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1. OVERVIEW

The braid groups Bn (n ≥ 1) arise in the study of mapping class groups, knot theory, and robotics
among other fields. My research focuses on the study of how braid group representations can be
used to determine certain properties of braids. One very interesting property of the braid groups
was announced in 1992 by Patrick Dehornoy in [7]. He proved that the braid groups were left-
orderable, but he used methods that were foreign to most topologists. A short time later, a 5 author
paper [8] gave a completely topological proof of braid group orderability, and in fact, the order was
the same as the order given by Dehornoy.

I use the Burau representation to determine positivity of 3-braids in the Dehornoy order and
whether certain 3-braids are right-veering. Positive braids and right-veering braids are closely
related fields of study. In fact, right-veering braids are positive in the Dehornoy order. A few, but
not all definitions are given here.

1.1. Definitions. Let D2 be the unit disk in C, and let Q = {p1, p2, . . . , pn} be a set of n interior
points of D2. We denote by Dn the set D2 \ Q with basepoint p0 in its boundary, ∂Dn. Regard
Bn as the group of isotopy classes of orientation preserving self-homeomorphisms of Dn which fix
∂Dn. The group Bn is isomorphic to the group having generators σ1, σ2, . . . , σn−1 and relations
σiσj = σjσi when |i− j| > 1 and σiσjσi = σjσiσj when |i− j| = 1.

The unreduced Burau representation is the homomorphism ρ : Bn → Aut(H1(D̃n, p̃0)) which
is given by the induced action of a braid representative on the n-dimensional Z[t, t−1]-module
H1(D̃n, p̃0), where D̃n is a Z-fold covering space of Dn. Given a basis, we denote by M(β) the
n×n Burau matrix that represents the braid β. The matrix M(β) can, in fact, be found by working
very concretely in Dn. If we choose our basis to be lifts of the set {y1, y2, . . . , yn} shown in
Figure 1, then entry pi,j(t) in M(β) is 〈δi, β(yj)〉 =

∑
k∈Z(tkδ̃i, β̃(yj))t

k ∈ Λ where (tkδ̃i, β̃(yj)) is
the algebraic intersection number of the two arcs in D̃n.
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Date: December 2009.
1



2 EMILLE K. DAVIE

2. CURRENT RESEARCH

A solution to the word and conjugacy problems for Bn was discovered in 1968 by Garside in [1]
and expanded upon by many others over the years. However, it still remains an interesting endeavor
to find distinguished representative words for elements of the braid groups and the braid monoids.
For the n = 3 case, we use the matrix M(β) (ρ is known to be faithful for this case) to find a
distinguished representative word for the 3-braid β. If e is a straight edge from p1 to p3, we start by
extracting geometric intersection numbers of β(e) and arcs α1, α2, α3 shown in Figure 2 from the
entries of M(β) by specializing at t = −1.

Lemma 1. The geometric intersection number of β(e) and αi is |pi,3(−1)−pi,1(−1)|, for i = 1, 2, 3.

e
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FIGURE 2

These intersection numbers completely determine the image of e under β. The key observation
is that for j = 0, 1 or 2, (σ2σ1)

jβ(e) is an arc that after finitely many applications of σ−1
1 and σ2

is isotopic to e. Repeated applications of σ−1
1 and σ2 “unravels” β(e). However, the image of e

does not completely determine a word representing β. The arc e is left invariant by the map ∆2 =
(σ2σ1)

3 which is a full twist about ∂D3 and by the map τ = σ−1
1 σ2σ1 which is a counterclockwise

exchange of p1 and p3. The arc e is, of course, also invariant under the inverses of these maps.
Thus, we have the following theorem.

Theorem 1. Every 3-braid β is represented by a word of the form (σ2σ1)
mw(σ1, σ

−1
2 )τ r, where

τ = σ−1
1 σ2σ1, w(σ1, σ

−1
2 ) is a word in only σ1 and σ−1

2 , and m, r are integers .

I have a way of putting a braid β into the form given in Theorem 1 by using only its Burau
matrix M(β). This is done by using Lemma 1, the unraveling processing mentioned above, and the
determinant of M(β). This allows us to determine if β is positive or not. Roughly speaking, a braid
β is positive in the Dehornoy order if and only if the curve diagram associated to β is to the right of
the curve diagram associated to the identity map. A detailed description of this order can be found
in [2] or [8]. In summary, in most cases it is not the element τ that determines the positivity of
β, but it is the fractional twist coefficient m that dominates in determining positivity. To a lesser
degree, the rightmost letter α in the word w(σ1, σ

−1
2 ) plays a role in positivity. The details for the

trivial case that w(σ1, σ
−1
2 ) is the empty word are omitted here.

Theorem 2. Suppose that β = (σ2σ1)
mw(σ1, σ

−1
2 )τ r where w(σ1, σ

−1
2 ) is not the empty word, and

let α be the rightmost letter of w(σ1, σ
−1
2 ). If m ≥ 2, then β is positive. If m ≤ −2, then β is

negative. If |m| ≤ 1, then β is positive if α is σ1 and negative if α is σ−1
2 .
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3. THESIS RESEARCH

If we let T 2 denote the torus and S denote the once-punctured torus, there is a natural surjection
δ : Mod(S, ∂S) → Mod(T 2) ∼= SL2Z from the mapping class group of S to the mapping class
group of T 2. Moreover, there is an isomorphism between Mod(S, ∂S) and B3 given by the two-fold
branched cover of D3 by S. Thus, the kernel of the map δ is generated by the element ∆4.

Recall the Thurston classification of mapping classes as reducible, periodic or pseudo-Anosov.
Reducible elements of SL2(Z) leave some essential simple closed curve invariant, and therefore a
reducible 3-braid β is a conjugate of some power of σ1 plus possibly some boundary twisting. That
is, β = ∆2kµσm

1 µ−1 for some µ ∈ B3. Periodic elements of SL2(Z) have order dividing 12.
In my thesis, I used the (n − 1)-dimensional Burau representation (referred to as the reduced

Burau representation) to classify reducible and periodic homeomorphisms of the once-punctured
torus S as right-veering. Right-veering homeomorphisms of surfaces with boundary mostly show
up in 3-dimensional contact topology. In particular, Honda, Kazez, and Matić prove in [3] that a
contact 3-manifold (M, ξ) is tight if and only if all of its open book decompositions (Σ, h) have
right-veering monodromy h. The following lemma gives necessary and sufficient conditions for a
reducible map of S to be right-veering. In the statement of the lemma, Ta is a positive Dehn twist
about a curve parallel to the boundary of S, and Tb is a Dehn twist about a nonseparating curve in
S.

Lemma 2. (Honda, Kazez, Matić [3]) Let h = T k
a Tm

b represent a reducible mapping class of S.
Then h is right-veering if and only if either k > 0 or k = 0 and m ≥ 0.

We extract the values k and m from the reduced Burau matrix Mr(β), then apply Lemma 2 to de-
termine whether β is right-veering. It is easily verified that the trace of Mr(β) is t3k +(−1)mt3k+m.
Several immediate observations can be made from this nice form of the trace, but it is not enough
to determine k and m completely. For example, if the trace is t6 + t−6, it is impossible to determine
if k = 2 and m = −12 or if k = −2 and m = 12. Moreover, this distinction is necessary since
the former implies β is right-veering and the latter that β is left-veering. If β̂ is the image of β
in SL2(Z), the following theorem gives us sufficient information to determine k and m given the
eigenvalue λ for β̂.

Theorem 3. Suppose that β is a nontrivial reducible map, and let β̂ be its image in SL2(Z). Then
value |m| is the greatest common divisor of the entries off the diagonal of β̂. Moreover, for λ = 1,
the sign of m is the sign of the (1, 2)-entry of β̂, and for λ = −1, the sign of m is the sign of the
(2, 1)-entry of β̂.

For the periodic case, β12 must be in ker δ, and hence β12 is a power of a Dehn twist about the
boundary of S. I proved that a map h is right-veering if and only if hn is right-veering for n ≥ 0,
thus we have the following theorem.

Theorem 4. Let β ∈ B3 be a nontrivial periodic map. Then Mr(β
12) =

(
t6k 0
0 t6k

)
for some

integer k, and hence, β is right-veering if and only if k ≥ 0.

4. FUTURE ENDEAVORS

The next step in my research plan is to generalize my results for n = 3. The Burau representation
is not known to be faithful for n = 4 and is known to be unfaithful for n ≥ 5 (see [4] and [5]).
However, Bigelow proves in [6] that the Lawrence-Krammer representation is faithful for all n,
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thus this representation could be used as a tool for finding distinguished forms for braids. There
are also many open problems relating to the Dehornoy order that I find interesting. Many of these
involve generalizations of braid groups. For example, it is unknown if surface braid groups are
orderable. It is also not known if finite index subgroup of the mapping class group of a surface is
orderable.

Keeping current on topics in areas which may be accessible to undergraduates is also an impor-
tant factor in my future plans. Undergraduate research can make all the difference when a student is
deciding if he or she would like to study mathematics at the graduate level. Moreover, it can create
a deeper appreciate and love for the subject. In particular, I have noticed that many undergraduates
seem to take a liking to the study of knots and links. This area has the potential to be presented
in a geometric and hands-on way for beginners, but they also have deep implications throughout
mathematics.
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