
GENERALIZED DIVISOR FUNCTIONS IN ARITHMETIC
PROGRESSIONS: II

VARIANCE OF THE TERNARY DIVISOR FUNCTION IN ARITHMETIC PROGRESSIONS

D. T. NGUYEN

Abstract. We give an asymptotic equality for the average of the variance for the ternary
divisor function in arithmetic progressions. This estimate refines a recent conjecture about
asymptotics of this variance. This result is also closely related to the problem of moments
of Dirichlet L-function.
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1. Introduction

One form of the celebrated Bombieri-Vinogradov Theorem [3] [18] (1965) asserts that

(1.1)
∑

1≤q≤N1/2(logN)−B

max
y≤N

max
(a,q)=1

∣∣∣∣∣∣∣∣
∑

1≤n≤y
n≡a(q)

Λ(n)− y

ϕ(y)

∣∣∣∣∣∣∣∣� N(logN)−A

where Λ(n) is the von Mangoldt function and B = 4A+ 40 with A > 0 arbitrary. Analogues
of (1.1) has been found for all τk(n) [15] and τ2(n)2 [13, Lemma 8], where τk(n) is the k-fold
divisor function:

∑∞
n=1 τk(n)n−s = ζk(s).

Around the same time, Barban [1] [2] (1963-1964), Davenport-Halberstam [6] (1966), and
Gallagher [7] (1967) found the following related inequality in which the absolute value is
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being squared:

(1.2)
∑

1≤q≤N(logN)−B

∑
1≤a≤q
(a,q)=1

∣∣∣∣∣∣∣∣
∑

1≤n≤N
n≡a(q)

Λ(n)− N

ϕ(q)

∣∣∣∣∣∣∣∣
2

� N2(logN)−A,

giving a much wider range for q. In fact, Davenport and Halberstam proved a slightly
stronger result than Barban’s, while Gallagher gave a simplified elegant proof. For this
reason, this type of inequalities are often referred to as Barban-Davenport-Halberstram type
inequalities.

Barban-Davenport-Halberstram type inequalities have many applications in number the-
ory. For instance, a version of this inequality (with Λ(n) replaced by related convolutions
over primes) was skillfully used by Zhang [19, Lemma 10] (2014) in his spectacular work on
bounded gaps between primes.

Shortly after, in 1970 Montgomery [12] succeeded in replacing the inequality in (1.2) by
an asymptotic equality. One of his results is
(1.3)

∑
1≤q≤Q

∑
1≤a≤q
(a,q)=1

∣∣∣∣∣∣∣∣
∑

1≤n≤N
n≡a(q)

Λ(n)− N

ϕ(q)

∣∣∣∣∣∣∣∣
2

= QN logN +O(QN log(2N/Q)) +O
(
N2(logN)−A

)

for Q ≤ N and A > 0 arbitrary. A few years latter, Hooley [9] (1975), by introducing new
ideas in treatment of the off-diagonal terms specific to primes, sharpened the right side of
(1.3) to

QN logN +O(QN) +O(N2(logN)−A))

with Λ(n) replaced by the Chebyshev function θ(n).
Motohashi [14] (1973), by using an approach similar to Montgomery, elaborately estab-

lished a more precise asymptotic with lower order and power saving error terms for the divisor
function τ(n). Recently, by function field analogues, Rodgers and Soundararajan [16] (2018)
were led to the following conjecture for the variance of the k-fold divisor function τk over the
integers.

Conjecture 1.1. For X, d→∞ such that logX/ log d→ c ∈ (0, k), we have

d∑
a=1

(a,d)=1

∣∣∣∣∣∣∣∣
∑

1≤n≤X
n≡a(mod d)

τk(n)− 1

ϕ(d)

∑
1≤n≤X
(n,d)=1

τk(n)

∣∣∣∣∣∣∣∣
2

∼ ak(d)γk(c)X(log d)k
2−1,

where ak(d) is the arithmetic constant

ak(d) = lim
s→1+

(s− 1)k
2

∞∑
n=1

(n,d)=1

τk(n)2

ns
,
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and γk(c) is a piecewise polynomial of degree k2 − 1 defined by

γk(c) =
1

k!G(k + 1)2

∫
[0,1]k

δc(w1 + · · ·wk)∆(w)2dkw,

where δc(x) = δ(x − c) is a Dirac delta function centered at c, ∆(w) =
∏

i<j(wi − wj) is a

Vandermonde determinant, and G is the Barnes G-function, so that in particular G(k+1) =
(k − 1)!(k − 2)! · · · 1!.

This conjecture is closely related to the problem of moments of Dirichlet L-functions [4]
and correlations of divisor sums [5]. In the same paper [16], Rodgers and Soundararajan
confirmed an averaged version of this conjecture in a restricted range over smooth cutoffs.
Harper and Soundararajan [8] obtained a lower bound of the right order of magnitude for
the average of this variance. By using the large sieve inequality, Nguyen [15, Theorem 1]
obtained an upper bound of the same order of magnitude for this averaged variance.

In this paper, we replace the upper bound in [15, Theorem 1] by an asymptotic equality for
the ternary divisor function τ3(n) averaged over moduli up to the length of the sum. Our ap-
proach is based on Motohashi’s treatment for the case of τ2, with appropriate modifications;
see Section 2.1 below for a discussion and possible extensions.

1.1. Notations. τk(n): the number of ways to write a natural number n as an ordered
product of k positive integers.
τ(n) = τ2(n): the usual divisor function.
ϕ(n): Euler’s function, i.e., the number of reduced residue classes modulo n.
ζ(s): Riemann’s zeta function with variable s = σ + it.
Γ(s): Gamma function.
γ: Euler’s constant = 0.5722 . . . .
γ0(α): 0-th generalized Stieltjes constant

γ0(α) = lim
m→∞

(
m∑
k=0

1

k + α
− log(m+ α)

)
.

e(x) = e2πix.

eq(a) = e2πia
q .

cq(b): Ramanujan’s sum

cq(b) =
∑

1≤a≤q
(a,q)=1

eq(ab).

(m,n): the greatest common divisor of m and n.
[m,n]: the least common divisor of m and n.
N : sufficiently large integer.
ε: arbitrary small positive constant, not necessarily the same in each occurrence.
Pr(logN): a polynomial of degree r in logN , not necessarily the same in each occurrence.
Throughout the paper, all constants in O-terms or in Vinogradov’s notation � depends

on ε at most.
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2. Statement of result

Our main result is the following

THEOREM 2.1. We have the following asymptotic equality, with effectively computable
numerical constants

Sj, (0 ≤ j ≤ 8),

∑
1≤`≤N

∑
1≤b≤`

∣∣∣∣∣∣∣∣
∑

1≤n≤N
n≡b(mod `)

τ3(n)−NP2(logN)

∣∣∣∣∣∣∣∣
2

= N2

8∑
j=0

S8−j log8−j N +O
(
N599/300

)
,(2.1)

where

P2(logN) = Res
s=1

 ∑
n≡b(mod `)

τ3(n)

ns
N s−1

s

 =
1

2
Ã log2N − (Ã− B̃) logN + (Ã− B̃ + C̃),

with

Ã = Ã(`, b) = `−1
∑
q|`

q−3cq(b)

q∑
α,β,γ=1

eq(aαβγ),

B̃ = B̃(`, b) = `−1
∑
q|`

q−3cq(b)

q∑
α,β,γ=1

eq(aαβγ)(3γ0(α/q)− 3 log q),

C̃ = C̃(`, b) = `−1
∑
q|`

q−3cq(b)

q∑
α,β,γ=1

eq(aαβγ)(3γ0(α/q)γ0(β/q)−9γ0(α/q) log q+
9

2
log2 q),

γ is Euler’s constant, γ0(α) is the 0-th Stieltjes constant, and cq(b) is the Ramanujan sum.

The constants Sj, 0 ≤ j ≤ 8, have complicated expressions but can be explicitly deter-
mined from our proof. We give here the value of the leading constant S8:

S8 =
1

8!

∏
p

(
1− 9p−2 + 16p−3 − 9p−4 + p−6

)
= 1.223 · · · × 10−6.

We note that it is possible to obtain asymptotics for (2.1) with ` averaged over the range
1 ≤ ` ≤ L for L < N and L > N . A phase transition in the coefficient of the leading
asymptotic might begin to occur. It is also plausible to use this method, in conjunction with
subconvexity bounds for ζ(s), to treat the variance of τ4(n). On the generalized Riemann
hypothesis, it might also be possible to treat all τk(n). We hope to return to these ideas in
a future article.
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2.1. Outline of the proof. We follow the approach of Motohashi [14] in his treatment of
the divisor function τ(n), which in turn was based on Montgomery’s adaptation [12] of a
result of Lavrik [11] on twin primes on average.

To control the error term, we prove an analog of Lavrik’s result for τ3, using a simpler
version of Vinogradov’s method of trigonometric sums, as in Motohashi. The standard
convexity bound for ζ(s) in the critical strip suffices for our purpose. We remark here that
our analogue of Lavrik’s result can be seen as an average result concerning the mean square
error of the following modified additive divisor sum∑

1≤n≤N−h

τ3(n)τ3(n+ h)

of length N − h for averaged over h up to h ≤ N − 1. This idea might also have application
to the sixth power moment of ζ(s), which we plan to revisit in the near future.

To evaluate the main term, we proceed slightly different from Motohashi due to some
complications involving an exponential sum in three variables. We show that the resulting
sum can be evaluated, on average, thanks to the orthogonality property of the Ramanujan’s
sum.

3. Preparatory lemmas

For σ > 1 and (a, q) = 1, let

(3.1) E

(
s;
a

q

)
= E3

(
s;
a

q

)
=
∞∑
n=1

τ3(n)eq(an)n−s.

The case for the usual divisor function τ(n) was considered by Hecke and Estermann (1930).
Smith (1982) extended the result to all τk. We specialize to a special case his results.

LEMMA 3.1. [17, Theorem 1, pg. 258] The function E3(s; a/q) has a meromorphic
continuation to the whole complex plane where it is everywhere holomorphic except for a
pole of order 3 at s = 1. Moreover, E(s; a/q) satisfies the functional equation

(3.2) E(s; a/q) =
( q
π

)− 3
2

(2s−1) Γ3
(

1−s
2

)
Γ3( s

2
)
E+(1−s; a/q)+i

( q
π

) 3
2

(2s−1) Γ3
(

2−s
2

)
Γ3
(

1+s
2

)E−(1−s; a/q),

where

E±(s; a/q) =
∑

m1,m2,m3≥1

G±(m1,m2,m3; a/q)(m1m2m3)−s, (σ > 1),

G±(m1,m2,m3; a/q) =
1

2q3/2
{G(m1,m2,m3; a/q)±G(m1,m2,m3;−a/q)},

and

G(m1,m2,m3; a/q) =
∑

x1,x2,x3(q)

eq(am1m2m3 +m1x1 +m2x2 +m3x3).
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We rewrite the functional equation (3.2) as follows (c.f. Ivic [10]). Let

A±(n, a/q) =
∑

n1n2n3=n

q∑
x1,x2,x3=1

1

2

(
eq(ax1x2x3 + n1x1 + n2x2 + n3x3)

± eq(−ax1x2x3 + n1x1 + n2x2 + n3x3)
)
.

We have that

|A±(n, a/q)| ≤ q3τ3(n).

Then from Lemma 3.1 we obtain the following form of the functional equation.

LEMMA 3.2. [10, Lemma 2, pg. 1007] For σ < 0 and (a, q) = 1, we have
(3.3)

E(s; a/q) =
( q
π

)− 3
2

(2s−1)
{

Γ3
(

1−s
2

)
Γ3
(
s
2

) ∞∑
n=1

A+(n, a/q)ns−1 + i
Γ3
(

2−s
2

)
Γ3
(

1+s
2

) ∞∑
n=1

A−(n, a/q)ns−1

}
,

where the two series on the right-side are absolutely convergent.

We also need the Laurent expansion of E(s; a/q) at s = 1 for residue calculations.

LEMMA 3.3. For (a, q) = 1, we have

(3.4) E(s; a/q) =
1

q

(
A

(s− 1)3
+

B

(s− 1)2
+

C

s− 1

)
+
∞∑
n=0

cn(a, q)(s− 1)n,

where

A = A(q) = q−2

q∑
α,β,γ=1

eq(aαβγ),

B = B(q) = q−2

q∑
α,β,γ=1

eq(aαβγ)(3γ0(α/q)− 3 log q),

C = C(q) = q−2

q∑
α,β,γ=1

eq(aαβγ)(3γ0(α/q)γ0(β/q)− 9γ0(α/q) log q +
9

2
log2 q),

with

γ0(α) = lim
m→∞

(
m∑
k=0

1

k + α
− log(m+ α)

)
.

The coefficients A,B,C are independent of a and satisfy

A(q)� τ(q) log2 q,(3.5)

B(q)� τ(q) log3 q,

C(q)� τ(q) log4 q

uniformly in a.

LEMMA 3.4. For n ≥ 1 and (a, q) = 1, we have

(3.6) Res
s=1

E

(
s;
a

q

)
ns

s
= q−1n

(
A

2
log2 n− (A−B) log n+ (A−B + C)

)
,
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where A,B,C are given in Lemma 3.3.

Proof. We have, by (3.4),

Res
s=1

E

(
s;
a

q

)
ns

s
=

1

2
lim
s→1

d2

ds2

(
(s− 1)3E

(
s;
a

q

)
ns

s

)
=

1

2q
lim
s→1

d2

ds2

(
(A+B(s− 1) + C(s− 1)2 +O((s− 1)3))

ns

s

)
= q−1n

(
A

2
log2 n− (A−B) log n+ (A−B + C)

)
.

�

LEMMA 3.5. For σ > 1, let

R(s; `, b) =
∑

n≡b(mod `)

τ3(n)n−s.

We have

Res
s=1

R(s; `, b)
N s

s
= N

(
Ã

2
log2N − (Ã− B̃) logN + (Ã− B̃ + C̃)

)
,

where

Ã = Ã(`, b) = `−1
∑
q|`

q−1cq(b)A(q),

B̃ = B̃(`, b) = `−1
∑
q|`

q−1cq(b)B(q),

C̃ = C̃(`, b) = `−1
∑
q|`

q−1cq(b)C(q),

with A(a), B(q), C(q) given in Lemma 3.3.

Proof. We can write R(s; `, b) as

R(s; `, b) =
1

`

∑
q|`

∑
1≤a≤q
(a,q)=1

eq(−ab)E
(
s;
a

q

)

=
1

`

∑
q|`

1

q
cq(b)

(
A(q)

(s− 1)3
+

B(q)

(s− 1)2
+
C(q)

s− 1

)
+
∞∑
n=0

1

`

∑
q|`

1

q
cq(b)cn(a, q)(s− 1)n

=
Ã(`, b)

(s− 1)3
+

B̃(`, b)

(s− 1)2
+
C̃(`, b)

s− 1
+
∞∑
n=0

1

`

∑
q|`

1

q
cq(b)cn(a, q)(s− 1)n.

The lemma follows as in the previous one. �

For α ∈ R, let

(3.7) D(α,N) =
∑

1≤n≤N

τ3(n)e(αn).

Using (3.1) we first estimate D(α,N) for α = a/q with (a, q) = 1.
7



LEMMA 3.6. For (a, q) = 1, we have

D

(
a

q
, n

)
=
n

q

(
A

2
log2 n− (A−B) log n+ (A−B + C)

)
+O

{
(nq + q2)3/5+ε

}
,

with A,B,C given in Lemma 3.3.

Proof. We have

D

(
a

q
, n

)
= Res

s=1
E

(
s;
a

q

)
ns

s
+ Res

s=0
E

(
s;
a

q

)
ns

s
+

1

2πi

∫ −δ+iT
−δ−iT

E

(
s;
a

q

)
ns

s
ds(3.8)

+O

{
n1+ε

T
+ nε +

1

T

∫ 1+δ

−δ

∣∣∣∣E (σ + iT ;
a

q

)∣∣∣∣nσdσ} ,
where δ = (log(nq+ 1))−1 and T is to be determined latter. By expressing the residue as an
integral around the origin,

(3.9)

∣∣∣∣Res
s=0

E

(
s;
a

q

)
ns

s

∣∣∣∣� (log(qn+ 1))3.

By the functional equation (3.3) and the convexity argument,∣∣∣∣E (σ + iT ;
a

q

)∣∣∣∣� (qT )
3
2

(1−σ)(log qT )6

uniformly for −δ ≤ σ ≤ 1 + δ. Hence we get

(3.10)

∣∣∣∣ 1

2πi

∫ −δ+iT
−δ−iT

E

(
s;
a

q

)
ns

s
ds

∣∣∣∣� (Tq)
3
2 (log qT )7

and

(3.11)
1

T

∫ 1+δ

−δ

∣∣∣∣E (σ + iT ;
a

q

)∣∣∣∣nσdσ � n

T
(log qT )6

∫ 1+δ

−δ

(
Tq

n2/3

) 3
2

(1−σ)

dσ.

Taking

T = q−1(nq + q2)2/5

it follows from (3.6), (3.8), (3.9), (3.10) and (3.11) that

D

(
a

q
, n

)
=
n

q

(
A

2
log2 n− (A−B) log n+ (A−B + C)

)
+O

{
(nq + q2)3/5+ε

}
.

�

LEMMA 3.7. For α ∈ R, we have

D(α,N) =
1

q

∑
1≤n≤N

(
A

2
log2 n− (A−B) log n+ (A−B + C)

)
e

((
α− a

q

)
n

)
(3.12)

+O

{
(Nq + q2)3/5+ε

(
1 +

∣∣∣∣α− a

q

∣∣∣∣N)} ,
with A,B,C given in Lemma 3.3.
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Proof. We have

D(α,N) =
∑

1≤n≤N

{D(a/q, n)−D(a/q, n− 1)} e((α− a/q)n).

This, together with Lemma 3.6 and partial summation, gives (3.12). �

Let
(3.13)

F

(
α,
a

q
,N

)
=

1

q

∑
1≤n≤N

(
A

2
log2 n− (A−B) log n+ (A−B + C)

)
e

((
α− a

q

)
n

)
and

(3.14) G∆(α,N) =
∑

1≤q≤∆

q∑
a=1

(a,q)=1

∣∣∣∣F (α, aq ,N
)∣∣∣∣2 ,

where ∆ satisfies

(3.15) 4∆ ≤ Ω

and ∆ is to be determined more precisely latter; see (4.7) below. By Lemma 3.7 and equation
(3.13),

(3.16) |D(α,N)− F (α, a/q,N)| � (Nq + q2)3/5+ε

(
1 +

∣∣∣∣α− a

q

∣∣∣∣N) .
Now, by (3.13) and (3.14),

(3.17) G∆(α,N) =
∑

|k|≤N−1

e(αk)

 ∑
1≤q≤∆

1

q2
Wq(k,N)

q∑
a=1

(a,q)=1

eq(−ak)

 ,

where

Wq(k,N) =
1

4
A2

∑
1≤n≤N−|k|

log2 n log2(n+ |k|)(3.18)

− 1

2
A(A−B)

∑
1≤n≤N−|k|

log n log(n+ |k|) log n(n+ |k|)

+ (A−B)2
∑

1≤n≤N−|k|

log n log(n+ |k|)

− 1

2
A(A−B + C)

∑
1≤n≤N−|k|

(log2 n+ log2(n+ |k|))

− (A−B)(A−B + C)
∑

1≤n≤N−|k|

log n(n+ |k|)

+ (A−B + C)2(N − |k|)
= w1(q)T1(k,N) + · · ·+ w6(q)T6(k,N),

9



say. For the innermost sum in (3.17) we have

q∑
a=1

(a,q)=1

eq(−ak) = µ

(
q

(q, |k|)

)
ϕ(q)

ϕ
(

q
(q,|k|)

) = cq(|k|).

Thus we write (3.17) as

(3.19) G∆(α,N) =
∑

|k|≤N−1

( ∑
1≤q≤∆

q−2cq(|k|)Wq(k,N)

)
e(αk) =

∑
|k|≤N−1

S∆(k,N)e(αk),

say. Now, by (3.7), we have

|D(α,N)|2 =
∑

|k|≤N−1

V (k,N)e(αk),

where

(3.20) V (k,N) =
∑

1≤n≤N−|k|

τ3(n)τ3(n+ |k|).

Thus,

|D(α,N)|2 −G∆(α,N) =
∑

|k|≤N−1

(V (k,N)− S∆(k,N))e(αk).

and we obtain

LEMMA 3.8.

(3.21)
∑

|k|≤N−1

(V (k,N)− S∆(k,N))2 =

∫ 1

0

∣∣|D(α,N)|2 −G∆(α,N)
∣∣2 dα,

with D(α,N), G∆(α,N), V (k,N), and S∆(k,N) given by (3.7), (3.14), (3.20), and (3.19),
respectively.

This integral will be estimated in Section 4 below.

LEMMA 3.9. With

T1(k,N) =
∑

1≤n≤N−|k|

log2 n log2(n+ |k|),(3.22)

T2(k,N) =
∑

1≤n≤N−|k|

log n log(n+ |k|) log(n(n+ |k|)),

T3(k,N) =
∑

1≤n≤N−|k|

log n log(n+ |k|),

T4(k,N) =
∑

1≤n≤N−|k|

(log2 n+ log2(n+ |k|)),

T5(k,N) =
∑

1≤n≤N−|k|

log(n(n+ |k|)).
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given from (3.18), we have

T1(k,N) = (N − |k|) log2N log2(N − |k|) +O(N log3N),

T2(k,N) = (N − |k|)(log2N log(N − |k|) + logN log2(N − |k|)) +O(N log2N),

T3(k,N) = (N − |k|) logN log(N − |k|) +O(N logN),

T4(k,N) = (N − |k|)(log2N + log2(N − |k|)) +O(N logN),

T5(k,N) = (N − |k|)(logN + log(N − |k|)) +O(N).

Proof. For k > 0, by partial summation, we have

T5(k,N) = (N − k) log(N − k) +N logN − k log k − 2(N − k) +O(logN).

Similarly, we obtain the other Tj’s. �

LEMMA 3.10. For positive integer δ and q > 1, we have∑
1≤m≤X

cq(δm) = O(qδ−1/2X1/2 log2X).

Proof. Let us consider the function

f(s) =
∞∑
m=1

cq(δm)

ms
.

We have

f(s) =
∞∑
m=1

∑
d|δm
dd′=q

µ(d′)dm−s = δ−s
∞∑
m=1

m−s
∑
d|q

µ
(q
d

)
d1−s = δ−sζ(s)

∑
d|q

µ
(q
d

)
d1−s.

Hence we have

∑
1≤m≤X

cq(δm) = Res
s=1

δ−sζ(s)
∑
d|q

µ
(q
d

)
d1−sX

s

s

+
1

2πi

∫ 1/2+iT

1/2−iT
δ−sζ(s)

∑
d|q

µ
(q
d

)
d1−sX

s

s
ds

+O

X1+ε

T
+Xε +

Xε

T

∫ 1

1/2

|ζ(σ + iT )|

∣∣∣∣∣∣
∑
d|q

µ
(q
d

)
d1−σ−iT

∣∣∣∣∣∣Xσdσ

 .

Since we have ∫ T

−T
|ζ(1/2 + it)| dt

|t|+ 1
� log2 T,

∣∣∣∣∣∣
∑
d|q

µ
(q
d

)
d1−s

∣∣∣∣∣∣ ≤
∑
d|q

d1/2 � q,

and

|ζ(σ + iT )| � T
1
3

(1−σ) log5 T ;

taking T = X we complete the proof. �

We will apply Perron’s formula in the following form.
11



LEMMA 3.11. Let f(s) =
∑∞

n=1 ann
−s be a Dirichlet series converges absolutely for σ > 1.

Suppose an = O(nε) for any ε > 0 and f(s) = ζ(s)`F (s) for some natural number ` and
some Dirichlet series F (s) absolutely converges in <(s) > 1/2. Then for X not an integer,
we have ∑

n≤X

an =
F (1)

(`− 1)!
XP`−1(logX) +Oε

(
X1− 1

`+2

)
,

where P`−1(logX) is the polynomial in logX of degree `− 1 with leading coefficient 1 given
explicitly by

P`−1(logX) = (`− 1)!Ress=1ζ(s)`F (s)
Xs−1

s
.

LEMMA 3.12. We have∑
n≤X

τ 2
3 (n) =

a3

8!
XP8(logX) +O

(
X10/11

)
,

where

a3 =
∏
p

(
1− 9p−2 + 16p−3 − 9p−4 + p−6

)
= 0.04932 . . .

and P8(logX) is a polynomial of degree 8 in logX and leading coefficient 1.

Proof. We have

∞∑
n=1

τ 2
3 (n)n−s =

∏
p

{
1 +

∞∑
ν=1

(
ν + 2

2

)2

p−νs

}
,

where both members of this equation are absolutely convergent if σ > 1. Hence, if σ > 1,

{ζ(s)}−9

{
∞∑
n=1

τ 2
3 (n)n−s

}
=
∏
p

{
(1− p−s)9(1 + 9p−s + 36p−2s + · · · )

}
=
∏
p

{
1 + a2p

−2s + a3p
−3s + · · ·

}
= F (s),

say, where

aν =
ν∑
r=0

(−1)r
(

9

r

)(
ν − r + 2

2

)2

.

We adpot the convention for the binomial coefficients that
(
n
m

)
= 0 if m > n. The coefficient

aν satisfies

|aν | ≤ Kν2,

where K is independent of ν. Hence

∞∑
ν=2

|aν |p−νs ≤ K ′p−2s,

12



where K ′ is independent of p. Hence, if σ > 1/2, then
∑

p p
−2s is absolutely convergent, and

thus is also

F (s) =
∏
p

{
1 +

∞∑
ν=2

aνp
−νs

}
.

Hence we obtain that
∞∑
n=1

τ 2
3 (n)n−s = {ζ(s)}9 F (s),

where F (s) is absolutely convergent for σ > 1/2. It follows at once, by Lemma 3.11, that∑
n≤X

τ 2
3 (n) =

a3

8!
XP8(logX) +O

(
X10/11

)
,

where

a3 = F (1) =
∏
p

(
1− 9p−2 + 16p−3 − 9p−4 + p−6

)
.

�

LEMMA 3.13. We have∫ N−1

1

t log t

N − t
dt = N

(
log2N − logN − π2

6
+ 1

)
+O(logN)

and∫ N−1

1

t log2 t

N − t
dt = N

(
log3N − 2 log2N −

(
π2

3
− 2

)
logN + 2ζ(3)− 2

)
+O(log2N).

Proof. Expanding into a geometric series and integrate by parts, we have

∫ N−1

1

t log t

N − t
dt =

∞∑
m=1

1

Nm

∫ N−1

1

tm log tdt

= N log(N − 1)
∞∑
m=1

1

m+ 1

(
N − 1

N

)m+1

−N
∞∑
m=1

1

(m+ 1)2

(
N − 1

N

)m+1

+O(1)

= N

(
log2N − logN − π2

6
+ 1

)
+O(logN).

This gives the first integral. The second integral is computed in a similar way. �

4. An analogue to a result of Lavrik

In this section we estimate the integral in (3.21) by trigonometric method of I.M. Vino-
gradov along the line of Lavrik, following Motohashi (section 3).

Let a/q be a term of the Farey series of order Ω, which is to be determined latter. Let

a′

q′
,
a

q
,
a′′

q′′
13



be consecutive terms of the Farey series and let C(a/q) be the interval
[
a′+a
q′+q

, a+a′′

q+q′′

]
. The

interval C(a/q) contains the fraction a/q with length bounded by

(4.1)

∣∣∣∣C (aq
)∣∣∣∣ ≤ 2

qΩ
.

Let

U(N) =

∫ 1

0

∣∣|D(α,N)|2 −G∆(α,N)
∣∣2 dα

denote the integral in (3.21). We proceed to estimate U(N). We have

U(N) =
∑

1≤q≤Ω

q∑
a=1

(a,q)=1

∫
C(a/q)

∣∣|D(α,N)|2 −G∆(α,N)
∣∣2 dα(4.2)

≤ 2
∑

1≤q≤Ω

q∑
a=1

(a,q)=1

∫
C(a/q)

∣∣∣∣∣|D(α,N)|2 −
∣∣∣∣F (α, aq ,N

)∣∣∣∣2
∣∣∣∣∣
2

dα

+ 2
∑

1≤q≤Ω

q∑
a=1

(a,q)=1

∫
C(a/q)

∣∣∣∣∣G∆(α,N)−
∣∣∣∣F (α, aq ,N

)∣∣∣∣2
∣∣∣∣∣
2

dα

= 2U1(N) + U2(N), ‘

say. For U1(N), we have, from (3.16),∣∣∣∣∣|D(α,N)|2 −
∣∣∣∣F (α, aq ,N

)∣∣∣∣2
∣∣∣∣∣
2

� (Nq+q2)
6
5

+2ε

(
1 +

∣∣∣∣α− a

q

∣∣∣∣2N2

)(
|D(α,N)|2 +

∣∣∣∣F (α, aq ,N
)∣∣∣∣2
)
.

Thus, for α ∈ C(a/q), we have, by (4.1), that the above is bounded by(
(NΩ)

6
5

+2ε + Ω
12
5

+4ε +
N

16
5

+2ε

Ω2

)(
|D(α,N)|2 +

∣∣∣∣F (α, aq ,N
)∣∣∣∣2
)
,

and we get

U1(N)�

(
(NΩ)

6
5

+2ε + Ω
12
5

+4ε +
N

16
5

+2ε

Ω2

)
∫ 1

0

|D(α,N)|2dα +
∑

1≤q≤Ω

q∑
a=1

(a,q)=1

∫ 1

0

∣∣∣∣F (α, aq ,N
)∣∣∣∣2 dα


(4.3)

�

(
(NΩ)

6
5

+2ε + Ω
12
5

+4ε +
N

16
5

+2ε

Ω2

)
N log8N.
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For U2(N), we have, by (3.14),

U2(N)�
∑

1≤q≤Ω

q∑
a=1

(a,q)=1

∫
C(a/q)

∣∣∣∣∣∣∣∣∣∣
∑

1≤q′≤∆

q′∑
a′=1

(a′,q′)=1
a′q 6=aq′

∣∣∣∣F (α, aq ,N
)∣∣∣∣2
∣∣∣∣∣∣∣∣∣∣

2

dα(4.4)

+
∑

∆<q≤Ω

q∑
a=1

(a,q)=1

∫
C(a/q)

∣∣∣∣F (α, aq ,N
)∣∣∣∣4 dα

= U3(N) + U4(N),

say. By (3.13), we have

(4.5) U4(N)� (N log2N)4

Ω

∑
∆<q≤Ω

1

q4
� N4 log8N

Ω∆3
.

It remains to estimate U3(N). By partial summation, we can write F (α, a′/q′, N) as

1

q′
(A(a′, q′) log2N + (B(a′, q′)− 2A(a′, q′)) logN + 2A(a′, q′)−B(a′, q′)

+ C(a′, q′))
∑

1≤n≤N

e

((
α− a′

q′

)
n

)
− 1

q′

∫ N

1

(
2A log ξ

ξ
+
B − 2A

ξ

) ∑
1≤n≤ξ

e

((
α− a′

q′

)
n

)
dξ.

Thus, ∣∣∣∣F (α, a′q′ , N
)∣∣∣∣� q′ε log3N

q′
∣∣∣sinπ (α− a′

q′

)∣∣∣ .
The function F (α, a′/q′, N) has period 1 in α, and |a/q − (a′/q′ ± 1)| ≤ 1/2. Thus, U3(N)
is at most

� ∆2 log12N
∑

1≤q≤Ω

q∑
a=1

(a,q)=1

∫
C(a/q)

∑
1≤q′≤∆

2q′∑
a′=−q′

(a′,q′)=1

0<
∣∣∣a′
q′−

a
q

∣∣∣≤ 1
2

q′ε

q′4
∣∣∣sin π (α− a′

q′

)∣∣∣4dα.

By (3.15), we have, for α ∈ C(a/q),

1

2

∣∣∣∣aq − a′

q′

∣∣∣∣ ≤ ∣∣∣∣α− a′

q′

∣∣∣∣ ≤ 3

4

for N sufficiently large. Hence,

U3(N)� Ω2∆2 log12N
∑

1≤q≤Ω

q∑
a=1

(a,q)=1

∑
1≤q′≤∆

q′ε
2q′∑

a′=−q′
(a′,q′)=1
a′q 6=aq′

1

|aq′ − qa′|4
� Ω2+ε∆2 log12N

∞∑
u=1

t(u)

u4
,

15



where t(u) is the number of integer solutions to |aq′ − qa′| = u in the range of summation.
We have

t(u)� ∆2Ω

which yields

(4.6) U3(N)� Ω3+ε∆4 log12N.

From (3.21), (4.2), (4.3), (4.4), (4.5) and (4.6), we get the inequality

∑
1≤k≤N−1

(V (k,N)− S∆(k,N))2 � N ε

(
N11/5Ω6/5 + Ω12/5N +

N21/5

Ω2
+ Ω3∆4 +

N4

Ω∆3

)
.

We now take, for example,

(4.7) Ω = N25/38 and ∆ = N4/19.

Then the requirement (3.15) is satisfied, and we have proved

LEMMA 4.1. The inequality

∑
1≤k≤N−1

(V (k,N)− S∆(k,N))2 � N299/100

holds for sufficiently large N .
16



5. Proof of the theorem

Let Q(N) denote the sum on the left side of (2.1). We have

Q(N) =
∑

1≤`≤N

∑
1≤n1,n2≤N
n1≡n2(mod `)

τ3(n1)τ3(n2)

(5.1)

+
1

4
N2 log4N

∑
1≤`≤N

∑
1≤b≤`

Ã(`, b)2

−N2 log3N
∑

1≤`≤N

∑
1≤b≤`

(Ã(`, b)2 − Ã(`, b)B̃(`, b))

+N2 log2N
∑

1≤`≤N

∑
1≤b≤`

(Ã(`, b)2 − 2Ã(`, b)B̃ + B̃(`, b)2)

+N2 log2N
∑

1≤`≤N

∑
1≤b≤`

(Ã(`, b)2 − Ã(`, b)B̃(`, b) + Ã(`, b)C̃(`, b))

+ 2N2 log2N
∑

1≤`≤N

∑
1≤b≤`

(Ã(`, b)2 + B̃(`, b)2 − 2Ã(`, b)B̃(`, b)− B̃(`, b)C̃(`, b) + Ã(`, b)C̃(`, b))

+N2
∑

1≤`≤N

∑
1≤b≤`

(Ã(`, b)2 + B̃(`, b)2 + C̃(`, b)2 − 2Ã(`, b)B̃(`, b) + 2Ã(`, b)C̃(`, b)− 2B̃(`, b)C̃(`, b))

−N log2N
∑

1≤`≤N

∑
1≤b≤`

Ã(`, b)
∑

1≤n≤N
n≡b(`)

τ3(n)

+ 2N logN
∑

1≤`≤N

∑
1≤b≤`

(Ã(`, b)− B̃(`, b))
∑

1≤n≤N
n≡b(`)

τ3(n)

+ 2N
∑

1≤`≤N

∑
1≤b≤`

(Ã(`, b)− B̃(`, b) + C̃(`, b))
∑

1≤n≤N
n≡b(`)

τ3(n)

= Q1(N) + · · ·+Q10(N),
17



say. We start with evaluating Q1(N), which is the longest of the ten. We have

Q1(N) = N
∑

1≤n≤N

τ 2
3 (n) + 2

∑
1≤`≤N−1

∑
1≤u≤(N−1)/`

∑
1≤n≤N−u`

τ3(n)τ3(n+ u`)(5.2)

= N
∑

1≤n≤N

τ 2
3 (n) + 2

∑
1≤k≤N−1

V (k,N)τ(k),

where V (k,N) is given by (3.20). Here we have, by Lemma 3.12,

(5.3)
∑
n≤N

τ 2
3 (n) =

a3

8!
NP8(logN) +O

(
N10/11

)
with a3 and P8(logN) given in that lemma. Now, by Lemma 4.1,∑

1≤k≤N−1

V (k,N)τ(k) =
∑

1≤k≤N−1

S∆(k,N)τ(k)(5.4)

+O


( ∑

1≤k≤N−1

τ 2(k)

)1/2( ∑
1≤k≤N−1

(V (k,N)− S∆(k,N))2

)1/2


=
∑

1≤k≤N−1

S∆(k,N)τ(k) +O
(
N599/300

)
= Q11(N) +O

(
N599/300

)
,

say. We now calculate Q11(N). By (3.19), (3.18), and (3.22), we have

Q11(N) =
6∑
j=1

∑
1≤q≤∆

q−2wj(q)
∑

1≤k≤N−1

τ(k)cq(k)Tj(k,N).

If q = 1, then

c1(k) = 1, A(1) = 1, B(1) = 3γ, C(1) = 3γ2,

and, hence,

w1(1) =
1

4
,(5.5)

w2(1) =
1

2
(3γ − 1),

w3(1) = (1− 3γ)2,

w4(1) = −1

2
(1− 3γ + 3γ2),

w5(1) = (3γ − 1)(1− 3γ − 3γ2),

w6(1) = (1− 3γ + 3γ2)2.

Thus,

Q11(N) =
6∑
j=1

wj(1)
∑

1≤k≤N−1

τ(k)Tj(k,N)(5.6)

+
6∑
j=1

∑
1<q≤∆

q−2wj(q)
∑

1≤k≤N−1

τ(k)cq(k)Tj(k,N).

18



To calculate the k-summations, we need to compute the following sums.

H1(N) =
∑

1≤k≤N−1

τ(k) log(N − k),(5.7)

H2(N) =
∑

1≤k≤N−1

τ(k) log2(N − k),

H3(X) =
∑

1≤k≤X

τ(k)cq(k),

H4(N) =
∑

1≤k≤N−1

τ(k)cq(k) log(N − k),

H5(N) =
∑

1≤k≤N−1

τ(k)cq(k) log2(N − k),

H6(N) =
∑

1≤k≤N−1

kτ(k) log(N − k),

H7(N) =
∑

1≤k≤N−1

kτ(k) log2(N − k),

H8(X) =
∑

1≤k≤X

kτ(k)cq(k),

H9(N) =
∑

1≤k≤N−1

kτ(k)cq(k) log(N − k),

H10(N) =
∑

1≤k≤N−1

kτ(k)cq(k) log2(N − k).

Assume q > 1. We now compute the first sum in (5.7). By partial summation, we have

H1(N) =

∫ N−1

1

t

N − t
log tdt+ (2γ − 1)

∫ N−1

1

t

N − t
dt+O(N1/2 logN).

By the first part of Lemma 3.13, this is equal to

N

(
log2N − logN − π2

6
+ 1

)
+ (2γ − 1)(N logN −N) +O(N1/2 logN).

Thus,

H1(N) = N log2N + (2γ − 2)N logN +

(
π2

6
− 2γ

)
N +O(N1/2 logN).

Similar, by both parts of Lemma 3.13, we get

H2(N) =

∫ N−1

1

1

N − t

(
t log2 t+ (2γ − 2)t log t+

(
π2

6
− 2γ

)
t+O(t1/2 log t)

)
dt

= N log3N + (2γ − 4)N log2N +

(
4− 4γ − π2

6

)
N logN

+

(
2ζ(3)− 2− (2γ − 2)

(
π2

6
− 1

)
− π2

6
+ 2γ

)
N +O

(
N1/2 log2N

)
.
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We now estimate H3(X). We have

H3(X) =
∑

1≤k≤X

∑
d|k

cq(k) =
∑

1≤d≤X

∑
1≤m≤X/d

cq(dm).

By Lemma 3.10, the inner sum is � qd−1X1/2 log2X. Thus,

H3(X)� qX1/2 log2X
∑

1≤d≤X

d−1 � qX1/2 log3X.

Using this we get, by partial summation,

H4(N) = O(qN1/2 log4N)

and

H5(N) = O(qN1/2 log5N).

By partial summation we can easily obtain

LEMMA 5.1.

H6(N) =
1

2
(N − 1)2 log2(N − 1) + λ1(N − 1)2 log(N − 1) + λ2(N − 1)2 +O(N3/2 logN),

H7(N) =
1

2
(N − 1)2 log3(N − 1) + λ3(N − 1)2 log2(N − 1) + λ4(N − 1)2 log(N − 1)

+ λ5(N − 1)2 +O(N3/2 log3N),

H8(N) = O(N3/2 log3N),

H9(N) = O(N3/2 log4N),

H10(N) = O(N3/2 log4N),

with numerical constants λj’s.
Here we have

λ1 = γ − 1/2,

λ2 =
π2

12
− 1

2
γ − 3

4
,

λ3 = γ − 5/4,

etc.

Collecting the wj(1)’s from (5.5) and the Hj’s above, we deduce the following

LEMMA 5.2. There is an explicit polynomial P5(logN) of degree 5 in logN such that the
q = 1 contribution in Q11(N) from (5.6) is given by

6∑
j=1

wj(1)
∑

1≤k≤N−1

τ(k)Tj(k,N) = N2P5(logX) +O(N3/2 log3N).

Moreover, the q > 1 contributions in Q11(N) from (5.6) is at most O(N3/2), and, conse-
quently, from (5.2), (5.3), (5.4), and (5.6), we obtain that

Q1(N) = N2P8(logN) +O(N599/300).
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With more effort, though tedious in details, one can calculate similar asymptotic expan-
sions for Q2(N) to Q10(N) in (5.1). However, for our purpose, it suffices to bound the sums
Q2-Q10 and show that they are smaller than the leading term N2 log8N . Indeed, by (3.5)
and orthogonality of the Ramanujan sum cq(b), we have that

(5.8) Q2(N), · · · , Q10(N)� N2 log6N.

We demonstrate one such bound for Q2(N)–the other bounds can be obtained similarly.
Suppose first that q = 1. We have, in this case, Ã(`, b) = `−1 for any b, and hence

(5.9)
∑

1≤`≤N

∑
1≤b≤`

Ã(`, b)2 =
∑

1≤`≤N

∑
1≤b≤`

`−2 � logN.

Assume next q1, q2 > 1. Suppose (q1, q2) = 1. Then∑
1≤b≤`

cq1(b)cq2(b) =
∑

1≤b≤`

cq1q2(b)� q1q2.

From this and (3.5), we get∑
1≤b≤`

Ã2(`, b) = `−2
∑
q1|`

∑
q2|`

q−1
1 q−1

2

∑
1≤b≤`

cq1(b)cq2(b)τ(q1) log2 q1τ(q2) log2 q2

= `−2
∑
q1|`

τ(q1) log2 q1

∑
q2|`

τ(q2) log2 q2 � `−2τ 4(`) log4 `� `−1

and, hence,

(5.10)
∑

1≤`≤N

∑
1≤b≤`

Ã(`, b)2 �
∑

1≤`≤N

`−1 � logN.

It remains to consider the case where (q1, q2) > 1. Let q0 = [q1, q2]. By orthogonality of cq(b)
we have that ∑

1≤b≤q0

cq1(b)cq2(b) =

{
q0ϕ(q0), if q1 = q2,

0, otherwise.

Thus, ∑
1≤b≤`

cq1(b)cq2(b)�

{
`ϕ(q0), if q1 = q2,

q1q2, otherwise,

which gives

∑
1≤`≤N

∑
1≤b≤`

Ã2(`, b)�

{∑
1≤`≤N `

−1τ(`)� log2N, if q1 = q2,∑
1≤`≤N `

−1 � logN, if q1 6= q2.

This, together with (5.9) and (5.10), give that Q2(N) is at most O(N2 log6N), verifying
(5.8) for Q2(N).

As mentioned before, the estimates in (5.8) are crude simply for the purpose of showing
they do not contribute to the leading term. It is possible, by procedures analogous to the
computations for Q1(N) and

∑
kWq(k,N) demonstrated in the proof, to compute explicitly

a polynomial P6(logN) of degree 6 in logN such that

Q2(N) + · · ·+Q10(N) = N2P6(logN) +O(N599/300).
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We conclude, therefore, that Q(N), which is the left-hand side of (2.1), is given by

N2P8(logN) +O(N2−1/300),

which gives the right-hand side of (2.1). This completes the proof of the theorem.
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[10] A. Ivić, On the ternary additive divisor problem and the sixth moment of the zeta-function, in Sieve
Methods, Exponential Sums, and Their Applications in Number Theory, Ed. by G. R. H. Greaves, G.
Harman, and M. N. Huxley (Cambridge Univ. Press, Cambridge, 1997), pp. 1001-1039.

[11] A. F. Lavrik, Binary problems of additive number theory connected with the method of trigonometric
sums of I. M. Vinogradov, Vestnik Leningrad. Univ. 16 13 (1961), pp. 11-27.

[12] H. L. Montgomery, Primes in arithmetic progressions, Michigan Math. J. 17, pp. 33-39 (1970).
[13] Y. Motohashi, An asymptotic formula in the theory of numbers, Acta Arith. 17 (1970), pp. 255-264.
[14] Y. Motohashi, On the distribution of the divisor function in arithmetic progressions, Acta Arithetica

XXII (1973), pp. 175-199.
[15] D. T. Nguyen, Generalized divisor functions in arithmetic progressions: I, preprint [PDF].
[16] B. Rodgers and K. Soundararajan, The variance of divisor sums in arithmetic progressions, Forum

Math. 30 (2018), no. 2, 269-293.
[17] R. A. Smith, The generalized divisor problem over arithmetic progressions, Math. Ann. 260, 255-268

(1982).
[18] A. I. Vinogradov, The density Hypothesis for Dirichlet L-series, Izv. Akad. Nauk SSSR Ser. Mat. 29

(1965), 903-934.
[19] Y. Zhang, Bounded gaps between primes, Ann. of Math. 179 (2014), no. 3, 1121-1174.

Department of Mathematics, South Hall, University of California, Santa Barbara, CA
93106.

E-mail address: David.Nguyen@math.ucsb.edu

22

https://web.math.ucsb.edu/~dnguyen/docs/DivisorPaper.pdf

	1. Introduction
	1.1. Notations
	1.2. Acknowledgments

	2. Statement of result
	2.1. Outline of the proof

	3. Preparatory lemmas
	4. An analogue to a result of Lavrik
	5. Proof of the theorem
	References

