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Nonlinear dispersive equations arise as models of several physical phenomena, for instance wave
propagation in media such as liquids, gases and plasmas [19]. One of the most famous dispersive
models is the Korteweg-de Vries (KdV) equation

∂tu+ ∂3xu+ u∂xu = 0, x, t ∈ R, (1)

which was derived in 1895 [13] to describe unidirectional long waves propagating in a shallow
channel. The inverse scattering method was first developed in the 1960’s [5] to solve the initial
value problem (IVP) for the KdV equation.

The study of the qualitative properties of solutions to dispersive models has since attracted
considerable attention. In the last twenty years several remarkable results have been attained
concerning: local and global well-posedness under minimal regularity assumptions on the initial
data, blow-up profiles and global in time behavior of solutions, the stability of special solutions,
among others.

My research focuses on smoothing properties of solutions to equations of KdV type, which play
an important role in the well-posedness and control theory of such equations. In what follows we
make use of the classical Sobolev spaces defined via the Fourier transform as

Hs(R) =
{
f ∈ L2(R) : (1 + |ξ|2)s/2f̂ ∈ L2(R)

}
for s ≥ 0. (2)

For data v0 ∈ Hs(R), the solution v(x, t) = V (t)v0(x) to the linear initial value problem (IVP)

∂tv + ∂3xv = 0, v(x, 0) = v0(x), x, t ∈ R, (3)

persists with the exactly the same spatial regularity as measured in the Sobolev scale (2). In other
words, the collection of operators {V (t) : t ∈ R} forms a unitary group acting on Hs(R). However,
if in addition v0 is compactly supported, then v(·, t) is of class C∞(R) for t 6= 0. Informally, decay
of the initial data leads to smoothness of the solution measured in an appropriate sense.

Analogous results hold for the nonlinear KdV equation (for example [21]). Kato [9] considered
initial data having exponential decay on the positive half-line and showed that the corresponding
solution is of class C∞(R) for t > 0. His proof uncovered quasi-parabolic behavior in the operator
∂t + ∂3x when studied in an exponentially weighted space. Kruzhkov and Faminskĭı [14] established
a connection between polynomial decay on the positive half-line and a gain in regularity for positive
times by utilizing decay properties of the fundamental solution to the linear problem (3).

Also in [9], Kato deduces the following local smoothing effect: a “solution” u to equation (1)
gains one derivative relative to the initial data u0 in the sense that∫ T

−T

∫ R

−R
(∂xu)2(x, t) dxdt ≤ c(R;T ; ‖u0‖2). (4)

A modification of Kato’s technique allowed Craig and Goodman [3] to duplicate the results of
Kruzhkov and Faminskĭı for a variable coefficient version of (3).

Recently, Isaza, Linares and Ponce [7] used Kato’s weighted energy method to demonstrate a
propagation of regularity effect for solutions to the KdV equation. Roughly, appropriate regularity
in the initial data on the positive, or right, half-line travels to the left with infinite speed. Similar
results hold for the completely integrable Benjamin-Ono equation [8].

The first portion of my dissertation extends this argument to the fifth order KdV equation

∂tu− ∂5xu− 30u2∂xu+ 20∂xu∂
2
xu+ 10u∂3xu = 0, x, t ∈ R. (5)

Kwon [15] introduced a corrected energy to establish local well-posedness for the IVP associated
to equation (5) in Hs(R) for s > 5/2. In collaboration with Segata [25], we incorporated elements
of his proof into the inductive argument of [7] to obtain the following theorem.
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Theorem 1. Suppose u0 ∈ Hs(R), s > 5/2, and for some l ∈ Z+, l ≥ 3,

‖∂lxu0‖2L2(0,∞) =

∫ ∞
0

(∂lxu0)
2(x) dx <∞. (6)

Then there exists T > 0 and a local solution u of the IVP associated to (5) (see [15]) such that

sup
0≤t≤T

∫ ∞
ε−νt

(∂lxu)2(x, t) dx ≤ c (7)

for any ν ≥ 0, ε > 0, with c = c(l; ν; ε;T ; ‖u0‖H5/2+ ; ‖∂lxu0‖L2(x0,∞)). In particular, for all t ∈ (0, T ],

the restriction of u(·, t) to any interval (y,∞) belongs to H l(y,∞).

Equations (1) and (5) are the second and third members, respectively, of a sequence of com-
pletely integrable equations known as the KdV hierarchy. In [25] we also explored the propagation
of regularity within equations in the following family containing the KdV hierarchy

∂tu+ ∂2j+1
x u+ P (u, ∂xu, . . . , ∂

2j−1
x u) = 0, x, t ∈ R, (8)

with j ∈ Z+ and P : R2j → R a polynomial having no constant or linear terms. Kenig, Ponce and
Vega [10] established local well-posedness for equations in this family in weighted Sobolev spaces.
We extended Theorem 1 to the family (8) by utilizing decay properties of the solutions.

The second portion of my dissertation investigates quasilinear equations of the form

∂tu+ a(u, ∂xu, ∂
2
xu)∂3xu+ f(u, ∂xu, ∂

2
xu) = 0, x, t ∈ R, (9)

where a and f are smooth in all variables, ∂∂2xuf ≤ 0 and 1/κ ≤ a(· · · ) ≤ κ for some κ > 1. Craig,
Kappeler and Strauss [4] established local well-posedness for this family of equations in Hs(R) with
s ≥ 7. In a joint work with Linares and Ponce [18], we demonstrated propagation of regularity for
equations in this family. By adapting the use of nonlinear multipliers we obtained the following.

Theorem 2. Suppose u0 ∈ Hs(R), s ≥ 7, and for some l ∈ Z+, l > s,

‖∂lxu0‖2L2(0,∞) =

∫ ∞
0

(∂lxu0)
2(x) dx <∞. (10)

Then there exists T > 0 and a local solution u of the IVP associated to (9) (see [4]) such that

sup
0≤t≤T

∫ ∞
ε−νt

(∂lxu)2(x, t) dx <∞ (11)

for any ν ≥ 0, ε > 0.

This theorem suggests that propagation of regularity holds for equations for which Kato’s local
smoothing (4) can be obtained by energy methods. There is no requirement of complete integrability
nor special properties of a fundamental solution to an associated linear problem. However, existing
arguments do not apply to equations of Schrödinger type such as

i∂tu+ ∂2xu± |u|αu = 0, x, t ∈ R, α > 0. (12)

Other questions stem from the work [18], which further developed solutions to the KdV equation
showing that regularity does not propagate in the C1 or C∞ senses. These constructions would
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seem to adapt most easily to the fifth order KdV equation. It is not clear how to construct such
solutions for the Benjamin-Ono equation, which corresponds to the case a = 0 in the family

∂tu+D1+a∂xu+ u∂xu = 0, x, t ∈ R. (13)

This family of equations models vorticity waves in the coastal zone [26]. Through the Fourier

transform we define D̂sf = |ξ|sf̂ , s ∈ R. Note that a = 1 corresponds to the KdV equation, so
that (13) defines a continuum of equations of increasing dispersive strength for a increasing. We
remark that it is unknown whether or not propagation of regularity holds for the intermediate range
0 < a < 1.

The family (13) exhibits unique behavior in weighted Sobolev spaces when compared to the KdV
equation. For instance, the KdV equation preserves the Schwarz class, functions with infinite decay
and regularity. However, Iorio [6] proved that solutions u ∈ C([0, T ] : H2(R)) to the Benjamin-Ono
equation with “too much” decay at three distinct times must vanish identically. The authors in
[7] also obtained persistence of one-sided decay for solutions to the KdV equation; it remains open
whether this persistence holds for equations in (13) with 0 ≤ a < 1.

Smoothing effects play a crucial role in the local well-posedness theory of nonlinear dispersive
equations. For instance, Kato [9] used the local smoothing (4) to find weak, global solutions
to the KdV equation corresponding to initial data in L2(R). A sharp version of Kato’s local
smoothing, proved in [11], was used by Kenig, Ponce and Vega [12] to prove local well-posedness of
the IVP for the KdV equation using the contraction principle in Hs(R). As mentioned previously,
the contraction principle gives local well-posedness of the fifth order KdV (5) in integer-weighted
Sobolev spaces. In fact, following [20], Pilod [22] demonstrated that local well-posedness for this
equation cannot be obtained in Hs(R) for any s ∈ R due to the presence of the term u∂3xu. However,
the minimal, possibly fractional, weight needed in order to construct a solution via the contraction
principle is currently unknown.

Smoothing effects are also important in the control theory of nonlinear dispersive equations.
Consider the IVP for the forced KdV equation on a periodic domain

∂tu+ ∂3xu+ u∂xu = f, x ∈ T, t ≥ 0,

u(x, 0) = u0(x)

∂kxu(0, t) = ∂kxu(2π, t) for k = 0, 1, 2.

(14)

Russell and Zhang ([23], [24]) established exact controllability for this problem: given initial and
terminal states u0 and uT , respectively, and a time T > 0, there exists a control function f = f(x, t)
localized in any interval (a, b) ⊂ T such that the solution to (14) satisfies u(x, T ) = uT (x) for x ∈ T.
The nonlinear result uses the contraction principle along with a smoothing property of Bourgain
([1], [2]). Though the linear control theory of the KdV and Benjamin-Ono equations is similar,
the nonlinear theory for the Benjamin-Ono equation ([17],[16]) has only recently been established
due to the lack of an adequate smoothing effect. C. Flores and I have obtained preliminary results
regarding the control theory for the equations (13) in the range 0 < a < 1, which currently remains
open.
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[6] R. J. Iório Jr., On the Cauchy problem for the Benjamin-Ono equation, Comm. Partial Differential Equations
11 (1986), no. 10, 1031–1081.

[7] P. Isaza, F. Linares, and G. Ponce, On the Propagation of Regularity and Decay of Solutions to the k-Generalized
Korteweg-de Vries Equation, Comm. Partial Differential Equations 40 (2015), no. 7, 1336–1364.

[8] , On the propagation of regularities in solutions of the Benjamin-Ono equation (2014), available at http:
//arxiv.org/abs/1409.2381.

[9] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathemat-
ics, Adv. Math. Suppl. Stud., vol. 8, Academic Press, New York, 1983, pp. 93–128.

[10] C. E. Kenig, G. Ponce, and L. Vega, Higher-order nonlinear dispersive equations, Proc. Amer. Math. Soc. 122
(1994), no. 1, 157–166.

[11] , Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), no. 1,
33–69.

[12] , Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc. 4
(1991), no. 2, 323–347.

[13] D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on
a new type of long stationary waves, Philosophical Magazine Series 5 39 (1895), no. 240, 422-443.
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