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Introduction
The core idea in functional analysis is to treat
functions as ’points’ or ’elements’ in some sort
of abstract space, so that instead of working
with individual functions we work with the
structure of the space (as the tradition in
classical analysis), we deal with functions as
points in a space endowed with some kind of
overall structure. This viewpoint, was an
integral step in the process of transferring
familiar concepts in finite-dimensional
Euclidean space to (typically
infinite-dimensional) ’function spaces’.

Basics
We will be concerned with complex Hilbert
spaces. A Hilbert space (H) is defined as a vector
space over C, with an inner product such that it
is complete with respect to the inner product.
Specifically we will be looking at the L2(X, μ),
this is the Hilbert space of the square integrable
functions, with associated measure μ. Note the
norm in L2 is given by:

‖f‖L2 =
∫︁
|f|2dμ

This is the familiar state space of a quantum
particle, contained in a region X.
Let T : X −→ Y be a linear map between
normed linear spaces. T is called a bounded
linear operator if ∃C such that

‖Tx‖Y ≤ C‖x‖X
∀x ∈ X. Now suppose H and K are hilbert
spaces and A : H −→ K a bounded linear
operator. There is always a unique A∗ such that:

〈Ah, k〉K = 〈h,A∗k〉H
A∗ is called the adjoint of A

Bounded Linear operators

In this section we will define spectrum on
bounded linear operators. Let T ∈ B(X) (T : X
bounded), we say λ ∈ C is an eigenvalue, if for
some x we have Tx = λx.
Theorem: If T ∈ B(H ) is self adjoint, then
either ‖T‖ or −‖T‖ is an eigenvalue. Note
‖T‖ = Sup(|〈Tx, y〉| : ‖x‖ = ‖y‖ = 1) . The
eigenvalues are real and the eigenvectors for
distinct eigenvalues are orthogonal.T is said
compact if it is the limit of finite rank operators
Preliminary Spectral Theorem: Let T 6= 0 be a
self-adjoint, compact operator in B(H ), there
exists a finite or countably infinite set of
eigenvectors gn, with corresponding eigenvalues
λn such that

Tx = λn〈x, gn〉gn
When we move from compact operators to
Banach algebras, the concept of eigenvalue gets
generalized to the spectrum.

Figure: functions hn approximating the eigenfunction for
λ = 0.5

Spectrum

Spectrum of T: Let T ∈ B(X) be linear. The set
of complex numbers λ such that T − λI is not
invertible, is called the spectrum.
A bounded linear operator on a Hilbert space is
invertible iff it is bounded below and has a
dense range. So if either (or both) of those two
conditions are not satisfied for T − λI then λ is
in the spectrum. So we have:
Approximate point spectrum σap(x):
{λ : T − λI is not bounded below}, this includes
the eigenvalues.
Compression spectrum (x): {λ : T − I does
not have a dense range}
Spectral mapping theorem: Suppose A is a
unital Banach algebra and A ∈ A and P is a
polynomial. We have

σ(P(A)) = P(σ(A))

Our goal now is to generalize this to all
continuous functions. For this we consider the
set MA of *homomorphisms from A to C (in
B(H ) the * is just the adjoint).

Example:Position operator

Consider the operatorMx, multiplication by x.
Mx ∈ L2[[0, 1]]. Clearly, this operator has no
eigenvalues, but it has approximate point
spectrum σap = [0, 1]. A key idea about
λ ∈ σap(Mx) is that (Mx − λI)hn→ 0 for some
sequence of normalized functions hn. An
example of such a sequence is :

hn =

√︃
n

π
e−n(x−λ)

2

(If this did have a limit, it would be the delta
function)

Gelfand Transform
If A is a commutative unital Banach algebra,
then we can define a map:

 : A −→ C(MA )

Theorem:If A is also a C∗ algebra then  is a
isometric-∗isomorphism. Although we are
limited by the commutativity requirement in the
last theorem, we can generate a commutative
C∗ algebra, with {A,A∗, I} for any A ∈ A . The
next result will be the central result of this
poster, there is an isomorphism from A (which
is a mysterious object) to C(σ(A)) (which are
just continuous complex functions).
Theorem:Suppose A is some singly generated,
commutative, unital C∗ algebra with
A = C∗(A) for some A which is necessarily
normal. Then there is a unique ∗ isomorphism
between A and C(σ(A)), and maps A to the
identity function on σ(A).

Continuous spectral mapping

Theorem: Given a normal operator A as above,
we have

σ(f(A)) = f(σ(A))

This theorem gives constraints on the spectra of
operators based on their algebraic properties.
•A∗ = A iff σ(A) ⊂ R
•A∗ = A−1 iff σ(A) ⊂ ∂D
•A2 = A iff σ(A) ⊂ {0, 1}
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