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Kahler geometry:

Basic foundation of Kahler geometry is that
the holomorphic group of the metric is U(n)
and the Laplacian operator acting on dif-
ferential form Q™ commutes with the pro-
jection operator: Q™ — QP49 with p 4 ¢q¢ =
m based on the fact that the Kahler form

v —1 Zgijdzi N dz; 1S covariant constant.



Calabi-Yau manifolds are a special class of

Kahler manifolds M™ with Ricci curvature =0.

If M is simply connected, there is a nowhere
vanishing holomorphic n-form 2. This n-

form €2 is also covariant constant.

In this case the canonical line bundle of M is
trivial and the Dirac spinors can be identified
with differential forms and the Dirac opera-

tors are & operator.



w, §2 are parallel spinors. In the string theory,
these two parallel spinors provide N = 2 su-
persymmetries. It creates possibility of Mir-
ror symmetries and many important conse-
quences in algebraic geometry of Calabi-Yau
manifolds. A most notable contribution was
the (rigorous) proof of Givental, Lian-Liu-
Yau for the formula of Candelas et al on
counting number of rational curves of vari-

ous degrees.



It was conjectured that for each dimension,
there are only a finite number of deformation
types of CY manifolds. The most interesting
CY manifolds have dimension three. There
are more than 10 thousand of such deforma-
tion types. It would be important to give
a unified understanding of such manifolds.
They may all be complete intersections in

some toric manifolds.



M. Reid made a proposal based on the con-
struction of Clemens-Friedman. Clemens wanted
to take a rational curve in CY manifold M
whose normal bundle is O(—=1)  O(—1) and
contract such a curve to a rational double
point. Friedman proposed the condition to
deform such a manifold to be a smooth com-
plex manifold. By blowing down enough such
rational curves, H2(M) can be killed and we
end up with a complex manifold which is not
Kahler and is diffeomorphic to a connected

sum of 83 x S3.



Reid conjectured that one can connect any
CY threefold to another one through such
conifold transitions. It is a nice picture and
can be checked in many cases. However, one
needs to understand the geometry of such

non-Kaker manifolds.

In order to do this, we find that the most
suitable structure is Hermitian metric with

torsion introduced by Strominger.



The important point here is that supersym-
metry still exists. (There are parallel spinors.)
There are four equations in Strominger sys-

tem. (We shall write them explicitly.)

The last equation of Strominger system is ex-
istence of a certain Hermitian form w so that
d(w?) = 0. Such a class of metrics were stud-
ied by M.L.Michelsohn and L.Alessandrini-
G.Bassanelli. They called them balanced met-

rics.



They proved that existence of balanced met-
ric respects fiber bundle construction quite
well and also it respects birational transfor-

mation.

Hence we believe that the balanced manifold
and the Strominger system is a good class
of manifolds. We shall now discuss how such
equations arose in string theory and how we

proved existence.



In the original proposal for compactification
of superstring, Candelas, Horowitz, Strominger
and Witten took the metric product of a
maximal symmetric four dimensional space-
time M with a six dimensional Calabi-Yau
vacuum X as the ten dimensional space-time;
they identified the Yang-Mills connection with
the SU(3) connection of the Calabi-Yau met-
ric and set the dilaton to be a constant. Adapt-
ing the second author’s suggestion of using
Uhlenbeck-Yau’'s theorem on constructing
Hermitian-Yang-Mills connections over sta-
ble bundles, Witten and later Horava-Witten
proposed to use higher rank bundles for strong
coupled heterotic string theory so that the

gauge groups can be SU(4) or SU(5).
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A. Strominger

Compactification Ansatze

~(y)

0
gun(z,y) = 2D (an »-(:v))
O g

where y is coordinate on internal space K and
x IS coordinate on some maximally symmetric

spacetime.

Spacetime supersymmetry forces:

D to be dilation field.
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A supersymmetric configuration requires ex-

istence of Mogorava—Weyl spinor 0 so that
1
(5’170?\/[ == V?\/[SO '+‘ "@(T%HO - lQH?V[)EO = 0

N = (X ¢p)e® + 5%62(’3151060 =0

6x° = PPy NN Nel

where
° is the gravitano
A° is the dilatino

x° is the gluino.
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Write

Then

—2
gun =€ g
e = e ?/2°

_ 0 1 0] O
by = e 9/? (¢M — “Q““TMA

A= e?/2)°

Ty = e?T5,.

1
VMEWZHME“—“O

(YVo)e + %Hs = 0.

)
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Then there exist positive and negative chi-
rality spinors n4 that are H-covariantly con-
stant. (The three form H,;yp defines a con-
nection. Note that we assume ¢ depends only
on K and the components of H tangent to

the maximally symmetric spacetime vanish.)

We normalize

I

NN+

Then
J = \/Tnfl_r&n+

is an almost complex structure.

14



JIis H-covariant constant

VmJE — HE_JS — HS JP = 0.

It is integrable.

The Kahler form is

1
W= SJ%gnp dx™ A dxP
= V—1g,dz* A dz?
J=1 _
H = (0 — 0)w.

-

The holomorphic n form is given by

Q= eSgb?’]T_ aia0asn— dz®t - dz%",

It turns out that

1
b — méln |1€2|| is a constant.
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Since oA = 0,
—8Vmo + J,VpJE =0
and
d*w—vV=1(0-0)In]|Q]|, =0

and we arrive at the equation of Strominger.
(1) Fy A w? =

2) FFP=F>*=0

(3) 0w = V/—1Tr(F), A Fp,) —v—1TrRg A Ry

(4) d*w = /—1(8 — 9) 109 ||2]|w
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I. Li-Yau: Perturbation method

Let Es be smooth family of holomorphic vec-
tor bundles over a Calabi-Yau space X. Let
hg be a Hermitian—Yang—Mlills connection on

Eo.

Then we like to extend hg to be a smooth

family of Hermitian—Yang—Mills connection.
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The interesting case is when hg is reducible.
Let (X,wp) be Kahler.

Let (E1,DY) and (Ey, D7) be degree zero and

slope-stable vector bundles.

Let hy and ho be the Hermitian metrics on

FE1 and E5 respectively.

The hq @ tho is still a Hermitian metric cor-

responds to the connection Dg = DY & D75.
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Suppose we are given a deformation of holo-
morphic structure DY of Dj. Then Kodaira—
Spencer identifies the first order deformation

of D7 at O to an element

ke HY (X, e*®¢)

where ¢ is the sheaf of holomorphic section s

of (E,Dg).

T herefore

k e @E’jmlHl(E? %Y Ej)-
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Theorem. Suppose k1> and ko1 are nonzero.
Then there is a unique t so that for s suffi-
ciently small hg(t) = h1 ® etho extends to a
smooth family of Hermitian—Yang—Mills met-

ric on (E,DY).
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The fourth equation of Strominger system is

equivalent to

d (/|2]|ww?) = 0.

Let H(X) be the cone of positive definite

Hermitian form on X.

Let H(E)g be the space of determinant one
Hermitian metric on the bundle E (i.e., the
induced metric on ATE ~ Cx is the constant

one metric).
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We define

L'le@Lf2@Lf3 .
H(E)o X H(X) —
233(End’E) @ Im =188 & Im d;

where
I1(H,w) = vV—1Fy A w?
Lo(H,w) = v —100w + tl’E(FH N FH)
L3(H,w) = #od (||2]lww?) .
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We shall apply implicit function theorem to

L.

Fix a determinant one Hermitian metric (, )
on E we can write other determinant one
Hermitian metric on E by a unique positive
definite (, ) Hermitian symmetric endomor-

phism H of Z satisfying det H = 1.

Such spaces H will be denoted by F(End;Ll'E),
identity I € M(End;E).

The tangent space at I is '(End{E) traceless

symmetric endomorphisms of E.
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§L1(I,wq)(6h, dw)
= D"Dyéh +2Fg A wg A dw

6Lo(1,wg)(6h, dw)
= /—180(6w) + 2(trgdFr(6h) A Fy)

6L3(I,wq)(6h,dw)
— 2d6(5w) - dé((éw,wo)wo).
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Construction of irreducible solution to Stro-

minger's system perturbatively.

Start with a Calabi—Yau manifold,
-3
(B, Df) =83 g 1y,

the metric is identified with 1 : £ — E/.

For all ¢ > 0, (I,cwp) is a solution to L = 0.
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Let

3,3
W1 = Qg (EndpB)pp

Wo = (Im+v—1 85)[{ , @ (Im dB)Li .
VO = {A & CLITX l A - End C?i—(r_3)
are constant matrices such that

A=A trA+ 3a = o}

Vi mwS’@VO.

Then 3 C > 0 such that for all ¢ > C,
SL1(I,cwg) ® 6Lo(I,cwg) ®dL3(1,cwqg)

: I‘(End%E)L;Z o QLX) — Wy /V5 @ Wy

iS surjective.
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Theorem. Let X be a Calabi—Yau 3-fold with
w a Ricci flat Kéhler form. Let DY be a
smooth deformation of holomorphic struc-
ture Dj on E = Cx®Tx. Suppose the associ-
ated cohomology classes [C1»] and [C»1] are
non-zero. Then for sufficiently large c there
is a family of pairs of Hamiltonian metrics
and Hamiltonian forms (Hs,ws) for 0 < s < ¢

so that

1. wg = cw and the harmonic part of ws is

equal to cw.

2. The pair (Hs,wg) iS a solution to Stro-
minger's system for the holomorphic vec-

tor bundle (E,DY).
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Let
D" =D} 4+ A3, As e QVYENdE)

C11 Cio 0.1
An = c QY (End E).
0 (021 022) ( )

We can assume C;; are Dg harmonic. Since

HI(X,0x) =0, C;; =0.
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In general, we consider the r-4 3 holomorphic

vector bundle C§™ @ Tx. We also have

"o 0 C12
Do = (021 C22

where

Cio =(ag,...,ar)t € QUH(Tx)®I

Co1 =(B1,...,0r) € QOI(T)®I
Coo € QY (End Ty).

Suppose [a1],...,[ar] € HY(X,T%) are lin-
early independent and [81],. .., [8r] € HY(X,T%)
are linearly independent. Then the above

theorem holds.
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Example

Consider
X={x+  +22=0ecpP?

0 0

0 — Ty — TxP* — 0Ox(5) — 0

|

0 — F — Ox(1)® — 0x(5) — 0

0 O
Here F is the cokernel of Ox(1)®° — Ox(5)

and fill in

0O — 0Oy — F—TX — 0.
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The above sequence is a non-split extension.

Making use of this element in Ext1(Tx, Ox)
we can form a deformation of holomorphic

structure D} of that C1o #% 0, Cp1 # 0.
Hence we have proved:

Let X be a smooth quintic threefold and w be
any Kahler form on X. Then for large ¢ > 0O,
there is a smooth deformation of Cx & Tx SO
that for small s, there are pairs (Hs,wg) Of
Hamiltonian metrics on E and Hamiltonian
forms ws on X. That solves Strominger's

system.
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For the Calabi—Yau manifold with three gen-

erations that I constructed:

X cP3xp3

given by

guotient by Zs3. One can also construct ir-
reducible solution to Strominger’'s system on

TX & CY°.
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II. Fu-Yau: Non-Kahler manifolds

K. Becker, M. Becker, K. Dasgupta and P. S.
Green, Compactifications of heterotic strings
on non-Kahler complex manifolds, I. JHEP

0304 (2003), 007, hep-th/0301161

E. Goldstein and S. Prokushkin, Geometric
model for complex non-Kahler manifolds with

SU(3) structure, hep-th/0212307.
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Let (S,wg,2g) be the K3 surface. Let 3,52 ¢
H?2(S,Z) and let w; and wo be anti-self-dual
(1,1)-forms. Then thereis a non-Kahler man-
ifold X such that = : X — S is a holomorphic

T2 fibration over S.

If we write locally w1 = day and wo = dao,
then there are coordinates of the fibers T2 x
and y such that dx + n*aq and dy + n*asp are

globally defined 1-forms on X.
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Let

0 =de+ a1 + vV—-1({dy + 7" ).

Then hermitian form on X is

/1

—1 _
WO :W*w3+m~2-m9A9
and holomorphic 3-form is
Q= W*QS A 0.

wq satisfies the forth equation d(|| 2 [lwy w§) =
0.

Let w be any smooth function on S and let

/T

-1  _
wy = 7 (e"wg) + —2——9 NG,

Then wy is a Hermitian metric on X and

(wu, 2) also satisfies d(|| Q ||w, w2) = 0.
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As wy and wo are harmonic, dwi; = Owyp =
0. According to 0-Poincare Lemma, we can

write w1 and wo locally as

= ¢ = 0(£1dz1 + Epdzp)

and

= 8¢ = 0(¢1dz1 + (odzp),

where (z1,2o) is the local coordinate on §S.
et

Bm(fl+ﬂ€l)
o+ V-1¢ |
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If we let R, be the curvature of Hermitian
connection of Hermitian metric wy On the

holomorphic tangent bundle, then

+288(e"“tr(dB AOB* - g~ ).

So the third equation in Strominger’s system

can be reduced to
V—180e" A wg — 288u A 80u
—288(e~"tr(B AOB* - g~ 1))

1
= trRgANRg—trFg A Fg (1)

>
— (w1 I* + | w2 12)92—‘,9-
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Since trkg A Fgyg > 0 and trRg A Rg = 0 in the

case of T%, we obtain

Proposition. There is no solution of Stro-
minger's system on the torus bundle X over

T4 if we use the ansatz:

v—1

ewg -+ ,,_—2__9 AG.
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We consider the case of K3 surface. Let
(E, H) be the Hermitian-Yang-Mills vector bun-
dle over S with the gauge group SU(r). Then
(V = «n*E,H) is also the Hermitian-Yang-
Mills vector bundle over X. We can consider
the equation (1) as the equation on the K3
surface S. Integrating equation (1) over S,
/S{trRS A Rg — trFy A Fi}

2

— 2 . 2 \Ys
= [ 25+l w2 11297

We use Q( %) to denote the intersection num-
ber of anti-self-dual (1,1)-form 3. As [gtrRgA
Rg = 24, the above condition can be written

as

200 =- (0(22) vo(2)
(2)
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Certainly We can choose wy and wo and SU(r)
vector bundle E such that they satisfy the

condition (2). Then there is a smooth func-

tion p such that

trRg N Rg —trFg N Fg
2 2
2 2\ ¥ W
= (o1l + llwal|?) 22 = —p-2.
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So we obtain the following equation:

V—180e" A wg — 80u A BOu

2 3
_88(e “tr(AB A OB* - g 1)) + ,J,‘”S =0 (3)

In particular, when wo = nw1, n € Z, we have

= * _—1 1+ n2 2
tr(0BAOB™-g~ ") = v-1 1 | w1 ll5g ws-
Hence in this case, if we set f = 14;”2 |

wy [|34, we can rewrite equation (3) as the

standard complex Monge-Ampere equation:
detu,=

- —U ] e
Ale fe )+8det +p = 0.
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We solve the equation (3) by the continuity
method and get

Theorem. The equation (3) has a smooth

solution uw such that

W' =etwg + 2v/—1006u
—/—1e “r(BAOB* - g 1)

is a Hermitian metric on S.
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Theorem. Let S be a K3 surface with Calabi-
Yau metric wg. Let w; and wp be anti-self-
dual (1,1)-forms on S such that L € H2(S,Z)
and 2 € H?(S,Z). Let X be a T?-bundle
over S constructed by w1 and wy. Let E be a
stable bundle over S with the gauge group
SU(r). Suppose wi, wp and co(F) satisfy
the topological constraint (2). Then there
exist a smooth function v and a Hermitian-
Yang-Mills metric H on E such that (V =
m*F,n*Fy, X,wy) is a solution of Strominger’s

system.
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For simplicity, we consider the equation

—u U det Uss —
Ale fe Y +8—2 4+ u=0.

We impose the following elliptic condition

W= (e¥4 fe Mw +2vV—=100u > 0

and the normalization condition

o\ % 2
/ exp(——4u)f«§w = A, 1258 = 1.
S 2! s 21
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Zeroth order estimate

T 2
Let P = 29”6382?3%. We have two methods to

calculate
det g/~ 2

/ P(eku) @ij'

Then using the Sobolev inequality, Moser it-

eration and Poincare inequality, we can get

Proposition. If A < 1, then there is a con-
stant 'y which depends on f, u and the

Sobolev constant of wg such that
igfu > —In(C1A).

Moreover, if A is small enough such that
A < (C1)~1, then there is an upper bound
of supgu which depends on f, u, Sobolev

constant of wg and A.
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An estimate of the determinant

We should estimate the lower bound of de-

terminant
!/
det 953

We apply maximum principle to function
G — 1 . 8—’115 l Vu 12 +2e—€u . 2€~“€'anu

and get
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Proposition. Given any constant x € (0,1),

we fix some positive constant ¢ satisfying
e < min{1,2 71k}

Suppose that A satisfies

1
A< min{1,C7H {2(1 +sup f)} 207t

1
1l -k € 1 3 — 6¢ _
( ) C1]_ ; Cl 1705}7

2C3
where C3 and C4 depend on f, u, and Cy4

also depends the curvature bound of wg; Cs
depends on k,e and C3. Then F > ke >
H;(Cl.A)~2.
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Second order estimate

Since
1 1
el + fe ¥+ Au> F? > k2(C1A)" 1 >0,

it is sufficient to have an upper estimate of
e+ fe "4 Au. Applying maximum principle

to function
eIVl (et p feU 4 A,

where A1 and Ao are positive constants and
will be determined, we can get the estimate

of second order estimate.
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T hird order

Let

® -

I

P
\\

estimate

9" g"u gy 5
g,i?:glsjg,kfu}ﬁkufsf
1ij g/k legu,fzkpu,grg

g/ﬁ g/k"l"g/p("j g!r.’é’ U Ty Shas

117 1kl 7
g’wg qu

g

rs. _
g U ipsY Gkars

where indices preceded by a comma indicate

covariant differentiation with respective to

the metric wg.
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We apply maximum principle to the function

(k1+2uw)O+ro(m+Auw)lM k3 | Tu [2 [+ kal,

where all x; are positive constants and will
be determine; and m is a fixed constant such
that m+ Auw > 0. Then we can get the third

order estimate.
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Topology of the total space:

(1) hOL(X)
(2) KO (X)

(3) b1(X)

(4a) b2(X)

(4b) bo(X)

|

I

ROL(S) + 1

hl’O(S)

b1(S) + 1

b2(S) — 1,

if w1 is a multiple of wy;
bo(S) — 2,

If wq is not a multiple of wo.
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Becker-Becker—Tseng: Duality argument

The supersymmetric heterotic compactifica-

tion with non-zero H3 flux with metric

ds? = e??ds3y, + (dz + a1)? + (dy + a2)?

has a M —theory dual solution for base My =
K3 and not for My = T%. Since the super-
gravity duality mapping does not affect the
base, the lack of a M—theory dual strongly
suggested that there is no Hz %= 0 heterotic

solution with base M, = T%.
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For My, = K3, the heterotic solution is dual
to M-theory on K3 x K3, with the second K3
taken as a T%/Z, orbifold. (To be precise,
the metric is conformal K3 x K3.) Start-
ing from M—theory on K = K3 x K3 with
non-zero flux, the series of dualities ending
in the heterotic solution are roughly as fol-
lows. Treat the second K3 = T%/Z5 as an
elliptic fibration over P;. Reducing the T2
fiber to zero size, we obtain type IIB theory
on K3 x T?/Z> where here Zo = Q(-1)FLIgq
with Igg : (z,y) — (—z,~y) and 2 being the

world-sheet parity operator.
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Applying further two T'—dualities, one in each
direction of TQ/ZQ, results in the dual type 1
theory on K3 times a T2 fibration. Finally, an
S-duality takes the type I background to the
above heterotic solution. Notice that duality
at each step leaves the base K3 unchanged.
Therefore, if we replace the base with T4, the
dual M-theory solution should be M —theory
on T% x K3 with non-zero flux. However,
such an M —theory solution is inconsistent as

a supersymmetric background.
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To see this, we study the constraints on M-
theory backgrounds imposed by supersymme-
try and the equation of motion. The 11 di-
mensional M-theory has 4-form denoted as
G4. One of the equation of motion has the

form,

1
dxGg = ——2—G4 NGg — (271')2/6)(8

where Xg = —=t=(trR2)? + 5trR* and g
which contains / is often conventionally set
to one. The above equation can be inte-
grated over the compact four-fold K to give

the condition

1 K
S JK 24

where x is the Euler number. (If additional N
M?2-brane sources are present, we must add

a-+ N term on the LHS of the above equation.
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Now, supersymmetry requires that G4 is (2, 2)
and primitive and thus xG4 = G4. Therefore,
the integral [ G4 A G4 is positive definite and
is zero only If G4 = 0. We therefore see that
a nonzero Gy Is allowed for K = K3 x K3.
However, for K = T% x K3, x(K) = 0 and
therefore G4 must vanish. But under the du-
ality mapping, the heterotic Hz (and also F»)
is associated with the M —theory G4. In par-
ticular, a zero G4 after duality leads to a zero
Hs in the heterotic theory. Thus, from the
duality analysis, we do not expect a heterotic

solution with base M4 = T% and Hz # 0.
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