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Overview

One type of special function that is often encountered when solving physical prob-
lems is known as the Bessel function. They are solutions to a famous linear sec-
ond order differential equation known as Bessel’s equation. Bessel’s equation is
as follows:
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Here the number ν is called the order of the Bessel equation. The solutions to
this equation are in the form of an infinite series and these solutions are known
as Bessel’s function of the first kind.
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Bessel’s functions are often encountered in situations involving cylindrical sym-
metry. As a result, there is a specific class of special functions known as spherical
Bessel Functions.

History

Bessel’s Functions were derived around 1817 by German astronomer Freidrich
Wilhelm Bessel. Bessel was trying to find a solution to one of Kepler’s equa-
tions of planetary motion. Before Bessel, particular functions of the set equa-
tions had been created the Swiss mathematicians Daniel Bernoulli. Bernoulli
studied the oscillations of a chain that was suspended by one end, and then an-
other famous Swiss mathematician Leonhard Euler analyzed the vibrations of the
stretched chain. When Bessel first published his findings, other scientists realized
how powerful and useful these functions can be when trying to find a mathemat-
ical description for different physical phenomena. Furthermore, Lord Rayleigh
was able to show that Bessel’s functions arise in the solution of Laplace’s equa-
tion when Laplace’s equations are formulated in cylindrical coordinates. Since
Bessel’s functions are just solutions to Bessel’s equation, we can graph these
solutions.

] The graph of J0(x) looks
just like a damped cosine curve, while J1(x) looks like a damped sine curve.
Below is an image showing the solutions to the spherical Bessel’s functions.

Fig. 1: Solutions to Bessel’s equation.

Fig. 2: Big fancy graphic.

Applications

As stated before, Bessel’s Functions are very useful when it comes to mathematically mod-
eling a variety of physical phenomena, especially when said phenomena is cylindrically or
spherically symmetric. Some famous uses of Bessel’s functions include the modeling of
the flow of heat or electricity in a solid cylinder, the propagation of electromagnetic waves
along wires, the diffraction of light, the motion of fluids, angular resolution, probability den-
sity function and the deformations of elastic bodies. The reason why Bessel’s functions are
often used in these situations is because Bessel’s equation arises when finding separable
solutions to Laplace’s equations and the Helmholtz equation in cylindrical or spherical coor-
dinates. Because of this, problems involving wave propagation and static potential heavily
rely on Bessel’s functions. When solving problems in cylindrical coordinate systems, Bessel
functions of integer order α = n are used, but for spherical problems, half integer orders are
used, α = (n + 1

2) One of the most important uses of Bessel’s functions is when applying it
to solve the Schrodinger’s equation in a cylindrical well. If we consider a particle of mass m
placed into a two dimensional potential well, where the potential is zero inside of the radius
of the disk and infinite outside, then you can represent the system using polar coordinates.
When solving the Schrodinger’s equation the solutions are the spherical Bessel functions.

Fig. 3: Big fancy graphic.

Here is an image of the cylindrical well, and below is an image the solutions.

Fig. 4: Big fancy graphic.

Examples

Bessel Equation of Order One-Half
L[y] = x2y

′′
+ xy′ + (x2 − 1

4)y = 0 where v=1
2

We let y=φ(r,x)=a0xr +
∑∞
n=0 anx

r+n

We then take the derivative of y to substitute into our equation
L[φ](r, x) =

∑∞
n=0[(r + n)(r + n− 1) + (r + n)− 1

4]anx
r+n +
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After simplifying, we get (r2− 1
4)
2a0x

r + [(r + 1)2− 1
4]a1x

r+1+
∑∞
n=2[[(r + n)

2−
1
4]an + an−2]xr+n = 0
*Note that we changed the index of the summation in order to get the xr+n term.
This is needed to find the recurrence relation equation. The next step is to find
the roots of the indicial equation. This is the equation we would typically use
to find the y = xr solutions for a Euler Equation. These roots (r1 and r2) are
called the exponents at singularity. They determine the qualitative nature of
the solution. In this equation, the exponents at singularity can be found by setting
the xr terms to zero. This gives us r1 = 1

2 and r2 = −12
The recurrence relation equation uses the roots to generate patterns that tell
us what the general solution of the equation will be. This equation is first found
by setting the xr+n term equal to zero.
That is, [(r + n)2 − 1

4]an = −an−2
Using the first root (r1 = 1

2), our recurrence relation is an =
−an−2
n(n+1)

Let us set n = 2m because the odd terms of the equation will always go to zero.
Letting, n = 2m, we have a2m =

−a2m−2
2m(2m+1)

for m = 1, 2, 3, ...

Case 1: m = 1
a2 =

−a0
3!

Case 2: m = 2
a4 =

a2
20

Plug our a2 term into the equation
a4 =

a0
5!

We repeat this process so that each term has an a0 in the equation. After
evaluating this recurrence relation, we find that there is a repeating pattern of
a2m =

(−1)ma0
(2m+1)!

The general formula for the first term looks like y1(x) = xr1[a0 +
∑∞
m=1 a2mx

2m]
Hence, our first solution, given that a0 = 1, is

y1(x) = x1/2
∑∞
m=0

(−1)mx2m+1

(2m+1)!
You may recognize this solution. This is the Taylor series for sin x. Therefore,
one solution of the One-Half Bessel Equation is x

−1
2 sin(x)

We use J to denote our first solution, and the given formula for J1/2 = (2/π)1/2y1

Hence, J1/2(x) = ( 2
πx)

1/2sin(x) is our first solution
Now we will use the second root (r2 = −12 ) to find our second solution.
We go through the same process of recurrence relations, but we choose a set of
even-numbered coefficients corresponding to a0 and odd-numbered coefficients
for a1
The second solution ends up being

y2(x) = x−1/2[a0
∑∞
n=0

(−1)nx2n
(2n)!

+ a1
∑∞
n=0

(−1)nx2n+1
(2n+1)!

]

This simplifies to J−1/2(x) = ( 2
πx)

1/2cos(x)

Our final, general solution of this Order One-Half Bessel Function ends up
being

y = c1J1/2(x) + c2J−1/2(x)
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