#### **TYPE IIB** solutions with 16 Supersymmetries

#### Eric D'Hoker, John Estes & Michael Gutperle

- Exact half-BPS Type IIB interface solutions I, Local solutions and supersymmetric Janus, arXiv:0705.0022
- Exact half-BPS Type IIB interface solutions II, Flux solutions and multi-Janus, arXiv:0705.0024
- Gravity duals of half-BPS Wilson loops, arXiv:0705.1004

#### Supersymmetry as a problem in geometry

- Supersymmetry = existence of "covariantly constant spinors"
  - Calabi-Yau manifolds  $C_6$ : at least 4 susys on  $M_4 imes C_6$
  - Sasaki-Einstein manifolds  $S\!E_5$ : at least 4 susys on  $AdS_5 imes S\!E_5$
- Here : Type IIB 10-dim solution manifolds preserving 16 supersymmetries with a generalized connection
  - on certain classes of manifolds,  $(\times_w \text{ is a warped product over } \Sigma)$

 $AdS_p \times S^{q_1} \times S^{q_2} \times_w \Sigma$ 

- we solve exactly two cases with  $\dim\,\Sigma=2$
- but a more general set of problems is probably solvable as well

Type IIB manifolds with 16 susys

# The AdS/CFT Correspondence

The AdS/CFT correspondence is a conjectured equivalence between,

 $\mathcal{N} = 4$  Super Yang-Mills  $\Leftrightarrow$  Type IIB string theory on flat Minkowski  $\mathbf{R}^4$  on  $AdS_5 \times S^5$ 

Yang-Mills Theory  $\Leftrightarrow$  A Theory of gravity

Maldacena (1997); Gubser, Klebanov, Polyakov (1998); Witten (1998)

# $\mathcal{N} = 4$ Super Yang-Mills

• Yang-Mills theory with gauge group SU(N) on flat Minkowski  ${f R}^4$ ;

|            | A          |                                         | SU(N) connection | <b>1</b> of $SU(4)_R$ |
|------------|------------|-----------------------------------------|------------------|-----------------------|
|            | $\psi^{a}$ | $a=1,\cdots,4$                          | 4 Weyl gauginos  | <b>4</b> of $SU(4)_R$ |
|            | 1          | $i=1,\cdots,6$                          | 6 real scalars   | <b>6</b> of $SU(4)_R$ |
| <b>T</b> 1 | 1          | , , , , , , , , , , , , , , , , , , , , |                  |                       |

• The theory is invariant under extended Poincaré supersymmetry,

 $\{Q^a_{\alpha}, \bar{Q}^b_{\beta}\} = \delta^{ab} \gamma^{\mu}_{\alpha\beta} P_{\mu} \qquad a, b = 1, \cdots, \mathcal{N} = 4$ which maps the fields as follows,  $A \xrightarrow{Q} \psi \xrightarrow{Q} \phi \xrightarrow{Q} \psi \xrightarrow{Q} A$ 

- $\mathcal{N} = 4$  is the maximal Poincaré supersymmetry (= 8 susys) in YM theory.
  - $-SU(4)_R$  is the automorphism group of the superalgebra.
  - Invariant under conformal transformations  $SO(2,4)\sim SU(2,2)$ ,
  - this adds conformal supersymmetries  $S^a_lpha$  and  $ar{S}^a_lpha$
- Full invariance group is  $SU(2,2|4) \supset SO(2,4) \times SU(4)_R$

# Type IIB String Theory

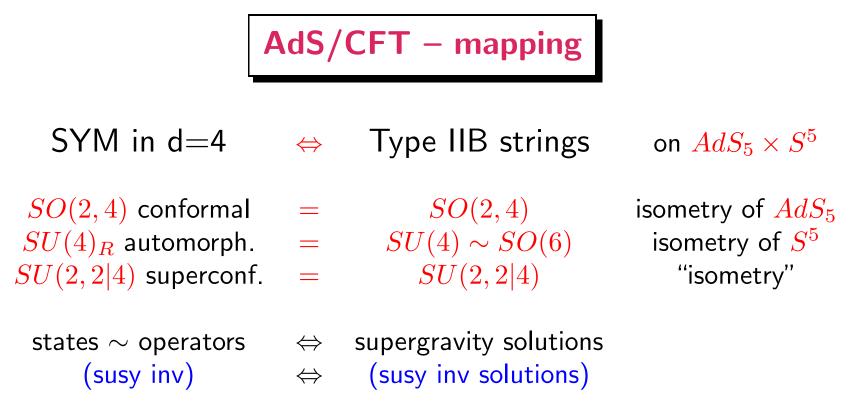
- Maximal number of 32 supersymmetries;
  - Massless forms of rank 0,2,4, which couple to D-1, D1, D3 branes
- The massive string states are heavy (α')<sup>-1/2</sup> ~ 10<sup>19</sup>× proton mass.
   At energy scales ≪ (α')<sup>-1/2</sup>, only the massless states matter;
- At low energy, Type IIB string theory reduces to Type IIB supergravity.
   Advantage : supergravity may be described by local fields.

## Type IIB Supergravity

| $g_{MN}$         | metric                                             | $M,N=0,1,\cdots,9$                                                 |                      |
|------------------|----------------------------------------------------|--------------------------------------------------------------------|----------------------|
| B                | $\operatorname{axion/dilaton}$                     | $\text{contains } \chi, \phi$                                      |                      |
| $B_{(2)}$        | $\operatorname{antisymm}$                          | $G_{(3)} \sim dB_{(2)} - BdB^*_{(2)}$                              |                      |
| $C_{(4)}$        | $\operatorname{antisymm}$                          | $F_{(5)} \sim dC_{(4)} + \operatorname{Im}(\bar{B}_{(2)}dB_{(2)})$ | $F_{(5)} = *F_{(5)}$ |
| $\psi_M/\lambda$ | $\operatorname{gravitino}/\operatorname{dilatino}$ | Weyl spinors                                                       |                      |

• Susy variation eqs for the spinors  $(\Gamma, \mathcal{B} \text{ generators of } Cliff(1,9))$ 

$$\delta\lambda = i(dB) \cdot \Gamma \mathcal{B}^{-1} \varepsilon^* - \frac{i}{4} (G_{(3)} \cdot \Gamma) \varepsilon$$
  
$$\delta\psi_M = D_M \varepsilon + \frac{i}{4} (F_{(5)} \cdot \Gamma) \Gamma_M \varepsilon - \frac{1}{16} \Big( \Gamma_M (G_{(3)} \cdot \Gamma) + 2(G_{(3)} \cdot \Gamma) \Gamma_M \Big) \mathcal{B}^{-1} \varepsilon^*$$



- Solving the BPS equations  $\delta\lambda = \delta\psi_M = 0$  on  $AdS_5 imes S^5$ 
  - maximal number of 32 solutions  $\varepsilon$
  - accounts for the 32 odd Grassmann generators of SU(2,2|4)

#### **Generalizing the AdS/CFT correspondence**

- Still conformal SO(2, 4) invariant,  $AdS_5 \times SE_5$ , - At least 4 susy requires  $SE_5$  Sasaki-Einstein
- Only Poincaré invariance and asymptotically  $AdS_5$ 
  - Physically the most interesting
  - Even with supersymmetry, this is hard no exact solutions known
- We obtain general exact solution for geometries with 16 supersymmetries -  $AdS_4 \times S^2 \times S^2 \times_w \Sigma$  with symmetry  $SO(2,3) \times SO(3) \times SO(3)$ 
  - CFT side :  $\mathcal{N} = 4$  Yang-Mills with susy planar interface
  - $AdS_2 \times S^4 \times S^2 \times_w \Sigma$  with symmetry  $SO(2,1) \times SO(5) \times SO(3)$ CFT side :  $\mathcal{N} = 4$  Yang-Mills with susy Wilson loop

#### Geometries with 16 susys and CFT duals

- Can one construct all solutions with 16 susys to Type IIB sugra ?
- Can one construct all solutions with 16 susys which have a CFT dual ?
  - View as AdS duals to deformations of  $\mathcal{N}=4$  SYM
  - Expect a subgroup H of SU(2,2|4) with 16 susys to be preserved
  - Semi-simple H, with bosonic subgroup  $H_B$

| Н                        | $H_B$                               | space-time                                                    | sol's |
|--------------------------|-------------------------------------|---------------------------------------------------------------|-------|
| $SU(2 2) \times SU(2 2)$ | $SO(4) \times SO(4) \times R$       | $M_4 \!\!\times\! S^3 \!\!\times\! S^3$                       | LLM   |
| $OSp(4 4^*)$             | $SO(2,3) \times SO(3) \times SO(3)$ | $AdS_4\!\!\times\!\!S^2\!\!\times\!\!S^2\!\!\times\!\!\Sigma$ | DEG   |
|                          |                                     | $AdS_4\!\!	imes\!S^3\!\!	imes\!\Sigma$                        | ?     |
| $OSp(4^* 4)$             | $SO(2,1) \times SO(3) \times SO(5)$ | $AdS_2 \!\!\times\! S^2 \!\!\times\! S^4 \!\!\times\! \Sigma$ | DEG   |
| SU(2 4)                  | $SO(3) \!\!\times \!\! SO(5)$       | $M_3 \!\! 	imes \! S^2 \!\! 	imes \! S^4$                     | ?     |
| SU(1,1 4)                | $SO(2,1) \!\!\times \!\! SO(5)$     | $AdS_2 \!\! 	imes \! S^5 \!\! 	imes \! E_3$                   | ?     |
| SU(2,2 2)                | $SO(2,4) \! 	imes \! SO(3)$         | $AdS_5 \!\! 	imes \! S^2 \!\! 	imes \! E_3$                   | ?     |

### AdS dual to Interface with 16 susys

- Symmetry  $SO(2,3) \times SO(3) \times SO(3)$
- Space-time is  $AdS_4 imes S_1^2 imes S_2^2$  warped over a 2-dim parameter space  $\Sigma$

$$ds^{2} = f_{1}^{2} ds_{S_{1}^{2}}^{2} + f_{2}^{2} ds_{S_{2}^{2}}^{2} + f_{4}^{2} ds_{AdS_{4}^{2}}^{2} + ds_{\Sigma}^{2}$$
$$G_{(3)} = \mathcal{G} \wedge f_{1}^{2} V_{S_{1}^{2}} + i\mathcal{H} \wedge f_{2}^{2} V_{S_{2}^{2}}$$
$$F_{(5)} = -\mathcal{F} \wedge f_{4}^{4} V_{AdS_{4}} + *_{\Sigma} \mathcal{F} \wedge f_{1}^{2} f_{2}^{2} V_{S_{1}^{2}} \wedge V_{S_{2}^{2}}$$

–  $ds^2_{S^2_{1,2}}$  and  $ds^2_{AdS^2_4}$  unit radius metrics,  $V_{S^2_{1,2}}$  and  $V_{AdS_4}$  volume forms

- $f_1, f_2, f_4$  are real functions,  $\mathcal{F}, \mathcal{G}, \mathcal{H}$  are 1-forms on  $\Sigma$
- choose local complex coordinates  $w,\bar{w}$  on  $\Sigma$  with  $ds_{\Sigma}^2=\rho^2|dw|^2$

#### Solving via a new integrable system

- Reduce BPS eqs  $\delta\lambda = \delta\psi = 0$  to the above Ansatz
  - Reduced eqs are equivalent to an integrable system on  $\Sigma$ ,

$$\partial_{\bar{w}} \left( \partial_w \vartheta - 2(\cos \mu)^{-1} (\partial_w \mu) e^{-i\vartheta} \right) + \text{c.c.} = 0$$

- May be exactly integrated in terms of 2 harmonic fcts  $h_1, h_2$  on  $\Sigma$ ,

• We obtain the general local solution in terms of  $h_1, h_2$ , e.g.

$$e^{4\phi} = \frac{2h_1h_2|\partial_w h_2|^2 - h_2^2W}{2h_1h_2|\partial_w h_1|^2 - h_1^2W} \qquad W \equiv \partial_w h_1\partial_{\bar{w}}h_2 + \text{c.c.}$$

$$\rho^8 = \frac{W^2}{h_1^4h_2^4} \left(2h_1h_2|\partial_w h_2|^2 - h_2^2W\right) \left(2h_1h_2|\partial_w h_1|^2 - h_1^2W\right)$$

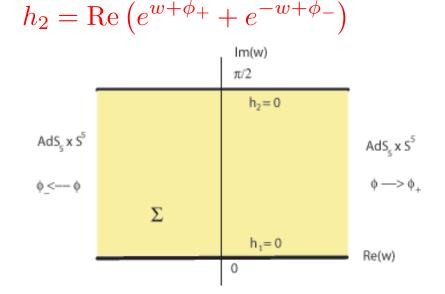
• Type IIB supergravity field equations automatically solved, locally.

### $AdS_5 \times S^5$ and an interface generalization

- These regularity conditions inside  $\Sigma$  are obeyed by  $AdS_5 imes S^5$ 
  - and an immediate generalization thereof
  - We readily obtain a 2-parameter family of regular solutions,

$$h_1 = \text{Im}\left(e^{w-\phi_+} - e^{-w-\phi_-}\right)$$

- For  $\phi_+ = \phi_-$  gives  $AdS_5 \times S^5$
- For  $\phi_+ \neq \phi_-$ , dilaton varies = interface solution with 16 susys - inside  $\Sigma$  :  $W \leq 0$ ,  $h_1, h_2 \geq 0$ - on  $\partial \Sigma$  :  $h_1h_2 = 0$



## **Regularity conditions**

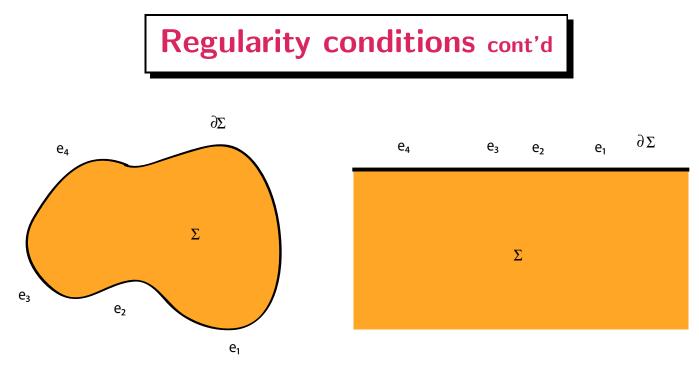
- Adopt regularity conditions on f<sub>1</sub>, f<sub>2</sub>, f<sub>4</sub>, ρ, φ and on the forms F, G, H
   (R1) non-singular inside Σ
   (R2) non-singular on ∂Σ, except possibly at isolated points
- $\bullet$  Regularity inside  $\Sigma$  requires that

$$\begin{split} 0 < e^{4\phi} &= \frac{2h_1h_2|\partial_w h_2|^2 - h_2^2W}{2h_1h_2|\partial_w h_1|^2 - h_1^2W} \qquad W \equiv \partial_w h_1\partial_{\bar{w}}h_2 + \text{c.c.} \\ 0 \le \rho^8 &= \frac{W^2}{h_1^4h_2^4} \left(2h_1h_2|\partial_w h_2|^2 - h_2^2W\right) \left(2h_1h_2|\partial_w h_1|^2 - h_1^2W\right) \\ \text{How to satisfy the regularity conditions most generally ??} \\ \text{Set of manifestly sufficient conditions inside } \Sigma, \end{split}$$

$$h_1 > 0 \qquad \qquad h_2 > 0 \qquad \qquad W \le 0$$

### Regularity conditions cont'd

- Still need regularity conditions on the boundary  $\partial \Sigma$ .
- \*  $AdS_5 \times S^5$  regions have isolated singularities for  $\rho, f_4$  on  $\partial \Sigma$ , - but correspond to regular 10-dimensional geometry
- \* The probe limit of certain D-branes may be singular on  $\partial \Sigma$ – We want to retain such possible solutions
- Additional assumptions :
  - ONLY singularities  $e_i$  on  $\partial \Sigma$  correspond to  $AdS_5 \times S^5$  regions
  - These isolated points divide the boundary into segments
  - The points on each segment must be interior points in 10-dim
  - Assume  $\partial \Sigma$  connected, i.e. just a single boundary



- Map single boundary to real axis
- Segments  $]e_{i+1}, e_i[$  correspond to interior points of 10 dim solution  $\Rightarrow$  Either  $S_1^2$  or  $S_2^2$  must shrink to zero on  $\partial \Sigma$  (but never  $AdS_4$ )
  - $\Rightarrow$  Either  $f_1 = 0$  or  $f_2 = 0$  on  $\partial \Sigma$  (but  $f_4$  is never zero);

### Linearizing the regularity conditions

• The form of the solution imposes boundary conditions on  $h_1, h_2$ ,

 $4W^{4} = \rho^{4} f_{1}^{2} f_{2}^{2} \qquad W = 0 \text{ on } \partial\Sigma$   $f_{1}^{2} f_{4}^{2} = 4e^{+2\phi} h_{1}^{2} \qquad f_{1} = 0 \Rightarrow (h_{1} = 0 \& \partial_{n} h_{2} = 0)$  $f_{2}^{2} f_{4}^{2} = 4e^{-2\phi} h_{2}^{2} \qquad f_{2} = 0 \Rightarrow (h_{2} = 0 \& \partial_{n} h_{1} = 0)$ 

- Equivalent to two coupled electro-statics problems with
  - alternating Neumann and vanishing Dirichlet conditions on  $\partial\Sigma$
  - $-\partial_w h_1, \partial_w h_2$  alternating real or imaginary on  $\partial \Sigma = \mathbf{R}$
  - $-h_1, h_2 > 0$  and  $W \leq 0$  inside  $\Sigma$

#### Solving regularity conditions by hyperelliptic surfaces

- Map the domain Σ onto the lower half-plane with complex coordinate u.
   The boundary ∂Σ is then the real axis R.
  - Points  $e_i$  on  $\partial \Sigma$  where Dirichlet  $\leftrightarrow$  Neumann,  $i = 1, 2, \cdots, 2g + 2$ .
- Construction of  $\partial h_1, \partial h_2$  via hyperelliptic curve of genus g, defined by

$$s(u)^2 = (u - e_1)(u - e_2) \cdots (u - e_{2g+1})$$
  
 $e_{2g+1} < \cdots < e_1 < e_0 = \infty$ 

- $-s(u)^2$  changes sign across each branch point  $e_i$
- s(u) alternates between real and imaginary on  $\partial \Sigma = \mathbf{R}$
- The holó differential  $\frac{du}{s(u)}$  alternates between real and imaginary
  - but it does not have the proper asymptotics at  $e_i$

## Solving regularity conditions cont'd

• The meromorphic differentials  $\partial h_1, \partial h_2$  may be written down explicitly,

$$\partial h_1 = -i rac{P_1(u) du}{s(u)^3} \qquad \qquad \partial h_2 = -rac{P_2(u) du}{s(u)^3}$$

- for two real polynomials  $P_1, P_2$ ,
- Neumann and Dirichlet conditions satisfied by construction,
- W=0 on  $\partial\Sigma$
- behavior at branch points  $du/(u-e_i)^{3/2}$  guarantees asymptotic  $AdS_5 imes S^5$
- behavior at branch point  $e_0 = \infty$  requires degrees of  $P_1, P_2$  equal 3g+1
- It remains to enforce
  - $W \leq 0$  inside  $\Sigma$
  - $h_1 > 0$ ,  $h_2 > 0$  inside  $\Sigma$
  - the vanishing of the Dirichlet boundary conditions

#### Solving regularity conditions cont'd

- $W \leq 0$  inside  $\Sigma$ 
  - All complex zeros of  $P_1(u), P_2(u)$  must be common
  - Otherwise  $W \leq 0$  cannot maintain constant sign near a zero
  - $\begin{array}{l} -P(u)=\prod_{a=1}^p(u-u_a)(u-\bar{u}_a) \text{ with } \operatorname{Im}(u_a)<0\\ \partial h_1=-i\frac{P(u)Q_1(u)du}{s(u)^3} & \partial h_2=-\frac{P(u)Q_2(u)du}{s(u)^3}\\ -Q_1(u) \text{ has only real zeros } \alpha_q<\cdots<\alpha_2<\alpha_1 & 2p+q=3g+1\\ -Q_2(u) \text{ has only real zeros } \beta_q<\cdots<\beta_2<\beta_1 \end{array}$
  - condition  $W \leq 0$  reduces to  $\operatorname{Im}(Q_1(u)Q_2(\bar{u})) > 0$
  - solved uniquely by ordering  $\alpha, \beta$ ,

$$\alpha_q < \beta_q < \alpha_{q-1} < \beta_{q-1} < \dots < \alpha_2 < \beta_2 < \alpha_1 < \beta_1$$

#### Solving regularity conditions cont'd

- $h_1 > 0$ ,  $h_2 > 0$  near the branch points  $e_i$  requires -  $Q_1(e_{4j}), Q_1(e_{4j+1}), Q_2(e_{4j}), Q_2(e_{4j+3}) > 0$ -  $Q_1(e_{4j+2}), Q_1(e_{4j+3}), Q_2(e_{4j+1}), Q_2(e_{4j+2}) < 0$
- $h_1 > 0$ ,  $h_2 > 0$  near entire  $\partial \Sigma$  gives further conditions - uniquely solved by relative ordering of  $e, \alpha, \beta$

 $\alpha_{g+1} < e_{2g+1} < \beta_{g+1} < e_{2g} < \dots < e_2 < \alpha_1 < e_1 < \beta_1$ 

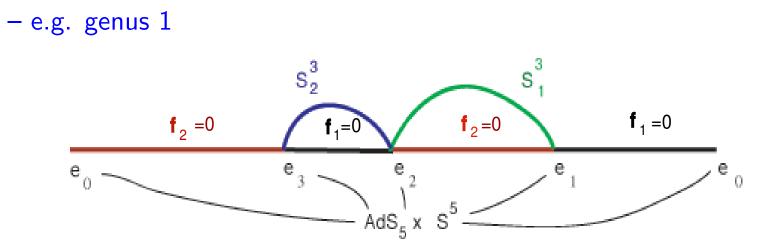
• It only remains to ensure that the Dirichlet conditions VANISH,

$$\operatorname{Re} \int_{e_{2j}}^{e_{2j-1}} \partial h_1 = \operatorname{Re} \int_{e_{2j+1}}^{e_{2j}} \partial h_2 = 0 \qquad \qquad j = 1, \cdots, g$$

• Given the branch points  $e_i$  and the ordered real zeros  $\alpha_b, \beta_b$ , - Period relations determine g complex zeros  $u_a$  IF a solution exists  $\Rightarrow$  mathematical problem of determining the moduli space of solutions - The geometry of the allowed moduli space is known explicitly for g = 1

### **Topology of regular solutions**

- 2g + 2 branch points = different asymptotic boundary  $AdS_5 \times S^5$  regions
  - each with its independent constant dilaton limit
  - Number of free parameters of solution is 4g + 6
- There are g independent pairs of homology 3-spheres,  $j = 1, \dots, g$ -  $S_{1j}^3 = [e_{2j}, e_{2j-1}] \times_f S_1^2$  NSNS 3-form charges  $\int_{S_{1j}^3} H_{(3)}$ -  $S_{2j}^3 = [e_{2j+1}, e_{2j}] \times_f S_2^2$  RR 3-form charges  $\int_{S_{2j}^3} F_{(3)}$
- The presence of 3-form fluxes reveals underlying D5 and NS5 branes
   These solutions are fully back-reacted D5 and NS5 branes
  - in the presence of D3 branes in the near-horizon limit



## The Genus 1 Solution

- On the lower half-plane, u,
  - $Q_1(u) = (u \alpha_1)(u \alpha_2) \qquad \qquad s(u)^2 = (u e_1)(u e_2)(u e_3)$  $Q_2(u) = (u \beta_1)(u \beta_2) \qquad \qquad P(u) = (u u_1)(u \bar{u}_2)$
  - with the ordering  $\alpha_2 < e_3 < \beta_2 < e_2 < \alpha_1 < e_1 < \beta_1 < e_0 = \infty$
- View the vanishing Dirichlet conditions as eqs for unknown  $u_1$ ,

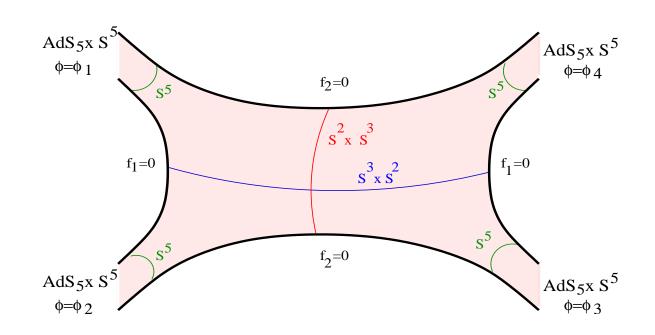
$$egin{aligned} &a_0 {|u_1|}^2 - a_1 (u_1 + ar{u}_1) + a_2 &= 0 \ &b_0 {|u_1|}^2 - b_1 (u_1 + ar{u}_1) + b_2 &= 0 \end{aligned}$$

• The  $a_0, a_1, a_2, b_0, b_1, b_2$  are modular connections,

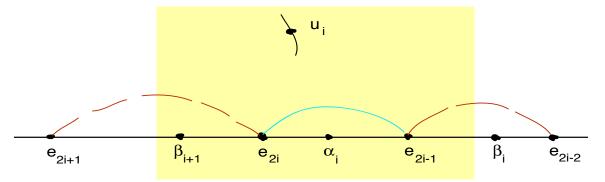
$$a_n = \delta_{n,1} + (\alpha_1 + \alpha_2 + \zeta_3)\delta_{n,2} + \sum_{i=1}^3 e_i^n (e_i + \zeta_3)Q_1(e_i)/E_i^2$$

- with  $\zeta_i = \zeta(\omega_i)/\omega_i$ ,  $E_i = (e_i - e_j)(e_i - e_k)$  and (ijk) is a perm. of (123)





# **Topology change :** a **collapsing branch cut**



$$\partial h_1 = \frac{(u-u_i)(u-\bar{u}_i)(u-\alpha_i)}{(u-e_{2i})^{3/2}(u-e_{2i-1})^{3/2}}(\partial h_1)_{g-1} \qquad \partial h_2 = \frac{(u-u_i)(u-\bar{u}_i)(u-\beta_{i+1})}{(u-e_{2i})^{3/2}(u-e_{2i-1})^{3/2}}(\partial h_2)_{g-1}$$

- As  $e_{2i-1} \rightarrow e_{2i}$  we must have  $\alpha_i \rightarrow e_{2i}$ , and  $\operatorname{Im} \int \partial h_1 = 0$  forces  $u_i \rightarrow e_{2i}$
- Two possibilities

(A)  $\beta_{i+1} \rightarrow e_{2i}$  gives topology change  $(\partial h_{1,2})_g \rightarrow (\partial h_{1,2})_{g-1}$ (B)  $\beta_{i+1} \not\rightarrow e_{2i}$  gives  $\partial h_1 \rightarrow (\partial h_1)_{g-1}$  but leaves a singular  $\partial h_2$  $\sim$  the probe limit: a D5 (or NS5) brane remains

### Total branch cut collapse

- Collapse of all branch cuts produces limit with singular branes,
  - $m_R$  D5 branes and  $m_{NS}$  NS5 branes with  $m_R + m_{NS} = g$ - leads to a simple explicit solution, for all genera g,

$$h_1 = -2i(w - \bar{w})\left(1 + \frac{C_0}{|w|^2}\right) + \sum_{j=1}^{\bar{m}_R} \frac{C_j}{\ell_j} \ln\left|\frac{w + i\ell_j}{w - i\ell_j}\right|^2$$

$$h_{2} = -2(w + \bar{w})\left(1 + \frac{D_{0}}{|w|^{2}}\right) - \sum_{i=1}^{m_{NS}} \frac{D_{i}}{k_{i}} \ln \left|\frac{w + k_{i}}{w - k_{i}}\right|^{2}$$
- for arbitrary real positive  $k_{i}, \ell_{j}, C_{j}, D_{i}, C_{0}^{i=1}D_{0}^{i}$ ,

– RR and NSNS 3-form charges given by  $\mathcal{F}_j = C_j/\ell_j$  and  $\mathcal{H}_i = D_i/k_i$ Physicist's proof of existence of solutions for all genera:

- regularize all poles into branch cuts (local !)
- $\Rightarrow$  there exists an open set of regular solutions

in the moduli space around these singular solutions

#### CFT dual to $AdS_4$ solutions (in progress)

- The  $AdS_4$  factor indicates the presence of an interface.
- For g = 0, CFT dual has interface operators (built from bulk fields).
- For  $g \ge 1$ , several gauge groups
  - different species of  $\mathcal{N} = 4$ , decoupled away from interface
  - interact only via the interface
  - are coupled via extra massless fields on the interface
  - On AdS side, extra massless fields arise from  $S^3$  shrinking to zero
- For  $g \ge 1$ , as branch cuts collapse,
  - and we approach the limit with probe branes,
  - recover massless string excitations from probe D5/NS5 branes of De Wolfe, Freedman, Ooguri – Skenderis, Taylor
- Our solutions are fully back-reacted geometries with D5 and NS5 branes

## **Open Mathematical Problems**

- Half-BPS solutions to Type IIB supergravity are surprisingly manageable;
- How to describe the moduli space of genus g > 1 solutions ?
- Regular solutions with different 10-dim topologies ?
- Unified approach to 16 susy solutions from subgroups of SU(2,2|4) ?