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TYPE IIB solutions with 16 Supersymmetries

Eric D’Hoker, John Estes & Michael Gutperle

• Exact half-BPS Type IIB interface solutions I,
Local solutions and supersymmetric Janus, arXiv:0705.0022

• Exact half-BPS Type IIB interface solutions II,
Flux solutions and multi-Janus, arXiv:0705.0024

• Gravity duals of half-BPS Wilson loops, arXiv:0705.1004
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Supersymmetry as a problem in geometry

• Supersymmetry = existence of “covariantly constant spinors”

– Calabi-Yau manifolds C6: at least 4 susys on M4 × C6

– Sasaki-Einstein manifolds SE5: at least 4 susys on AdS5 × SE5

• Here : Type IIB 10-dim solution manifolds preserving 16 supersymmetries
– with a generalized connection
– on certain classes of manifolds, (×w is a warped product over Σ)

AdSp × Sq1 × Sq2 ×w Σ

– we solve exactly two cases with dim Σ = 2
– but a more general set of problems is probably solvable as well
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The AdS/CFT Correspondence

The AdS/CFT correspondence is a conjectured equivalence between,

N = 4 Super Yang-Mills ⇔ Type IIB string theory
on flat Minkowski R

4 on AdS5 × S5

Yang-Mills Theory ⇔ A Theory of gravity

Maldacena (1997);

Gubser, Klebanov, Polyakov (1998);

Witten (1998)
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N = 4 Super Yang-Mills

• Yang-Mills theory with gauge group SU(N) on flat Minkowski R
4;

A SU(N) connection 1 of SU(4)R

ψa a = 1, · · · , 4 4 Weyl gauginos 4 of SU(4)R

φi i = 1, · · · , 6 6 real scalars 6 of SU(4)R

• The theory is invariant under extended Poincaré supersymmetry,

{Qa
α, Q̄

b
β} = δabγµ

αβPµ a, b = 1, · · · ,N = 4

which maps the fields as follows, A
Q
−→ ψ

Q
−→ φ

Q
−→ ψ

Q
−→ A

• N = 4 is the maximal Poincaré supersymmetry (= 8 susys) in YM theory.
– SU(4)R is the automorphism group of the superalgebra.
– Invariant under conformal transformations SO(2, 4) ∼ SU(2, 2),
– this adds conformal supersymmetries Sa

α and S̄a
α

• Full invariance group is SU(2, 2|4) ⊃ SO(2, 4) × SU(4)R
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Type IIB String Theory

• Maximal number of 32 supersymmetries;
– Massless forms of rank 0,2,4, which couple to D− 1, D1, D3 branes

• The massive string states are heavy (α′)−
1
2 ∼ 1019× proton mass.

– At energy scales � (α′)−
1
2 , only the massless states matter;

• At low energy, Type IIB string theory reduces to Type IIB supergravity.
– Advantage : supergravity may be described by local fields.
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Type IIB Supergravity

gMN metric M,N = 0, 1, · · · , 9
B axion/dilaton contains χ, φ
B(2) antisymm G(3) ∼ dB(2) −BdB∗

(2)

C(4) antisymm F(5) ∼ dC(4) + Im(B̄(2)dB(2)) F(5) = ∗F(5)

ψM/λ gravitino/dilatino Weyl spinors

• Susy variation eqs for the spinors (Γ,B generators of Cliff(1,9))

δλ = i(dB) · ΓB−1ε∗ −
i

4
(G(3) · Γ)ε

δψM = DMε+
i

4
(F(5) · Γ)ΓMε−

1

16

(

ΓM(G(3) · Γ) + 2(G(3) · Γ)ΓM

)

B−1ε∗
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AdS/CFT – mapping

SYM in d=4 ⇔ Type IIB strings on AdS5 × S5

SO(2, 4) conformal = SO(2, 4) isometry of AdS5

SU(4)R automorph. = SU(4) ∼ SO(6) isometry of S5

SU(2, 2|4) superconf. = SU(2, 2|4) “isometry”

states ∼ operators ⇔ supergravity solutions
(susy inv) ⇔ (susy inv solutions)

• Solving the BPS equations δλ = δψM = 0 on AdS5 × S5

– maximal number of 32 solutions ε
– accounts for the 32 odd Grassmann generators of SU(2, 2|4)
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Generalizing the AdS/CFT correspondence

• Still conformal SO(2, 4) invariant, AdS5 × SE5,
– At least 4 susy requires SE5 Sasaki-Einstein

• Only Poincaré invariance and asymptotically AdS5

– Physically the most interesting
– Even with supersymmetry, this is hard – no exact solutions known

• We obtain general exact solution for geometries with 16 supersymmetries
- AdS4 × S2 ×S2 ×w Σ with symmetry SO(2, 3)× SO(3)× SO(3)

CFT side : N = 4 Yang-Mills with susy planar interface
- AdS2 × S4 × S2 ×w Σ with symmetry SO(2, 1) × SO(5)× SO(3)

CFT side : N = 4 Yang-Mills with susy Wilson loop
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Geometries with 16 susys and CFT duals

• Can one construct all solutions with 16 susys to Type IIB sugra ?
• Can one construct all solutions with 16 susys which have a CFT dual ?

– View as AdS duals to deformations of N = 4 SYM
– Expect a subgroup H of SU(2, 2|4) with 16 susys to be preserved
– Semi-simple H, with bosonic subgroup HB

H HB space-time sol’s

SU(2|2)×SU(2|2) SO(4)×SO(4)×R M4×S3×S3 LLM
OSp(4|4∗) SO(2, 3)×SO(3)×SO(3) AdS4×S2×S2×Σ DEG

AdS4×S3×Σ ?
OSp(4∗|4) SO(2, 1)×SO(3)×SO(5) AdS2×S2×S4×Σ DEG
SU(2|4) SO(3)×SO(5) M3×S2×S4 ?

SU(1, 1|4) SO(2, 1)×SO(5) AdS2×S5×E3 ?
SU(2, 2|2) SO(2, 4)×SO(3) AdS5×S2×E3 ?
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AdS dual to Interface with 16 susys

• Symmetry SO(2, 3) × SO(3) × SO(3)
• Space-time is AdS4 × S2

1 × S2
2 warped over a 2-dim parameter space Σ

ds2 = f2
1ds

2
S2

1
+ f2

2ds
2
S2

2
+ f2

4ds
2
AdS2

4
+ ds2Σ

G(3) = G ∧ f2
1VS2

1
+ iH ∧ f2

2VS2
2

F(5) = −F ∧ f4
4VAdS4 + ∗ΣF ∧ f2

1f
2
2VS2

1
∧ VS2

2

– ds2
S2

1,2
and ds2

AdS2
4

unit radius metrics, VS2
1,2

and VAdS4 volume forms

– f1, f2, f4 are real functions, F ,G,H are 1-forms on Σ
– choose local complex coordinates w, w̄ on Σ with ds2Σ = ρ2|dw|2
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Solving via a new integrable system

• Reduce BPS eqs δλ = δψ = 0 to the above Ansatz
– Reduced eqs are equivalent to an integrable system on Σ,

∂w̄

(

∂wϑ− 2(cosµ)−1(∂wµ)e−iϑ
)

+ c.c. = 0

– May be exactly integrated in terms of 2 harmonic fcts h1, h2 on Σ,
• We obtain the general local solution in terms of h1, h2, e.g.

e
4φ

=
2h1h2|∂wh2|

2 − h2
2W

2h1h2|∂wh1|2 − h2
1W

W ≡ ∂wh1∂w̄h2 + c.c.

ρ8 =
W 2

h4
1h

4
2

“

2h1h2|∂wh2|
2 − h2

2W
” “

2h1h2|∂wh1|
2 − h2

1W
”

• Type IIB supergravity field equations automatically solved, locally.
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AdS5 × S5 and an interface generalization

• These regularity conditions inside Σ are obeyed by AdS5 × S5

– and an immediate generalization thereof
– We readily obtain a 2-parameter family of regular solutions,

h1 = Im
(

ew−φ+ − e−w−φ−
)

h2 = Re
(

ew+φ+ + e−w+φ−
)

• For φ+ = φ− gives AdS5 × S5

• For φ+ 6= φ−, dilaton varies
= interface solution with 16 susys
– inside Σ : W ≤ 0, h1, h2 ≥ 0
– on ∂Σ : h1h2 = 0
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Regularity conditions

• Adopt regularity conditions on f1, f2, f4, ρ, φ and on the forms F ,G,H
(R1) non-singular inside Σ
(R2) non-singular on ∂Σ, except possibly at isolated points

• Regularity inside Σ requires that

0 < e
4φ

=
2h1h2|∂wh2|

2 − h2
2W

2h1h2|∂wh1|2 − h2
1W

W ≡ ∂wh1∂w̄h2 + c.c.

0 ≤ ρ8 =
W 2

h4
1h

4
2

“

2h1h2|∂wh2|
2 − h2

2W
” “

2h1h2|∂wh1|
2 − h2

1W
”

– How to satisfy the regularity conditions most generally ??
– Set of manifestly sufficient conditions inside Σ,

h1 > 0 h2 > 0 W ≤ 0
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Regularity conditions cont’d

• Still need regularity conditions on the boundary ∂Σ.

? AdS5 × S5 regions have isolated singularities for ρ, f4 on ∂Σ,
– but correspond to regular 10-dimensional geometry

? The probe limit of certain D-branes may be singular on ∂Σ
– We want to retain such possible solutions

• Additional assumptions :
– ONLY singularities ei on ∂Σ correspond to AdS5 × S5 regions
– These isolated points divide the boundary into segments
– The points on each segment must be interior points in 10-dim
– Assume ∂Σ connected, i.e. just a single boundary
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Regularity conditions cont’d

Σ

Σ

Σ

Σ

∂

∂

e1

e2
e3

e4 e1e2e3e4

• Map single boundary to real axis
• Segments ]ei+1, ei[ correspond to interior points of 10 dim solution

⇒ Either S2
1 or S2

2 must shrink to zero on ∂Σ (but never AdS4)
⇒ Either f1 = 0 or f2 = 0 on ∂Σ (but f4 is never zero);
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Linearizing the regularity conditions

• The form of the solution imposes boundary conditions on h1, h2,

4W 4 = ρ4f2
1f

2
2 W = 0 on ∂Σ

f2
1f

2
4 = 4e+2φ h2

1 f1 = 0 ⇒ (h1 = 0 & ∂nh2 = 0)

f2
2f

2
4 = 4e−2φ h2

2 f2 = 0 ⇒ (h2 = 0 & ∂nh1 = 0)

• Equivalent to two coupled electro-statics problems with
– alternating Neumann and vanishing Dirichlet conditions on ∂Σ
– ∂wh1, ∂wh2 alternating real or imaginary on ∂Σ = R

– h1, h2 > 0 and W ≤ 0 inside Σ
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Solving regularity conditions by hyperelliptic surfaces

• Map the domain Σ onto the lower half-plane with complex coordinate u.
– The boundary ∂Σ is then the real axis R.
– Points ei on ∂Σ where Dirichlet ↔ Neumann, i = 1, 2, · · · , 2g + 2.

• Construction of ∂h1, ∂h2 via hyperelliptic curve of genus g, defined by

s(u)2 = (u − e1)(u − e2) · · · (u − e2g+1)

e2g+1 < · · · < e1 < e0 = ∞

– s(u)2 changes sign across each branch point ei

– s(u) alternates between real and imaginary on ∂Σ = R

• The holó differential du/s(u) alternates between real and imaginary
– but it does not have the proper asymptotics at ei
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Solving regularity conditions cont’d

• The meromorphic differentials ∂h1, ∂h2 may be written down explicitly,

∂h1 = −i
P1(u)du

s(u)3
∂h2 = −

P2(u)du

s(u)3

– for two real polynomials P1, P2,
– Neumann and Dirichlet conditions satisfied by construction,
– W = 0 on ∂Σ
– behavior at branch points du/(u−ei)

3/2 guarantees asymptotic AdS5×S5

– behavior at branch point e0 = ∞ requires degrees of P1, P2 equal 3g+1

• It remains to enforce
– W ≤ 0 inside Σ
– h1 > 0, h2 > 0 inside Σ
– the vanishing of the Dirichlet boundary conditions
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Solving regularity conditions cont’d

• W ≤ 0 inside Σ
– All complex zeros of P1(u), P2(u) must be common
– Otherwise W ≤ 0 cannot maintain constant sign near a zero
– P (u) =

∏p
a=1(u− ua)(u− ūa) with Im(ua) < 0

∂h1 = −i
P (u)Q1(u)du

s(u)3
∂h2 = −

P (u)Q2(u)du

s(u)3

– Q1(u) has only real zeros αq < · · · < α2 < α1 2p+ q = 3g+ 1
– Q2(u) has only real zeros βq < · · · < β2 < β1

– condition W ≤ 0 reduces to Im(Q1(u)Q2(ū)) > 0
– solved uniquely by ordering α, β,

αq < βq < αq−1 < βq−1 < · · · < α2 < β2 < α1 < β1
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Solving regularity conditions cont’d

• h1 > 0, h2 > 0 near the branch points ei requires
– Q1(e4j), Q1(e4j+1), Q2(e4j), Q2(e4j+3) > 0
– Q1(e4j+2), Q1(e4j+3), Q2(e4j+1), Q2(e4j+2) < 0

• h1 > 0, h2 > 0 near entire ∂Σ gives further conditions
– uniquely solved by relative ordering of e, α, β

αg+1 < e2g+1 < βg+1 < e2g < · · · < e2 < α1 < e1 < β1

• It only remains to ensure that the Dirichlet conditions VANISH,

Re

Z e2j−1

e2j

∂h1 = Re

Z e2j

e2j+1

∂h2 = 0 j = 1, · · · , g

• Given the branch points ei and the ordered real zeros αb, βb,
– Period relations determine g complex zeros ua IF a solution exists
⇒ mathematical problem of determining the moduli space of solutions
– The geometry of the allowed moduli space is known explicitly for g = 1
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Topology of regular solutions

• 2g+ 2 branch points = different asymptotic boundary AdS5 ×S5 regions
– each with its independent constant dilaton limit
– Number of free parameters of solution is 4g + 6

• There are g independent pairs of homology 3-spheres, j = 1, · · · , g
– S3

1j = [e2j, e2j−1] ×f S
2
1 NSNS 3-form charges

∫

S3
1j
H(3)

– S3
2j = [e2j+1, e2j] ×f S

2
2 RR 3-form charges

∫

S3
2j
F(3)

• The presence of 3-form fluxes reveals underlying D5 and NS5 branes
– These solutions are fully back-reacted D5 and NS5 branes
– in the presence of D3 branes in the near-horizon limit
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– e.g. genus 1

f ff f
1 12 2

=0 =0 =0=0
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The Genus 1 Solution

• On the lower half-plane, u,

Q1(u) = (u − α1)(u − α2) s(u)2 = (u − e1)(u − e2)(u − e3)

Q2(u) = (u − β1)(u − β2) P (u) = (u − u1)(u − ū2)

– with the ordering α2 < e3 < β2 < e2 < α1 < e1 < β1 < e0 = ∞
• View the vanishing Dirichlet conditions as eqs for unknown u1,

a0|u1|
2 − a1(u1 + ū1) + a2 = 0

b0|u1|
2
− b1(u1 + ū1) + b2 = 0

• The a0, a1, a2, b0, b1, b2 are modular connections,

an = δn,1 + (α1 + α2 + ζ3)δn,2 +
3

X

i=1

e
n
i (ei + ζ3)Q1(ei)/E

2
i

– with ζi = ζ(ωi)/ωi, Ei = (ei − ej)(ei − ek) and (ijk) is a perm. of (123)
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Genus 1 solution cont’d

5
φ=φ

φ=φ φ=φ

φ=φ1

2 3

4

5

55

5

S

S
S

5

5
5

S5

2
S  x  S

3

S  x S
3 2

f  =0

f  =0

f  =0f  =0 11

2

AdS  x S
2

5 AdS  x S5

AdS  x S5
AdS  x S
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Topology change : a collapsing branch cut

u

e e e eβ βα

i

2i+1 i+1 2i i 2i-1 i 2i-2

∂h1 =
(u − ui)(u − ūi)(u − αi)

(u − e2i)3/2(u − e2i−1)3/2
(∂h1)g−1 ∂h2 =

(u − ui)(u − ūi)(u − βi+1)

(u − e2i)3/2(u − e2i−1)3/2
(∂h2)g−1

• As e2i−1 → e2i we must have αi → e2i, and Im
∫

∂h1 = 0 forces ui → e2i

• Two possibilities
(A) βi+1 → e2i gives topology change (∂h1,2)g → (∂h1,2)g−1

(B) βi+1 6→ e2i gives ∂h1 → (∂h1)g−1 but leaves a singular ∂h2

∼ the probe limit: a D5 (or NS5) brane remains

25



Eric D’Hoker Type IIB manifolds with 16 susys

Total branch cut collapse

• Collapse of all branch cuts produces limit with singular branes,
– mR D5 branes and mNS NS5 branes with mR +mNS = g
– leads to a simple explicit solution, for all genera g,

h1 = −2i(w − w̄)

„

1 +
C0

|w|2

«

+

mR
X

j=1

Cj

`j

ln

˛

˛

˛

˛

w + i`j

w − i`j

˛

˛

˛

˛

2

h2 = −2(w + w̄)

„

1 +
D0

|w|2

«

−

mNS
X

i=1

Di

ki

ln

˛

˛

˛

˛

w + ki

w − ki

˛

˛

˛

˛

2

– for arbitrary real positive ki, `j, Cj,Di, C0,D0,
– RR and NSNS 3-form charges given by Fj = Cj/`j and Hi = Di/ki

Physicist’s proof of existence of solutions for all genera:
– regularize all poles into branch cuts (local !)
⇒ there exists an open set of regular solutions

in the moduli space around these singular solutions
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CFT dual to AdS4 solutions (in progress)

• The AdS4 factor indicates the presence of an interface.

• For g = 0, CFT dual has interface operators (built from bulk fields).

• For g ≥ 1, several gauge groups
– different species of N =4, decoupled away from interface
– interact only via the interface
– are coupled via extra massless fields on the interface
– On AdS side, extra massless fields arise from S3 shrinking to zero

• For g ≥ 1, as branch cuts collapse,
– and we approach the limit with probe branes,
– recover massless string excitations from probe D5/NS5 branes

of De Wolfe, Freedman, Ooguri – Skenderis, Taylor

• Our solutions are fully back-reacted geometries with D5 and NS5 branes
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Open Mathematical Problems

• Half-BPS solutions to Type IIB supergravity are surprisingly manageable;

• How to describe the moduli space of genus g > 1 solutions ?

• Regular solutions with different 10-dim topologies ?

• Unified approach to 16 susy solutions from subgroups of SU(2, 2|4) ?
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