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What Is a Hilbert Space?

A Hilbert space is an inner product space that is complete with
respect to the induced metric d(x, y) = 〈x− y, x− y〉.

Example

1 Cn with the inner product 〈x, y〉 = x · y
2 L2(X, µ) with the inner product 〈f , g〉 =

∫
X f gdµ

(Riesz-Fischer)
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L2(X, µ)

L2(X, µ) is the set of all square-integrable functions from X to C
under the equivalence relation

f ∼ g ⇐⇒
∫

X
|f − g|2dµ = 0

Example

L2(R, dx) is the L2 space of functions on the real number line.

The characteristic function χ[0,1](x) is a square-integrable
function with integral 1.

The complex exponential eikx is not square-integrable on the
real number line, and is thus not part of L2(R, dx).
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Operators in Hilbert Spaces

A linear operator on a Hilbert space H is a function
T : H→ H that satisfies T(αx1 + βx2) = αT(x1) + βT(x2)
for x1, x2 ∈ H.
A linear operator is bounded if there exists some scalar C
such that ∀x ∈ H : ||T(x)|| ≤ C||x||

Fun fact: bounded linear operators are the morphisms in the
category of Hilbert spaces.

Example

1 Any matrix M ∈ Cn×n is a bounded linear operator on Cn.

2 Given a subspace M ⊂ H, the orthogonal projection operator
PM is a bounded linear operator on H.

3 for any essentially bounded function φ on a measure space
(X, µ), the multiplication operator Mφ, given by Mφ(f ) = φf
is a bounded linear operator on L2(X, µ).
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Adjoints and Normality

The adjoint of an operator A on a Hilbert space H is the unique
operator A∗ that satisfies

〈Ax, y〉 = 〈x,A∗y〉

for all x, y in H. An operator is said to be normal if it commutes
with its adjoint, and self-adjoint if it equals its own adjoint.

Example

1 The adjoint of a matrix M ∈ Cn×n is the conjugate transpose
M†.

2 The projection operator PM is self-adjoint.

3 The adjoint of the multiplication operator Mφ is
multiplication by the conjugate Mφ.
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The Spectrum of an Operator

In finite dimensions, the spectrum of a matrix M is the set of
eigenvalues for that matrix (i.e. the set of all λ such that
(A− λI)x = 0 for some x).
In infinite dimensions, however, there are more ways to fail
invertibility than just having a nontrivial kernel.

Definition

The spectrum of an operator A, denoted σ(A), is the set of all
complex numbers λ for which the operator A−λI is not invertible.
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The Spectral Partition

Question

In what ways can A− λI fail to be invertible?

1 A− λI has nontrivial kernel (the point spectrum).

2 A− λI is not bounded below (the approximate point
spectrum).

3 A− λI does not have dense range (the compression
spectrum).
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Interpreting the Approximate Point Spectrum

For an operator A− λI to not be bounded below, there must exist
some sequence {hn} of unit vectors such that

||(A− λI)hn|| → 0

Theorem

If An is a sequence of invertible operators that converge to A− λI,
where A− λI is not invertible, then λ ∈ σAP(A).

Theorem

σP(A) ⊂ σAP(A), where σP(A) is the closure of the point spectrum
of A.
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Examples

Example

In finite dimensions, σ(M) = σP(M). That is, the spectrum is
entirely a point spectrum.

Example

The infinite matrix M =


1 0 · · · 0 · · ·
0 1

2 · · · 0 · · ·
...

...
. . . 0 · · ·

0 0 0 1
2n · · ·

...
...

...
...

. . .


has σP(M) = { 1

2n } and σAP(M) = σP(M) ∪ {0}.
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Examples

Example

Consider the operator Mx : f (x) 7→ xf (x) on the Hilbert space
L2([0, 1], dx).

For λ 6∈ [0, 1], the operator of multiplication by 1
x−λ inverts

(Mx − λI).

For λ ∈ [0, 1], the operator has no inverse.

Furthermore, each λ ∈ [0, 1] is part of σAP(Mx).

{fn(x)}λ =

{
n if x ∈ V 1

n2
(λ)

0 else
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The Spectral Theorem for Matrices

Theorem (The Spectral Theorem–Finite Dimension)

Every normal matrix A is unitarily equivalent to a diagonal
matrix. That is, A = UDU∗ for some unitary matrix U and some
diagonal matrix D.

Here, the unitary matrix has columns equal to the eigenvectors of
A, and the diagonal matrix has the corresponding eigenvalues of A.
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The Spectral Theorem for Matrices (Cot’d)

Alternately,

Theorem (The Spectral Theorem–Finite Dimension, Take Two)

Every normal matrix A is expressable as a linear combination of
projections onto its eigenspaces. That is,

A =

n∑
i=1

λiPλi

where {λi} is the spectrum of A, and Pλi is an orthogonal
projection onto the eigenspace associated with λi.
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Measures

Extending to infinite dimensions gets tricky, we’ll need the idea of
a measure to continue...

A measure on a space X is a function µ : P[X]→ R+ ∪ {∞}
where:

µ(∅) = 0

µ(A ∪ B) = µ(A) + µ(B) for A, B disjoint sets

Intuitively: µ measures the "weight" of a set.
Practically: µ allows us to integrate (the Lebesgue Integral).
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Measures: Examples

Example

X = R, and dµ = dx leads to the standard measure on the real
number line: µ([a, b]) = b− a. Here, the integral is the standard
integral ∫

R
f (x)dx

Example

X = N, and dµ is the counting (δ) measure µ(S) = |S|. The
integral, then, is ∫

N
f (n)dµ =

∞∑
i=1

f (n)
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The Spectral Theorem for Operators

What happens when we extend to the infinite-dimensional case?

Theorem (The Spectral Theorem–Projection-valued Measures)

Every normal operator A on a Hilbert space H is expressible as

A =

∫
σ(A)

zdE(z)

Where dE is a projection-valued measure on the spectrum of A.
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Examples

Example

Let M =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . . 0

0 0 0 λn


Then, the spectral measure E(S) is the δ-measure on σ(M) with
E(λi) = Pλi , and the spectral theorem states that

M =

∫
σ(M)={λi}

zdE(z) =
n∑

i=1

λiPλi

which is a restatement of the familiar spectral theorem.
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Example: Multiplication

Example

Let Mx be the familiar multiplication operator on L2([0, 1], dx).
We have seen already that σ(Mx) = σAP(Mx) = [0, 1].
The spectral measure E(S) for an interval S is given as MχS for χS

the indicator function on S.

Mx =

∫
σ(Mx)

zdE(z)

Question

What is dE(z)?
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What is dE(z)?

Motivation: Ax = λx, the eigenvalue equation.

Mxf = λf

xf (x) = λf (x)

=⇒ f (x) = 0 for x 6= λ

f (x) = δλ(x)?
More on this later...
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Alternative Approach: Direct Integrals

Given a measure space (X, µ) and a collection of separable Hilbert
spaces {Hλ}λ∈X with a measureability structure, the direct
integral ∫ ⊕

X
Hλdµ(λ)

is the space of equivalence classes of sections s for which
||s|| <∞ under the norm induced from the inner product

〈s1, s2〉 =
∫

X
〈s1(λ), s2(λ)〉dµ(λ)
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The Spectral Theorem–Direct Integral

Theorem

Given a normal operator A, there exists a σ-finite measure µ on
σ(A) such that A is unitarily equivalent to the multiplication
operator Mλ on the direct integral∫ ⊕

σ(A)
Hλdµ(λ)

The Hλ can be thought of as the "generalized eigenspaces" of the
operator, and the measure will count their "generalized
multiplicity". (Remember the δ(x)?)
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Quantum Lives in a Hilbert Space

Quantum Mechanics has five basic "axioms" to describe the
theory.

1 Associated with each quantum system is a Hilbert space, and
quantum states are unit vectors in this Hilbert space.

2 Each classical phase space variable has an associated
self-adjoint operator known as a quantum observable.

3 The probability distribution of an observable f̂ for a quantum
state ψ satisfies 〈f 〉 = 〈ψ, f̂ψ〉

4 If an observable f̂ is measured to have a value of λ for a
quantum system with initial state ψ, it will collapse to a state
ψ′ satisfying f̂ψ′ = λψ′

5 Time evolution is governed by the Schrodinger equation

∂tψ −
1
i~

Ĥψ
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Quantization of Energy

Proposition

The quantization of the phase space variables x and p are

x→ Mx

p→ −i~ d
dx

Example

The standard quantization of kinetic energy uses the identity

KE =
p2

2m

Which implies that

K̂E =
−~2

2m
d2

dx2
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The Finite Square Well
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The Finite Square Well

The Hilbert space for the finite square well can be taken to be
L2(R), and the Hamiltonian for the finite square well is

Ĥ(x) =

{
−~2

2m
d2

dx2 − V0 if x ∈ [−a, a]
−~2

2m
d2

dx2 else

The goal is to find the allowed energies for this system. To do so,
we need to find the spectrum of Ĥ.
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The Finite Square Well: Results

First pass: solve Ĥψ = Eψ to find eigenvalues. As it turns out,
this splits into two cases: V0 < E < 0 and E > 0.

Result

For V0 < E < 0, the solutions are of the form

ψ(x) =


C1e
√
εx if x ∈ (−∞,−a]

C2 cos(
√

v− ε) if x ∈ [−a, a]
C3e−

√
εx if x ∈ [a,∞)

with the condition that
√
ε =
√

v− ε tan(
√

v− εa)
For E > 0, the solutions are linear combinations of
ψE(x) = C1eikx + C2e−ikx for k =

√
2mE
~ .
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The Finite Square Well: Bound states

For E < V0, we find a finite discrete set of allowed energies.

√
ε =
√

v− ε tan(
√

v− εa)



Spectral
Decomposition
of Quantum-
Mechanical
Operators

Hilbert Space
Basics

The Spectral
Theorem

Quantum
Mechanics

The Finite Square Well: Bound States(Cot’d)
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The Finite Square Well: Spectral Partitions

Each bound state corresponds to an energy in the point spectrum
σP(Ĥ), and each free state corresponds to an energy in the
approximate point spectrum σAP(Ĥ).

Proof.

For E > 0, let ψ solve Ĥψ = Eψ, and define a sequence of
functions

ψn(x) = ψ ∗


0 |x| ≥ n + 1
1 |x| ≤ n
χ[0, 1

3 ]
(−x− n) −(n + 1) < x < −n

χ[0, 1
3 ]
(x− n) n < x < n + 1

Then, it can be shown that limn→∞
||(Ĥ−EI)ψn||
||ψn|| = 0.
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The Finite Square Well: Projection-Valued Measure

For this slide, E will represent an element of the spectrum of Ĥ,
and F will be a projection-valued measure.

For the point spectrum,

dF(E) = PE

where PE is the orthogonal projection onto the one
dimensional subspace of the state with energy E.

For the approximate point spectrum, one can interpret dF(E)
to be a projection onto the two dimensional subspace
spanned by the "states"

ψE(x) = e−ikx

ψE(x) = eikx
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The Finite Square Well: Projection-Valued Measure
(Cot’d)

Problem:
ψE(x) = e−ikx

ψE(x) = eikx

is not in L2(R)!

This is because µ(E) = 0...
For a set of positive measure (e.g. an interval of energies), we get
infinitely many frequencies to work with, and can build a
square-integrable function from them!

Example

For an interval of energies k ∈ [1, 2], the state

ψ(x) =
∫
[1,2]

χ[1,2](x)e
ikxdk

is a square-integrable solution!



Spectral
Decomposition
of Quantum-
Mechanical
Operators

Hilbert Space
Basics

The Spectral
Theorem

Quantum
Mechanics

The Finite Square Well: Projection-Valued Measure
(Cot’d)

Problem:
ψE(x) = e−ikx

ψE(x) = eikx

is not in L2(R)!
This is because µ(E) = 0...

For a set of positive measure (e.g. an interval of energies), we get
infinitely many frequencies to work with, and can build a
square-integrable function from them!

Example

For an interval of energies k ∈ [1, 2], the state

ψ(x) =
∫
[1,2]

χ[1,2](x)e
ikxdk

is a square-integrable solution!



Spectral
Decomposition
of Quantum-
Mechanical
Operators

Hilbert Space
Basics

The Spectral
Theorem

Quantum
Mechanics

The Finite Square Well: Projection-Valued Measure
(Cot’d)

Problem:
ψE(x) = e−ikx

ψE(x) = eikx

is not in L2(R)!
This is because µ(E) = 0...
For a set of positive measure (e.g. an interval of energies), we get
infinitely many frequencies to work with, and can build a
square-integrable function from them!

Example

For an interval of energies k ∈ [1, 2], the state

ψ(x) =
∫
[1,2]

χ[1,2](x)e
ikxdk

is a square-integrable solution!



Spectral
Decomposition
of Quantum-
Mechanical
Operators

Hilbert Space
Basics

The Spectral
Theorem

Quantum
Mechanics

The Finite Square Well: Direct Integral

The spectrum of Ĥ is σ(Ĥ) = En ∪ (0,∞) for some finite set of
allowed bound energies En.
The measure on the point spectrum is the counting measure, so
that part of the integral becomes∫ ⊕

σP(Ĥ)
HEdµ(E) = ⊕n

i=1HE

Where HE is the one dimensional subspace of the state with
energy E.
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The Finite Square Well: Direct Integral

The measure on the approximate point spectrum is more
mysterious, but the integrand HE can be shown to be the
two-dimensional subspace of complex exponentials eikx and e−ikx.
Thus, the Hilbert space for which Ĥ acts as multiplication is

⊕n
i=1HEn ⊕

∫ ⊕
σAP(Ĥ)

HEdµ(E)
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Conclusions

The spectral theorem still works in infinite dimensions.

Infinite dimensions potentially leads to a continuous
spectrum.

This is fixed by introducing an integral across the more
generalized eigenspaces, either on projections (PVM) or on
the space itself (DI).

Spectral partitions help with understanding which parts of
the spectrum will be continuous or not.

These formulations provide a new perspective on some key
results in quantum mechanics
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