MATH 6A WORKSHEET 10

DANNING LU

1. Surface Integrals

Let S be the unit sphere $x^2 + y^2 + z^2 = 1$.

(1) Compute the surface integral $\iint_S (x+y) dS$.

(2) Compute the surface integral $\iint_S \langle x, y, z \rangle d\mathbf{S}$.

(3) Compute the surface integral $\iint_S \langle x^2, y^2, z^2 \rangle d\mathbf{S}$.

(4) A coffee filter is shaped like a cone described in cylindrical coordinates by z = r, $0 \leq r \leq 4$ (distance is measured in cm). Coffee flows straight downward, and flows faster through the center of the filter. In fact, the ow of coffee is described by the vector field $\mathbf{F} = \langle 0, 0, r - 4 \rangle$, measured in cm/min. Find the rate (in cm3/min) at which coffee flows through the entire filter by calculating the flux.

DANNING LU

- 2. Green's theorem, Divergence theorem and Stroke's theorem
- (1) Write down the three theorems.

(2) Use Green's Theorem to find the circulation of $\mathbf{F}(x, y) = \langle x^3, y^3 \rangle$ along the counterclockwise loop *C* consisting of the two line segments on the *x*- and *y*-axis with $0 \leq x \leq 2$ and $0 \leq y \leq 2$, respectively, and the quarter circle centred at origin with radius two in the first quadrant?

(3) Let U be the surface z = xy where $-1 \le x \le 1, -1 \le y \le 1$. Let C be the quadrilateral from (1, 1, 1) to (-1, 1, -1) to (-1, -1, 1) to (1, -1, -1), and back to (1, 1, 1), so that C is the boundary of U. Use Stokes' Theorem to find the work done by $\mathbf{F}(x, y, z) = yz^2\vec{i} + xz^2\vec{j}$ along the loop C.

- (4) Let U be the surface shown where $z = \sin(x)\sin(y)$, where $0 \le x \le \pi$, $0 \le y \le \pi$, and let $\mathbf{F}(x, y, z) = z\vec{k}$. Notice that the boundary of U is a square in the xy-plane.
 - (a) Let T be the square region in the xy plane where $0 \le x \le \pi$, $0 \le y \le \pi$. Find the flux of **F** down through T.
 - (b) Let *E* be the solid region between *U* and *T*, so that *U* and *T* together form the boundary (or surface) of *E*. Find $\iint_E div(\mathbf{F})dV$.
 - (c) Use the results above to find $\iint_U \mathbf{F} \cdot d\vec{S}$. Explain your work.