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Some Definitions

• An affine algebraic variety is the common zero set of a set of complex poly-
nomials on Cn. We denote V = V({Fi}i∈I) ⊆ Cn.

• An ideal I ⊆ A = C[X1, . . . , Xn] gives an affine variety

V(I) = {p ∈ Cn | f (p) = 0 for all f ∈ I},

and an affine variety V ⊆ Cn gives the ideal

I(V ) = {f ∈ A | f (p) = 0 for all p ∈ V }.

The coordinate ring of a variety V is C[V ] = A/I(V ). We write V =

spec(C[V ]) by identifying V with the set of maximal ideals of C[V ].

• The closed sets of a variety V in the Zariski topology are the subvarieties of
V , and the open sets are their complements.

• A torus is an affine variety isomorphic to (C∗)n. An affine toric variety is an
affine variety containing a torus as a dense subset in the Zariski topology, such
that the action of the torus on itself extends to an action of the torus on V .

• A character of a torus T is a group homomorphism χ : T → C∗. A
one-parameter subgroup of a torus is a group homomorphism λ : C∗→ T.

• A lattice is a free abelian group of finite rank. A lattice of rank n is isomorphic
to Zn. For example, a torus has lattices M and N , of characters and one-
parameter subgroups, respectively.

• A semigroup is a set S with an associative binary operation and an identity
element. An affine semigroup is a commutative finitely generated semigroup
that can be embedded in a lattice.

• Given an affine semigroup, the semigroup algebra C[S] is the vector space
over C with S as a basis and multiplication induced by the semigroup
structure. We think of the embedding of S into the character lattice M

of a torus TN , so that m ∈ M gives the character χm. Then C[S] ={∑
m∈S cmχ

m | cm ∈ C and cm = 0 for all but finitely many m
}
, with multipli-

cation induced by χm · χm′ = χm+m′. If S = NA for A = {m1, . . . ,ms},
then C[S] = C[χm1, . . . , χms].

• A cone σ ∈ NR = N ⊗Z R is a subset closed under positive scalar multi-
plication. A cone is called rational if it can be generated by elements of N ,
polyhedral if it is finitely generated, and strongly convex if it does not contain
lines. The dual cone of σ is the cone σ∨ of linear functionals in M that are
positive on σ.

• A face of the cone σ is defined τ = σ ∩ u⊥ for some u ∈ σ∨.

• Each affine toric variety has associated to it a cone in its character lattice, and
conversely any rational, strongly convex, polyhedral cone yields an affine toric
variety. To obtain an affine toric variety from a cone, we consider a lattice
N containing the cone, and its dual lattice M = Hom(N,Z). We take the
intersection Sσ = σ∨ ∩M as the semigroup generating our semigroup algebra
Aσ = C[Sσ]. The affine toric variety is then given by Uσ = spec(Aσ).

The first of these definitions can be found in [3], while the rest can be found in [1].
We will readily use the fact that the affine toric variety corresponding to a cone is
singular if the cone is generated by part of a basis for the lattice N , whose proof
can be found in [2].
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An Example of a Singular Affine Toric Variety

Consider the lattice N = Z2 and the cone σ generated by e2,me1− e2, as well as its dual cone
σ∨ in the dual lattice M .

Fig. 1: σ and σ∨ with generators.

The dual cone σ∨ is generated by {e1, e1 + e2, . . . , e1 +me2}. The variety arising from σ must
be singular, since σ∨ is not generated by part of a basis for N . The corresponding semigroup,
Sσ = σ∨ ∩M , gives the following semigroup algebra

C[X,XY, . . . , XY m].

If we let X = Um and Y = V/U , we find that

Aσ = C[Sσ] = C[Um, Um−1V, . . . , UV m−1, V m] ⊂ C[U, V ].

Then the corresponding affine toric variety Uσ = spec(Aσ) is the cone over the rational normal
curve of degree m. The natural inclusion Aσ ↪→ C[U, V ] corresponds to a mapping C2 =

spec(C[U, V ])→ spec(Aσ) = Uσ.

Examining the Singularity

Consider the group G ∼= Z/mZ of m-th roots of unity. G acts on C[U, V ] by

(ζ · f )(U, V ) = f (ζU, ζV ).

The invariant elements under this action are exactly the monomials with degree divisi-
ble by m, and the field C. It follows that the ring fixed by this action is C[U, V ]G =

C[Um, Um−1V, . . . , UV m−1, V m] = Aσ. Thus, the map C2→ Uσ mentioned in the last section
is induced by the inclusion C[U, V ]G ↪→ C[U, V ]. Indeed, we have

C2 = spec(C[U, V ])→ spec(C[U, V ]G) = Uσ.

We’ve found an example of a singular toric surface whose singular point can be described as
the quotient of C2 by the group Z/mZ acting diagonally.

We can describe the singular point concretely as follows. Consider the embedding Uσ ↪→
Am+1 induced by the quotient q : C[X0, X1, . . . , Xm] → C[X0, X1, . . . , Xm]/I(Uσ), By the
ideal correspondence theorem, q sends maximal ideals to maximal ideals. We aim to verify
that origin in Uσ, i.e., image of the maximal ideal 〈X0, X1, . . . , Xm〉/I(Uσ) in Uσ, is the singular
point. The isomorphism of Uσ with spec(C[X0, X1, . . . , Xm]/I(Uσ)) is given by the following
map of rings:

C[X0, X1, . . . , Xm]→ C[U, V ]G

Xi 7→ Um−iV i.

Thus, the maximal ideal mUσ = 〈Um, Um−1V, . . . , V m〉 is the point corresponding to the origin
in Uσ. We then expect the Zariski cotangent space mUσ/m

2
Uσ

to have dimension 2. However
since mUσ is the ideal of polynomials in U, V for which the degree of each term is divisible
by m, m2

Uσ
is the ideal of polynomials for which the degree of each term is divisible by 2m.

It follows that m2
Uσ
/m2

Uσ
is the vector space of polynomials in U, V for which the degree of

each of its terms is exactly m, which has dimension m + 1. Since the cotangent space is not
2-dimensional, we can confirm that mU(σ) is the singular point.

Resolving the Singularity

We attempt to resolve the singularity by finding a fan containing σ, whose corre-
sponding toric variety is smooth. We can insert an edge along the e1 axis to obtain
a fan Σ composed of two cones σ0, σ1.

Fig. 2: The fan Σ, and the dual cones σ∨0 , σ
∨
1

Since each of σ0 and σ1 are each generated by part of a basis for N , each
patch is nonsingular. We see that σ0 is self-dual, and σ∨0 is generated by
e∗1, e

∗
2. It’s corresponding semigroup algebra is then C[X, Y ]. σ∨1 is generated

by −e∗2, e
∗
1 + me∗2, giving the corresponding semigroup algebra C[Y −1, XY m].

We find that spec(Aσ0) = spec(Aσ1) = C2. The maps Uσi → Uσ can be
described as mappings of C2 into Uσ. Let ϕ : N → N be the identity map,
defining ϕ∗ : X(Σ) → X(Σ), where X(Σ) denotes the toric variety corresponding
to Σ. ϕ∗ is proper, since ϕ preserves the support of Σ. [2] To see that ϕ∗
is an isomorphism away from the singular point, we show that it preserves the
torus inX(Σ). To see this, we observe that the diagram and its algebraic analogue,

Uσ0 −→ Uσ
↑ ↑
T = T ,

⇐⇒
C[X,XY, . . . , XY m] −→ C[X, Y ]

↓ ↓
C[X, Y,X−1, Y −1] = C[X, Y,X−1, Y −1],

commute since every arrow in the algebraic diagram denotes a trivial inclusion.
Now let τ be a proper face of σ0. τ generates an affine subvariety Uτ ↪→ Uσ0.

Define Uσ(τ ) as the affine toric variety defined by restricting σ∨ to τ⊥. τ⊥ is
the Y -axis, so we set the semigroup elements with positive X-coordinate to zero
giving Uσ0(τ ) = spec(C[Y ]) = C. Since m contains X as a generator, it con-
tains the maximal ideal 〈X,XY, . . . , XY m〉. Since m is maximal, we must have
ϕ∗(m) = 〈X,XY, . . . , XY m〉. Therefore, any point in Uσ0(τ ) maps to the sin-
gular point in Uσ. Having calculated Uσ0(τ ), a similar construction shows that
Uσ1(τ ) = spec(C[Y −1]) = C. Gluing these together gives a copy of the projec-
tive line CP1. Thus, inserting the edge τ has the effect of resolving the singularity
at the origin, at the cost of introducing a copy of CP1 in place of the origin.

Generalities

We now consider a more general case. Let σ ⊂ NR = N ⊗Z R be a strongly
convex rational polyhedral cone. Any minimal generator along an edge of σ is part
of a basis for N , so we can take (0, 1) and (m,−k) as generators, where m is a
positive integer and m, k are coprime. It can be shown similarly that the singular
point of the corresponding toric variety can be described as a quotient of C2 by the
group G = Z/mZ, acting on C[U, V ] by (ζ · f )(U, V ) = f (ζU, ζkV ). We can also
show that for the particular case of ζk = ζ = ζm−1, resolving the singularity of
the corresponding toric variety yields m copies of the projective line, each with self
intersection -2. Each of these copies intersects the next exactly once. This gives a
chain of spheres, represented by the following graph for which edges represent a
copy of CP1 and each vertex represents an intersection.

This is referred to as the Type Am Rational Double Point singularity.


