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Abstract

The congruent number problem is a classical problem in Diophantine geometry that
asks questions on the area of rational right triangles. The conditions for a rational
number n to be the area of a right triangle with rational side lengths was partially
resolved by Tunnell in 1983. In this poster, we provide an overview of Tunnell’s
theorem as presented in [1] as well as an implementation of an algorithm to determine
whether a number n is a so-called congruent number. Finally, we connect the theorem
to the modern theory of elliptic curves.

Problem Formulation

A triangle is called rational if all of its sides are rational. A positive rational number
n is called a congruent number if there exists a rational right triangle whose area
is n. Equivalently, n is a congruent number if there are a, b, c ∈ Q>0 such that
a2 + b2 = c2 and (1/2)ab = n. The congruent number problem asks which positive
rational numbers are congruent numbers. One can show that the question reduces to
finding which squarefree integers are congruent numbers.
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Pictured above are rational right triangles with areas 5, 6, and 7, respectively.

Tunnell’s Theorem

A 1983 theorem of Jerrold Tunnell provides a partial resolution to the congruent num-
ber problem. If the famously unsolved Birch and Swinnerton-Dyer (BSD) conjecture
is true for certain elliptic curves, Tunnell’s theorem provides a complete resolution.

Theorem (Tunnell). Let n be a squarefree integer. Set

f (n) = #{(x, y, z) ∈ Z3 : x2 + 2y2 + 8z2 = n},
g(n) = #{(x, y, z) ∈ Z3 : x2 + 2y2 + 32z2 = n},
h(n) = #{(x, y, z) ∈ Z3 : x2 + 2y2 + 8z2 = n/2},
k(n) = #{(x, y, z) ∈ Z3 : x2 + 2y2 + 32z2 = n/2}.

For odd n, if n is congruent, then f (n) = 2g(n). For even n, if n is congruent,
then h(n) = 2k(n). Moreover, if the weak Birch and Swinnerton-Dyer conjecture
is true for the curve y2 = x3 − n2x, then the reverse implication is also true.

Tunnell’s theorem provides a way to verify that a given n is not a congruent number:
if f (n) 6= 2g(n) (if n is odd) or h(n) 6= 2k(n) (if n is even), then n cannot be a con-
gruent number. We will provide an implementation of an algorithm that determines
unconditionally if a given n is not congruent using Tunnell’s theorem.

The Algorithm

Our algorithm shown below calculates Tunnell’s Theorem by counting the number of solutions
to the given equations given a certain number n, outputting whether n is not congruent or if the
results are inconclusive. We were able to increase the efficiency of the algorithm by finding key
observations that greatly limited the amount of numbers we need to check to find the number
of solutions. Here were our observations:

1. Since x, y, and z are all squared, every term in the left-hand side of the equation will always
be positive. This tells us two things:

(a) Each term in the sum on the left has an upper bound:

i. For f (n) and g(n), each term cannot exceed n;

ii. For h(n) and k(n), each term cannot exceed n/2.

A. In particular, for example in k(n), for the term 32z2, we deduce that all solutions
must have −

√
n/8 ≤ z ≤

√
n/8.

(b) For every solution that contains a positive x, y or z in the solution, there exists a
similar solution with a negative x, y, or z. Thus we don’t have to iterate through the
possible negative solutions because they can all be accounted for through their positive
counterparts.

2. Since the square of a number preserves its parity, x must always be odd.

(a) For odd n, we use f (n) and g(n).

i. For f (n), for all y, z ∈ Z, 2y2 + 8z2 is even. Thus x must be odd in order for
x2 + 2y2 + 8z2 to be odd.

ii. Similarly for g(n), for all y, z ∈ Z, 2y2 + 32z2 is even so x must be odd.

(b) For even n, we use h(n) and k(n).

i. For all even squarefree integers n, n/2 is necessarily odd. If it were even, then
4 = 22 | n which implies that n was not squarefree.

ii. Similar logic can be applied as above to show that x must be odd when considering
h(n) and k(n).

Observation 1b) is incredibly useful, as it halves the amount of numbers we must iterate through
to find solutions, however the only problem that arises is when x, y, and/or z equals 0. Since 0
is neither positive nor negative, then the number of 0’s in a given solution affects the number of
combinations of positive/negative solutions.

Since Tunnell’s Theorem only works for n squarefree, we also added an isSquareFree() func-
tion which returns whether or not a given input is squarefree. It does this in a brute-force way by
checking if any square integer divides the input. We also verified our code for Tunnell’s theorem
against the OEIS list of congruent numbers (sequence A003273) given in [2].

The Congruent Elliptic Curve y2 = x3 − n2x

The converse of Tunnell’s theorem holds on the assumption of the weak Birch and
Swinnerton-Dyer conjecture for the elliptic curve y2 = x3 − n2x. The BSD conjec-
ture, one of the Millennium Prize problems, is an incredibly important conjecture
in the field of arithmetic geometry, and even in mathematics as a whole. It relates
elliptic curve data to the associated L-function. The details are not important for
this poster.
This connection to Elliptic curves comes from [3], in which Tunnell proves his theorem
using the classical Jacobi theta function

g = q

∞∏
n=1

(1− q8n)(1− q16n)

as well as the classical theta functions

θ2 =
∑
n∈Z

q2n2
and θ3 =

∑
n∈Z

q4n2
.

Relating these to known results about L-functions and elliptic curves, Tunnell found
this characterization of congruent numbers.
In particular, the so-called congruent elliptic curve y2 = x3−n2x is relevant because
there is a bijection between rational right triangles (a, b, c) with area n and rational
points (x, y) on the elliptic curve y2 = x3 − n2x given by the correspondence

(a, b, c) 7−→

(
nb

c− a
,

2n2

c− a

)
and (x, y) 7−→

(
x2 − n2

y
,
2nx

y
,
x2 + n2

y

)
.

It is easy to show that this is indeed a bijection (i.e., the given maps are inverses).
This correspondence shows that n is a rational number if and only y2 = x3 − n2x
has nontrivial rational points. Thus we can use any tools for finding rational points
on elliptic curves to identify congruent numbers.

Remarks

The congruent number problem, intimately related with the Birch and Swinnerton-
Dyer conjecture, is nearly fully resolved, and indeed fully resolved provided the weak
BSD is true for y2 = x3 − n2x. Besides Tunnell’s theorem, another known partial
classification of congruent numbers is that for any prime p, if p ≡ 3 (mod 8) then
2p is congruent, if p ≡ 5 (mod 8) then p is congruent, and if p ≡ 7 (mod 8) then
both p and 2p are congruent.
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