslant \pi/4$.

(2) Evaluate the integrals. (a)
$$\int_0^2 \int_0^x (x+2y) dy dx$$
.

(b)
$$\int_0^1 \int_{1-x}^{1+x} (24x^2 + 4y) dy dx$$
.

- (c) $\iint_D xydA$ where D is the triangle with vertices (0,0),(6,0),(0,1).
- (3) Compute the solid under the graph of $f(x,y)=3+2x^2+7y$ over the rectangle $R=\{(x,y)|1\leq x\leq 3, 0\leq y\leq 1\}.$
- (4) Reverse order of integration. (a) $\int_0^1 \int_x^{2x} e^{y-x} dy dx$.

 - (b) $\int_0^{2\sqrt{3}} \int_{y^2/6}^{\sqrt{16-y^2}} 1 dx dy$.
 - (c) $\int_0^7 \int_{x^2-6x}^x f(x,y) dy dx$.
 - (d) $\int_1^2 \int_x^{x^3} f(x,y) dy dx + \int_2^8 \int_x^8 f(x,y) dy dx$.
- (5) Evaluate the integral by reversing the order of integration.

$$\int_0^1 \int_{7y}^7 e^{x^2} dx dy.$$

Quizzes

NAME:
PERM:

Show your work. Points will NOT be awarded for answers with no explanation or necessary steps. NO CALCULATORS. NO NOTES.

(1) Evaluate the line integral $\int_c f \, ds$, where $f(x,y) = x^3 y^{18}$ and c is the upper half of the unit circle centred at the origin (i.e., the part of the unit circle that is above the y-axis). (4 points)

(2) Evaluate $\int_c \mathbf{F} \cdot ds$, where c is the line connecting $(0, -\pi)$ and (0,0), and $\mathbf{F} = \langle e^x \sin y, e^x \cos y \rangle$. (4 points)

(3) Evaluate $\int_c \mathbf{F} \cdot ds$, where $c(t) = \langle t \sin t, t \cos t \rangle$, $0 \leqslant t \leqslant \pi$, and $\mathbf{F} = \langle e^x \sin y, e^x \cos y \rangle$. (2 points)