MATH 6A WORKSHEET 8

DANNING LU

1. More on Double Integrals

(1) Find Volume of solid.
(a) Tetrahedron in first octant bounded by coordinate planes and $z=7-3 x-$ $2 y$.
(b) Solid inside both the sphere $x^{2}+y^{2}+z^{2}=3$ and paraboloid $2 z=x^{2}+y^{2}$.
(2) Compute $\int_{0}^{\pi / 3} \int_{1}^{3} r e^{-r^{2}} d r d \theta$. If this represents $\iint_{D} f(x, y) d A$, find the function $f(x, y)$ and the region D.
(3) (a) Evaluate $\iint_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}} d A$.
(b) Use the above result to find out the value of the integral $\int_{-\infty}^{\infty} e^{-x^{2}} d x$.
(4) Find area inside both $r=1$ and $r=2 \sin \theta$.

2. Triple Integrals in Cartesian Coordinate

Evaluate the integral $\iiint_{E} f d V$ with f and E given below. You may need to draw the region for your integral.
(1) $f=x y+z^{2} . E=\{(x, y, z) \mid 0 \leq x \leq 2,0 \leq y \leq 1,0 \leq z \leq 3\}$.
(2) $f=y . E=\{(x, y, z) \mid 0 \leq x \leq 3,0 \leq y \leq x, x-y \leq z \leq x+y\}$.
(3) $f=\sin y . E$ is the plane below $z=x$ and above the triangle region with vertices $(0,0,0),(0, \pi, 0),(\pi, 0,0)$.
(4) $f=x-y$. E is enclosed by the surfaces $z=x^{2}-1, z=1-x^{2}, y=0$ and $y=2$.
(5) $f=x z . E$ is the tetrahedron with vertices $(0,0,0),(0,1,0),(0,0,2),(3,0,0)$.

3. **Triple Integral in Cylindrical Coordinate

Sketch the solid and function that is being integrated by the formula given below.
(1) $\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2} \int_{0}^{r^{2}} z d z d r d \theta$.
(2) $\int_{0}^{2} \int_{0}^{2 \pi} \int_{0}^{r} r z \sin \theta d z d \theta d r$.

Evaluate the integral $\iiint_{E} f d V$ with f and E given below. You may need to draw the region for your integral.
(1) $f=\sqrt{x^{2}+y^{2}} . E$ is the solid that lies inside the cylinder $x^{2}+y^{2}=16$ and between the planes $z=-5$ and $z=4$.
(2) $f=z . E$ is enclosed by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=4$.
(3) $f=x+y+z . E$ is the solid in the first octant that lies under the paraboloid $z=4-x^{2}-y^{2}$.

4. ${ }^{* *}$ Triple Integral in Spherical Coordinate

Sketch the solid and function that is being integrated by the formula given below.
(1) $\int_{0}^{\pi / 6} \int_{0}^{\pi / 2} \int_{0}^{3} \rho d \rho d \theta d \phi$.
(2) $\int_{0}^{\pi / 4} \int_{0}^{2 \pi} \int_{0}^{\sec \phi} \rho \cos \theta \sin \phi d \rho d \theta d \phi$.

Evaluate the integral $\iiint_{E} f d V$ with f and E given below. You may need to draw the region for your integral.
(1) $f=y^{2} z^{2}$. E is the solid that lies above the cone $\phi=\pi / 3$ and below the sphere $\rho=1$.
(2) $f_{=}=x e^{x^{2}+y^{2}+z^{2}}$. E is the solid in the first octant and between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=8$.

QuizZES

NAME:
PERM:
SECTION TIME:
Show your work. Partial points might be awarded. NO CALCULATORS. NO NOTES.
(1) Evaluate $\iint_{D} x y d A$, where D is the triangle region with vertices $(0,1),(1,2)$, $(4,1)$.
(2) Evaluate $\iint_{R}\left(x+\arctan \frac{y}{x}\right) d A$, where $R=\left\{(x, y) \mid 1 \leq x^{2}+y^{2} \leq 4,0 \leq y \leq x\right\}$.

