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Introduction

In elementary calculus, the tangent space is typically intro-
duced as the vector space orthogonal to the gradient of a
function at a point. Intuitively, one can visualize any tan-
gent vector as an arrow emanating from the given point,

typically satisfying an equation
of tangency. This approach
works well when considering
surfaces given by a single
smooth function because we
can imagine how a surface

might sit in R3. However, on the more abstract subject of mani-
folds we aim for a more intrinsic definition of the tangent space.

Definitions

Germ: A germ at p ∈ Rn is an equivalence class of C∞ real-
valued functions wherein two functions are equivalent if they
agree on some neighborhood of p. In this way any directional
derivative can be thought to operate on the set of germs at
p. This set is an algebra over R denoted by C∞p .

Derivation: A derivation is a linear mapD : C∞p → R satisfying
the Leibniz rule D(fg) = (Df )g(p) + f (p)Dg. The set of all
derivations of this kind is the real vector space DpRn.

Coordinate Chart: A topological space M is locally Eu-
clidean of dimension n if every point p ∈ M has a neighbor-
hood U such that there is a homeomorphism φ from U into
an open subset of Rn. The pair (U, φ) is called a coordinate
chart.

Smooth Manifold: A
topological space M is
said to be a smooth
manifold if it is Haus-
dorff, second countable,
and has a C∞ atlas. An
atlas is a collection of
coordinate charts that
cover M , and we call it
C∞ if the transition functions are smooth. Some classical ex-
amples include the n-sphere, the torus, and perhaps the most
elementary is Rn itself.

Smooth Map: A map of manifolds F :M → N is said to be
smooth at p ∈ M if, for coordinate charts (U, φ) containing p
and (V, ψ) containing F (p), we have ψ ◦ F ◦ φ−1 : Rm → Rn

being smooth at φ(p) ∈ Rm.

Tangent Vectors as Derivations in Rn

In an intuitive sense tangent vectors might best be thought of as directions of travel.
For this reason a tangent vector to p ∈ Rn is any n-dimensional vector v = 〈v1, ..., vn〉.
The set of tangent vectors forms a vector space TpRn. For any tangent vector v at p,
the directional derivative Dv : C

∞
p → R is linear and satisfies the Leibniz rule. Hence,

it is in fact a derivation.

Theorem
The map ϕ : TpRn→ DpRn given by v 7→ Dv is an isomorphism of vector spaces.

Proof
Injectivity: Suppose Dv = 0 for some v ∈ TpRn. If we apply Dv to the coordinate
function rj then we have

0 = Dv(r
j) =

∑
i

vi
∂

∂ri

∣∣∣∣
p

rj = vj

Since this is true for 1 ≤ j ≤ n we have v = 0, and so ϕ is injective.
Surjectivity: Let D be an arbitrary derivation at p, and let f : Rn → R be the
representation of some germ in C∞p . By Taylor’s theorem with remainder there
exists smooth functions gi(x) in a neighborhood of p such that

f (x) = f (p) +
∑

(ri(x)− pi)gi(x), gi(p) =
∂f

∂ri
(p)

Now, applying D to both sides we get by the Leibniz rule,

Df =
∑(

Drigi(p) + (pi − pi)Dgi
)
=
∑

(Dri)
∂f

∂ri
(p)

D =
∑

(Dri)
∂

∂ri

∣∣∣∣
p

Thus D = Dv where v = 〈Dr1, ..., Drn〉. This shows that every derivation is the
directional derivative with respect to some vector, and so ϕ is a bijection.

With this in mind, we will redefine a tangent vector at p in Rn to be a derivation at p,
and the tangent space TpRn is the vector space of derivations with basis {∂/∂ri|p}ni=1.

Generalizing to Manifolds

It is rather straightforward now to extend our idea of a tangent space to manifolds. We
simply tweak our derivation definition to be a map D : C∞p (M) → R, where C∞p (M)
denotes the set of germs at any p ∈ M . These derivations form the tangent space
TpM , and the above becomes the particular case M = Rn.
Our goal has thus been reached, as the tangent space has been defined in a way
that does not depend on any coordinate chart. However, each coordinate chart (U, φ)
containing p can yield a basis for TpM as follows. We define the derivation ∂/∂xi|p
such that for any f ∈ C∞p (M) we have

∂

∂xi

∣∣∣∣
p

f =
∂

∂ri

∣∣∣∣
φ(p)

(f ◦ φ−1)

The collection of these derivations are linearly independent, and hence form a basis.
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The Pushforward

Given a smooth map F : M → N , the pushforward of F at
p ∈ M is a linear map F∗ : TpM → TF (p)N such that for
any v ∈ TpM and f ∈ C∞F (p)(N) we have F∗(v)f = v(f ◦ F ).

Any coordinate chart in-
verse φ−1 provides a
smooth map of manifolds
between an open subset of
Rn and a manifold M . For
a point p ∈ M we can then
consider the pushforward
(φ−1)∗ : Tφ(p)Rn → TpM .
If we attempt to apply this

map to our basis vectors ∂/∂ri|p we get the following result.

(φ−1)∗

(
∂

∂ri

∣∣∣∣
φ(p)

)
f =

∂

∂ri

∣∣∣∣
φ(p)

(f ◦ φ−1) = ∂

∂xi

∣∣∣∣
p

f

Properties
Matrix Representation: Being linear, the pushforward can
be represented by a matrix. This matrix is the Jacobian
[∂F i/∂xj(p)].

The Chain Rule: One final property of the pushforward that
will be used in the next section is its chain rule. Some el-
ementary linear algebra gives us the following powerful re-
sult: If F : M → N and G : N → P are both smooth maps
of manifolds, then we have (G ◦ F )∗ = G∗ ◦ F∗.

Applications to Calculus

The usual chain rule taught in calculus can be proven as a
particular case for when we consider smooth maps from Rm

to Rn.
As an example, let F : R → R3 and G : R3 → R be smooth
functions and let w be such that

w = (G ◦ F )(t) = G
(
F 1(t), F 2(t), F 3(t)

)
The pushforwards F∗, G∗, and (G ◦ F )∗ are given by the fol-
lowing matrices.

F∗ =

dF 1/dt
dF 2/dt
dF 3/dt

 G∗ =

[
∂w

∂F 1

∂w

∂F 2

∂w

∂F 3

]
(G ◦ F )∗ =

dw

dt

The chain rule for the pushforward gives us (G◦F )∗ = G∗◦F∗,
or equivalently through multiplication of the matrices above,

dw

dt
=
∂w

∂F 1

dF 1

dt
+
∂w

∂F 2

dF 2

dt
+
∂w

∂F 3

dF 3

dt


