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1. Introduction

Solutions to the inital value problem (IVP) for the linear heat equation{
∂tu = ∂2xu, x, t ∈ R,
u(x, 0) = u0(x)

(1.1) heat

exhibit a very strong smoothing effect. Using harmonic analysis or the energy
method it will be shown that when the initial data lies in L2(R), the solution
possesses (for positive times) classical derivatives of all orders which also lie in
L2(R). This is the so-called parabolic smoothing effect.

Following [1], the IVP (1.1) is said to be locally well-posed in the Banach space X
if to every u0 ∈ X, there exists T > 0 and a unique solution u = u(x, t) satisfying

u ∈ C([0, T ] : X). (1.2) persist

Furthermore, the solution map u0 7→ u from X into C([0, T ] : X) is continuous.
If T can be taken arbitrarily large the IVP is said to be globally well-posed. The
condition (1.2) is called the persistence property and when it holds the solution
curve t 7→ u(·, t) is said to describe a dynamical system on X.

We have the following local well-posedness theorem for the IVP (1.1).

Theorem A. Suppose u0 ∈ L2(R). Then for every T > 0 there exists a unique
solution u = u(x, t) to the IVP (1.1) satisfying

u ∈ C([0, T ] : L2(R)) (1.3)

with the function t 7→ ‖u(·, t)‖2 nonincreasing. Moreover, the solution depends
continuously on the initial data.

The space L2(R) can be replaced with Hs(R) for any s ≥ 0.

Recall that Fourier analysis provides an explicit representation for the solution
to (1.1) via the formula

u(x, t) = [exp(−4π2t|ξ|2)û0]∨ (1.4) solution

or, alternatively u = Kt ∗ u0 where

Kt(x) =
e−|x|

2/4t

√
4πt

(1.5)

is called the heat kernel.
The statement of the parabolic smoothing effect described here requires the

definition of the L2-based Sobolev spaces. Define the homogeneous derivative D
and its inhomogeneous counterpart J by the Fourier multipliers

D̂sf(ξ) = |ξ|sf̂(ξ) and Ĵsf(ξ) = 〈ξ〉sf̂(ξ), s ∈ R, (1.6)
1
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where 〈x〉 = (1 + x2)1/2. Then for s ≥ 0 we have

Hs(R) :=

{
f ∈ L2(R) :

∫ ∞
−∞

(1 + ξ2)s|f̂(ξ)|2 dξ <∞
}

(1.7)

with norm

‖f‖Hs = ‖Jsf‖2 ∼ ‖f‖2 + ‖Dsf‖2. (1.8)

Theorem 1. (Parabolic Smoothing) Suppose u0 ∈ L2(R) and let u be the solution
to (1.1) provided by Theorem A. Then for any t > 0 and k ∈ Z+

u(·, t) ∈ Hk(R). (1.9)

Since local well-posedness ensures the L2-norm of the solution is bounded for
positive times, it suffices to control ‖∂kxu(·, t)‖2 for t > 0 and k a positive integer.

The Sobolev embedding states that if f ∈ Hk+1(R), then ∂kxf is continuous and
bounded. Therefore u(·, t) ∈ C∞b (R) for positive times. To see that this result is not
time reversible, consider initial data u0 ∈ L2(R) which is not continuous (thus is
not H1(R)). At t = 1, the solution is smooth and so the solution can lose regularity
in finite time when time runs in reverse.

Intuition for the parabolic smoothing effect can be gained by considering the
special solution

u(x, t) = e−λ
2t cos(λx) (1.10)

which demonstrates that energy present in the intial data with a particular fre-
quency λ is damped in time by a factor exponential in λ2; higher frequencies decay
more quickly. As the Sobolev spaces capture differentiability in terms of the decay
of a function in frequency space, one expects a gain in regularity.

2. Smoothing via Fourier Analysis

We compute this norm explicitly using the representation (1.4). Recall that
when differentiating the solution, the derivative falls on the exponential

∂xu(x, t) = ∂x

∫ ∞
−∞

e−4π
2t|ξ|2e−2πixξû0(ξ) dξ

=

∫ ∞
−∞

(2πiξ)e−4π
2t|ξ|2e−2πixξû0(ξ) dξ,

and so

∂kxu(x, t) =

∫ ∞
−∞

(2πiξ)ke−4π
2t|ξ|2e−2πixξû0(ξ) dξ.

Using Parseval’s identity

‖∂kxu(·, t)‖2 = ‖(2πiξ)k exp(−4π|ξ|2t)û0‖2
≤ (2π)k‖|ξ|k exp(−4π|ξ|2t)û0‖2
≤ ck‖u0‖2

since for any k ∈ Z+, c > 0,

sup
x∈R
|xke−cx

2

| <∞.

The result follows from the exponential decay of the heat kernel.
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3. Smoothing via Convolution

A second proof of the parabolic smoothing effect follows from the convolution
representation of the solution, properties of convolution and the following theorem.

Theorem B. (Young’s Inequality) Let 1 + 1
r = 1

p + 1
q with 1 ≤ p, q, r ≤ ∞. Then

‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

Recall that u = Kt ∗ u0 so that

∂kxu(x, t) = (∂kxKt ∗ u0)(x).

Applying Young’s inequality with p = 1 and r = q = 2 produces

‖∂kxu(·, t)‖2 ≤ ‖∂kxKt‖1‖u0‖2
for k ∈ Z+ and t > 0. Note that ∂kxKt has the form p(x)Kt(x) for p a polynomial
in x. Thus ‖∂kxKt‖1 < ∞ due to the exponential decay of the heat kernel and
the result follows. The choices of p, q, r are not essential to the arugment; Young’s
inequality generates a wide range of estimates for solutions to the heat equation.

4. Smoothing via the Energy Method

This technique is, perhaps, the most involved of the three detailed here, but it
can be modified to prove smoothing effects for dispersive equations.

Multiplying the equation (1.1) by 2u and integrating in the x-variable yields,
after integrating by parts,

d

dt

∫
R
u2(x, t) dx = −2

∫
R
(∂xu)2(x, t) dx. (4.1)

Integrating in the time interval [0, T ] and using the fundamental theorem of calculus

‖u(T )‖22 − ‖u0‖22 = −2

∫ T

0

‖∂xu(t)‖22 dt.

By Theorem A, the left-hand side is finite if u0 ∈ L2(R). Hence the right-hand side
is finite. But ∫ T

0

‖∂xu(t)‖22 dt <∞ (4.2)

implies we can choose 0 < t∗ � 1 as small as desired so that

‖∂xu(t∗)‖2 <∞.
(It need not be true that ‖∂xu0‖2 < ∞.) Now one can apply local well posedness
in H1(R) beginning at time t∗, proving that the solution persists in this space for
all t ∈ [t∗, T ]. As t∗ is arbitrary, we conclude

u(·, t) ∈ H1(R) for all t > 0. (4.3)

This demonstrates the gain of a single derivative in L2(R) for positive times,
which isn’t quite Theorem 1. The key insight required is to realize that differenti-
ating equation (1.1) with respect to x produces

∂t(∂xu) = ∂2x(∂xu), (4.4)

and so ∂xu also solves the heat equation! Therefore we may repeat the preceding
argument to conclude

u(·, t) ∈ H2(R) for all t > 0. (4.5)
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By induction, the parabolic smoothing result follows.
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