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‘ High-Level Overview |

e Picard—Fuchs equations:

— Let V 5 X > z be a family of n-dimensional algebraic varieties,
with smooth fibres over the complement of a finite set.

— Choose a holomorphic n-form w on a smooth fibre V; € V, and
n-cycles v, ..., that give a basis for its nth homology.

— Then w can be extended to a meromorphic family of n-forms w(z),
and the cycles (homology classes) to (multivalued!) functions of z.

— The periods f ) are multivalued too, but satisfy a Fuchsian

ODE on X (the P F equatlon). They are special functions.

e When V — X is a family of elliptic curves, e.g., Ex — X(IV),
for Xo(IN) = PL(C), then covering and modular relations, e.g., the
coverings Xo(MN)/X(N), induce relations among P—-F equations
and their solutions. That is, they yield special function identities.
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‘ Based On... I

e Recent work of RM, e.qg.,

— “On Rationally Parametrized Modular Equations,”’
arXivimath/0611041.

— “Algebraic Hypergeometric Transformations of Modular Origin,’
Trans. AMS 359 (2007), 3859—-3885.

— “The 192 Solutions of the Heun Equation,”
Math. of Computation 76 (2007), 811-843.

e See also:

— Papers on ODEs and PDEs satisfied by automorphic forms on modular
subgroups, by H. Verrill.
— Modular parametrizations of lattice-polarized K3 surfaces, by C. Doran et al.
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‘ One-Argument Special Functions |

e Functions in the function field of an algebraic curve X/C.
(E.g., meromorphic functions on P1(C). Or on an elliptic curve E/C,
meromorphic functions such as Jacobi’s sn or Weierstral3’s p.

e Functions satisfying linear homogeneous ODEs on X/C, with
meromorphic coefficients.

o Scalar equations, e.g., |> ", A;(z)D,’| y = 0, and

o Systems of 1st-order equations, e.g., D,y —>""" | A%(z)yV) =0,
intepretable in terms of a connection on a rank-/NV' vector bundle
over X/C. Their solutions come ‘from geometry.

e In particular, the case when X/C is the base of a family of algebraic
varieties V = X. (E.g., a Picard—Fuchs equation.)
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‘ The GHE and HE I

e The GHE (Gauss hypergeometric equation) is the canonical linear
2nd-order ODE on P*(C) with three regular singular points, and the
GHE (Heun equation) is the one with four.

¢ The singular points are + = 0,1,0c0 by convention; and (for the
Heun equation) z = a, for some a € C\ {0, 1}.

¢ Characteristic exponents (whence monodromy) are canonicalized.

¢ The HE has an extra degree of freedom: an accessory parameter.

e The standard solutions of the GHE and HE (analytic at + = 0,
normalized to unity there) are o F and Hi.

o Their Taylor coefficients at + = 0 satisfy 2-term and 3-term
recurrences, respectively.
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The GHE £(a, b; ¢) and Its Series Solution

b— 1 b
D?u + E+a+ cr D,u + - u = 0.
x r—1 r(r —1)

The characteristic exponents at =z = 0, 1, oo are:
0,1 —2¢;0,¢c—a—b;a,b. Each has an associated Frobenius solution.

The zero-exponent solution at x = 0, normalized, is

oo

o Fi(a,b; c;x) = Z cnx”,

n=0

converging on |z| < 1, where ¢; = 1 and

(n+a)(n+bc,—(n+1)(n+c)cpr1 =0.
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‘ The HE and lts Series Solution I

€ afr—q

2@ — Dz — a)] w=0

5
D§u+[1+ +

| Do |
r x—1 x—a

The characteristic exponents at = 0, 1, a, oo are:
0,1—~;0,1-9;0,1—¢; «, 3. Each has an associated Frobenius solution.

¢ By Fuchs’s relation,a+ 5 —~v -6 +¢e+1=0.
¢ g € Cis an accessory (non-exponent-related) parameter.

The zero-exponent solution at =z = 0, normalized, is

oo

Hl(a,q; a, 8,7,6; z) := chx”.

n=0
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‘ Heun Series I

©.@)

Hi(a,q; o, B,7,0; ) := Y cpa™,

n=0
converging on |z| < min(1, |a|), where ¢y = 1, and (with ¢_; := 0)
(n+a—1)(n+8—1)cas

—{n[(n+y+d-Da+n+y+e-1)]+q}cy
+(n+1)(n+vy)acy,r1 =0.

Claim: Any generic series > "~ c¢,z™ in which {c, }2°, satisfy a 3-term
recurrence relation, with coefficients quadratic in n, is of Heun type.
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‘ Some History |

e Heun (1889) first wrote down and studied the HE.

¢ The Lamé equation is a special case of it.
x See RM, Philos. Trans. Roy. Soc. A 366 (2008), 1115-1158.
¢ Confluent HEs have also been studied (Slavyanov et al.).

e A long-term goal: deriving, for Hl, analogues of , F identities. E.g.,

¢ Degree-1 rational transformations of HiI, arising from Maobius
automorphisms of P1(C). (Cf. Kummer’s 24 solutions of the GHE.)

¢ Higher-degree rational transformations (quadratic, etc.) of Hi.
(Cf. Kummer’s quadratic transformations of 5 F}, Goursat’s, etc.)

¢ Algebraic transformations of Hil. (Not classified even for 5 Fy!).

¢ Contiguity relations (“Schlesinger transformations”), etc.
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‘ Degree-1 Rational Transformations |
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‘ Kummer’s 24 Series Solutions of the GHE I

Each of the 6 Frobenius solutions of the GHE can be written in
four equivalent ways, in terms of 5 F7.

¢ Example: the zero-exponent solution at x = 0 can be written as

2F1(a,b;c; .’E), (1_x)_a_b+c2F1(c_a’70_b;c; ZC),

(1—2) "2F(a,c—bie; 25),  (1—2)  "2Fi(c—a,bie; =27).

Cf. Euler’s transformation and Pfaff’'s transformation of , F}.

o Example: the zero-exponent solution at x = 1 can be written as

oF1(a,b;a+b—c+1;1—x), ccl_CQFl(b—c—l—l,a—c—l—1;a+b—c+1; 1—x),

2 "9Fi(aa—ctLatb—ct L IEh) 2Tl oR (-t Lbatb—c+ 15 Z5h),
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‘ The Kummer Transformations of the GHE I

e The GHE £(a, b; ¢) is transformed to £(a’,b'; ¢') by

@ Mobius transformations of the independent variable x that
preserve the set of singular points {0, 1, c0}; i.e.,
r—x, 11—z, x/(x—1),1/(1 —x),z/(x—1), 1/x.

@ Changes of the dependent variable: ‘index flips’,
l.e., characteristic exponent negations, such as

0 1 o ‘ T 0 1 o ‘ T
(1—2)" 0 0 a = 0 —60: a+ 6,
90 91 b 00 0 b‘|‘€1

e The 4 variants of each of the 6 Frobenius solutions, in terms of 5 F7,
are transformed among by composite transformations that
(1) stabilize x = 0, 1, or oo, and (ii) perform no F-homotopy there.
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‘ The Kummer Automorphism Group of the GHE |

e The subgroup of Mobius transformations is isomorphic to Ss.

e It normalizes the subgroup of index flips, isomorphic to (Z,)".
(Or merely to (Z2)?, since the interchange of exponents at z = oo,
l.e., a < b, is trivial.)

—> The Kummer group of composite transformations is isomorphic to
an order-48 group, the wreath product Bz = Zy 1 Sz = (Z3)> x Ss.
(Or merely to an index-2 subgroup D3 = [Z3 ! S3]even, Of Order 24.)

—> The Kummer group is the group of signed permutations of 3 objects.
(The index-2 subgroup is the even-signed subgroup: D3 = S4.)

(The 4 variants of each Frobenius solution are transformed among
by a Z, x 7o subgroup of D3.)
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‘ The Indexing of Kummer’s 24 Series Solutions |

e Example: The four equivalent expressions for the zero-exponent
solution at = = 0,

2F1(aab;c; JJ), (1_x)_a_b—l_CZFl(C_a’aC_b;C; I‘),

(1—2) "2Fi(a,c—bic;=25), (1—2) "2Fi(c—a,bye; =25).

are indexed by [0 |[1;][co], [04][1-][oo_], [04][1+004], [04][1-co_].

e Example: The four equivalent expressions for the zero-exponent
solution at x = 1,

oF1(a,bja+b—c+1;1—x), xl_CQFl(b—c—i—1,a—c—|—1;a—|—b—c—|—1; 1—2x)),

2 %o (a,a—c+Liat+b—ct 15 EZh) 2T PoR(b— et Lbjat+b— et 15 5L

are indexed by 1,04 ][co4], [140_][oco_], [1+04004], [140_00_].
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‘ The Extension to the HE (4 Singular Points, Not 3) |

e The HE E(a, ¢; o, 8,7, 0) is transformed to £(a’, ¢'; o', 3',+", ") by

@ Mobius transformations of the independent variable x that
‘preserve’ the singular points, i.e., take {0,1,a, 00} to {0,1,ad’, 00},

EgQg.,x+—x, 11—z etc.,and z/a, /(x —a), (1 —a)x/(x — a), etc.
These make up a subgroup isomorphic to Sy.

@ Index flips, which are exponent negations at x =0,1,a. This
subgroup is isomorphic to (Z,)?. (If the a « 3 exponent
interchange at z = oo is included, the group is (Z,)%.)

— The group of composite automorphisms is therefore isomorphic to
an order-384 group, the wreath product B, = Zo 1 Sy = (Z3)*x S,.
(Or merely to the even-signed subgroup D4 = [Z2 ! S4leven;
of order 192, if o« < (3 is dropped.)
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‘ Algebraic Transformations \
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‘ #1: Landen’s Transformation ) <, |

e The (first) complete elliptic integral K, = Ky («), defined by
1
K, (0) o / (1 — )] — )
0
x o (1/r,1—1/7r; 1; )

Ka(a) = (2/a)(1 = V1 = a) Ka(f),

satisfies

provided
o*(1—£)? —16(1 — a)B = 0.

Here a, 8 are confined to a neighborhood of (0, 1) in P1(C).

e The algebraic a—g relation can be uniformized:

a=z(x+8)/(x+4) B=x%/(x + 8)

Feb. 2008, UCSB
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#2: Another Algebraic >/, Transformation s/,
Let f5(z) = > ", cn(2/500)", for |z| sufficiently small, where
500(2n — 1)? ¢y +2(44n° +22n 4+ 5) ¢, + (n + 1)? cppr = 0,

with ¢_1 = 0, ¢g = 1. Then for all z in a neighborhood of 0,

f5 (z(z* + 52° + 152° + 25z + 25))

5
— 5 (2% 1 503 £ 1522 4 952 4+ 25] /2 :C |
%+ 5a” + 1527 + 252 +25] 7 f 74 + 523 + 1522 + 251 + 25

Claim:
f5(2) = HI (% — (=11 F2i); 3,3, 1; 2/ [-11 + 21]) .

= [2(z" + 102+ 5)] VR (&, 5112°/ (27 + 102 4 5)°).
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#3: Combinatorial Functional Equations (2. x5/,

Let /' = F(z) = >~ ,a,2" be the generating function of the

Franel numbers . 5

Then F, which is defined on the disk |z| < 1/8, satisfies the quadratic
and cubic functional equations

x(x+6) . _x—|—3 2
I (8(x—|—3)2) =2 _a:—+6} K (8(:1:—|—3)(ﬂc+6)) )

(2’ +62412) | _ g [2’43243 z°
E (8($+3)(562+3a:+3)) =3 ] (z+3)2 } F (m) ,

for |z| sufficiently small, and also for all = > 0.

Claim: F(z) = HI(—8,—2;1,1,1,1;82) = HI(—%,1:1,1,1,1; —2).

11
87 4

Feb. 2008, UCSB 18



‘ The Algebro—Geometric Infrastructure |
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‘ Elliptic Curves over C |

¢ has a projective Weierstral3 model, the affine portion of which is

e Any F£/C

y2 = 4z° — g2& — g3

in C? > (x,y), parametrized by ¢», g3 € C (not both zero).
¢ has periods 71,5 € C\ {0}, and period ratio 7 := 7 /7 € H.

e Anytwo E, E’ are isomorphic iff their period ratios 7, 7" are related by
some g € I'(1) := PSL(2,7Z), i.e.,

7" = (at +b)/(cT + d), a,b,c,d € Z, ad — bc = 1.
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The Universal Family &; — X (1)

e The moduli space of elliptic curves over C up to isomorphism is
Y (1) :=T(1) \ H, with natural compactification
X(1):=T1)\ |[H*=HU (QU {icc} = P}(Q))].

o g2, g3 are (multivalued!) functions on X (1).

e The modular curve X (1) is of genus zero: X (1) = P'(C),, where
7 is a Hauptmodul, e.g., the Klein invariant j := 12° g3 /(g5 — 27¢3).

e Isomorphism classes of elliptic curves are bijective with P*(C);\ {co}.
So, there is a universal family of elliptic curves: &, = X(1).

¢ The fibre above 5 = 0 is equianharmonic: g, = 0, e.g., 7 = (3.
o The fibre above j = 12° is lemniscatic: g3 = 0, e.g., T = i.
¢ The fibre above j = oo is singular, e.g., 7 = ico.
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‘ For Concreteness: ¢-Series |

Near 7 = ico on X (1) = I'(1) \ H*, one can expand in ¢ := ¢*™'7, where
0 < |¢| < 1 corresponds to 7 € H. [Generators 7 +— 7+ 1, 7 — —1/7
of I'(1) correspond to ¢ — ¢q, ¢ — exp(47?/logq).]

e The j-invariant: j = ¢! + 744 + O(q").

e The invariants g-, g3 (“Eisenstein sums”):

ga x 14+240>>  o3(n)q™, gs x 1 —=504>">  o5(n)q™.

e The Dedekind eta function:

() :=q¢"** [T —qm).
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‘ Modular Forms and Functions I

An entire function f : I — P*(C) is said to be a modular form
on a subgroup G < I'(1), of weight &, if

f((ar +b)/(cr +d) = x(a,b,¢,d) - (cr + d)" f(7)

forallg =4(2%) € G, with ¢ > 0.

Here x : G — U(1) is a character, e.g., a Dirichlet one (depends only on d).

e j is modular of weight 0, i.e., @a modular function. (x is trivial.)
e (> is modular of weight 4. (y is trivial.)
e g3 is modular of weight 6. ( is trivial.)

e 7 is modular of weight 1/2. (x is complicated.)

Feb. 2008, UCSB
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Modular Subgroups: I'y(N) < I'(1)

If gy := (§ {), i.e., g is the N-isogeny 7 — N7, then

e j = j(7) is stable under I'(1),
so j is a Hauptmodul for X (1) =T'(1) \ H*;

o j'=j'(r) := j(NT) is stable under I'(1)’ := gyT'(1)g5" < PSL(2,R),
so j' is a Hauptmodul for X (1) =T'(1)" \ H*;

e ;.7 are in the function field of Xo(N) := H* \ T'o(IN), where
o(N):=T(1)NnT'(1) ={g9g€Tl'(1l):¢c=0 (mod N)}.

Assertion: j, ' in fact generate the function field of X (V),
which classifies elliptic curves (up to isomorphism), plus N -isogenies.
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Coverings XO (N) /X(].) = [Refs.: Schoeneberg, McKean & Moll.]

The covering map Xo(/N) — X (1), induced by I'o(V) < I'(1),

e is a y(NV)-sheeted covering, where ¢)(N) := N [T,y (1 + 7).

e is branched only over j = 0, 122, oo, with known branching structure.
So if Xy(N) like X (1) is a genus-zero complex curve, then

e the function field of X((/V) is generated by a Hauptmodul =, and
Xo(N) = PH(C)

TN "

e j = j(zy) is a degree-y(N) rational function, with known branching
structure.

[The cusps of Xq(IN) are the points mapped to j = oo (i.e., 7 = ic0).]
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The Hauptmoduls x5, N > 2
Claim: For each N > 2 for which Xy(V) is of genus zero, i.e.,
N =2,3,4,56,7,8,9,10,12,13, 16, 18, 25,
a Hauptmodul z may be constructed as an eta quotient, e.g.,
vy =25 [ /[1)° == 2% - (47)% /n(T)®,
Ty = wy/(xa+ 16) = 2° - [1PP[4]"/[2]*.
Pedestrian Verification:

® Verify invariance of the alleged x under I'y(N).

@ Show the alleged = has exactly one zero and one pole on Xy(NV).
(Each can be chosen to lie at a cusp.)
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‘ Canonical Hauptmoduls as Eta Quotients |

N CL’N(T)ZH,N-CIAIN(T)

2 212 . [2]24/ [1]24

3 36 . [3]12/ [1]12

4 2% 4/ [1]°

5 5. [5]°/[1]°

6 2°3%-[2][6]°/ [1]°[3]

(O G A

8 27 [2]°[8]%/ [1]*[4]°

9 37 [9]°/ 1)

10 275 (2] [10]°/ [1]%[5]

12 2°3 - [2]%[3] [12]°/ [1]"[4] [6]°
13 13- [13]%/[1)°

16 27 [2][16]"/ [1]°[8]

18 2-3-[2][3][18]"/ [1]°[6] [9]
25  5-[25]/[1]
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Covering Maps X(N) — X (1)

j(7) as a function of z (1)

(z+16)3
X

— 193 4 (a:+64):c(ac—8)2

(z+27)(z+3)3
_ 123 1 (224182 —27)2

X

(224+162+16)3
x(z+16) 5 o )
_ 123 4+ (x+8)“(z“+16x—8)
($2+10x+5)3 x(x+16)

XT
2 2 2
_ 3 (x“+222+4125)(z“+4x—1)
= 12% 4 2
(2+6)3 (23 +1822 +842+24)3

x(248)3(249)2

2 (2% 424234192221 5042 —72)2

103, (z2+122+24)
= 12" + z(2+8)3 (x+9)2
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‘ The Dual Covering Maps |

3 (1) := j(NT) as a function of z x(7)

(2+256)3
4)(z—512
X
(z+27)(2+243)3
@ 2 2
48621
_ 1984 @@ 86;1:3 9683)
X
(2242562+4096)3
x4 (2416)
103 (2+32)2(22—5122—8192)2
—12° + 2
x*(x+16)
(2242502+3125)3
5
_ 123 4 (22+222+125) (22 —5002—15625)2

5
XT
(2412)3 (23 +25222 +38882+15552)

20 (z4+8)2(x+9)3
— 123 4+ (22 +362+216)2 (22 —50423 — 1382422 — 1244162 —373248)2

26 (2+8)2(249)3
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The Elliptic Families €y — X((V)

e Foreach N > 2, thereis afibration 5 — Xy(N) — X (1) where each
fibre is, formally, an elliptic curve (iso. class), plus an N-isogeny.

e If the N-isogeny is forgotten, this becomes a conventional elliptic
family. (A rational one, if X(/N) has genus zero.)

— Any elliptic curve (iso. class) appears as y(N) fibres of €.

— Singular fibres of €y include those above cusps
[points on X, (N) mapped to j = oo on X (1)], and elliptic points
[points on Xy(N) mapped to 5 = 0 and j = 123 on X (1)].

o A WeierstraB3 model: if j = P3(¢)S(t)/R(t) = 12° + Q*(t)T(t)/R(t)
where ¢t := z, then &y — Xy(N) has model
y? = 4x° — 3P()S()T(t)x — Q(t)S(t)T4(1).
Cf. Herfurtner’s 1991 classification of certain elliptic families.
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‘ Classical Modular Equations, Rationally Parametrized |

Each Hauptmodul xy, a parameter for X,(/V), rationally parametrizes
pairs of N-isogenous (iso. classes of) elliptic curves.

l.e., it parametrizes the order-N modular relation: the relation between
the transcendental functions j = j(7) and j' = j(N7) on H.

E.g., N =2:
i = (x2+16)°/x,, i’ = (w9 + 256)° /5.

Rational parametrization of pairs of fibres works at higher levels too.
E.g., the order-2 modular equation for =4, coming from X (8)/X(4):

za(7) = [ws(zs + 8)] (1), @a(27) =[5/ (w5 +4)] (7).

The rational function on each r.h.s. is of degree 2 because (8) /v (4) = 2
Is the index of I'g(8) in I'g(4), so X(8)/Xo(4) is 2-sheeted.
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‘ From Hauptmoduls to Modular Forms |

Theorem. If f = f(7) is a weight-k£ modular form on I'(1), with trivial
character, then f(N7)/f(7), which is a single-valued function on X, (V),
will be of weight 0, i.e., an element of the function field of X(/V). So it
must be a rational function of the Hauptmodul x .

Strengthened version. Even if the character is nontrivial, in ‘nice’ cases
(e.g., if it is Dirichlet), the quotient f(NT)/f(r) will be a finite-valued
function on Xy(V), i.e., an algebraic function of the Hauptmodul x .

Both of these extend to higher levels (to modular forms on genus-zero
['o(M), yielding rational/algebraic functions of x ).
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‘ Bringing in the Differential Equations |

Theorem (Stiller 1980s, et al.). Any weight-£ modular form f on a
genus-zero modular subgroup I'o(N) = P'(C),.,,, with trivial character,
viewed as a function of the Hauptmodul x,, satisfies a homogeneous
linear order-(k + 1) ODE: a Fuchsian differential equation.

A new perspective: independent variable=x , dependent variable=f.

Strengthened version. The same occurs for modular forms with ‘nice’
nontrivial characters; and even for certain non-form functions, such as
roots of modular forms, which may not even be single-valued on H.

Feb. 2008, UCSB 33



An Example: g, and g./*

e 9o = ¢o(7) is a weight-4 form on I'(1) and must satisfy an order-5
Fuchsian ODE “on X (1)”, with independent variable ;.

e The fourth root g;/4 IS not a weight-1 modular form, since it fails to be
single-valued on H > 7. But it ‘almost’ is one: each of its branches
satisfies an order-2 ODE. In particular,

1/4 -
9:/4(7) = 2P (1, 5 11 (7))

where J := 12°/4. As a function of an appropriate Hauptmodul, it is
a Gauss hypergeometric function! (Dedekind; Stiller 1988.)
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‘ New Algebraic Hypergeometric Transformations |

In consequence, for N = 2,3,4,5,6,7,8,9,10,12,13, 16, 18, 25, there is
a rationally parametrized algebraic hypergeometric transformation

21 (75155 15 12°/5' (an))
— PREFACTOR(zy) - oFy (&5, 3 1; 123/j(zn))

coming from ¢2/*(123/j'(zn)) = PREFACTOR(zy) - g/ (123 /j(z ).
(Abuse of notation here...).

The prefactor is in general algebraic, not rational.
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‘ Picard—Fuchs Equations and Modular Forms |

e Suppose that
— &5 X =T\ H*is an elliptic family, where I < I'(1) := PSL(2,7Z).

— w = w(x) is a meromorphic family of 1-forms, and cycles
(homology classes) v1,v- are defined as (multivalued) functions
of xr € X.

e Then (cf. Stienstra—Beukers)

— the second-order P-F equation satisfied by the periods [ w(x)
has a weight-1 modular form f(x) for I' among its solutions.
It may have a nontrivial [even, non-Dirichlet] character.

— The full solution space of the P-F equation is (C7(xz) & C) f(x).
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TheCasesI'=1(1)and ' =T'4(NV)

o IfI"=1(1),

o the associated weight-1 modular form f; is g2/*. (Not actually

single-valued.) A
o the associated P—F equation satisfied by f; = fi1(J) is the GHE

satisfied by o F} ( L 5.1, f). Here J := 123/;.

127 127

o IfI"=T4H(N),

¢ the associated weight-1 form fx could be taken to be f;, but...

¢ an associated P—F equation can be obtained by pulling back the
GHE along Xo(N) — X(1).
Result: a Fuchsian ODE with a singular point at each singular fibre.
And placing it in ‘normal form’ is best:
a GHE (if there are 3 singular fibres), a HE (if there are 4),...
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The P-F Equation L fy =0 for En — Xo(N)

N  Operator Ly, Where x := x N

2 . [1 1

2 D3 + E + 2(m+64)] D, + 16x(x—|—64)
2 |, [1 2

3 D3, + K + 3(x+27)] D, + 9x(1:+27)
, =

D:c + % + zc—|}16i| Dy + 4ac(ac1+16)

S

2 1 rx+11 x+10
D+ + 2+22g;+125} v T (x2+222+125)

2 1 x+6
Dy + |z + :c—|—8 + :c—|—9] Dy + z(z+8)(z+9)

2, [1 Ax+26 42421
D:c + K + 3(m2+13x+49)] Dy + 9z (22+132449)

2 [ 1 1 1 1
Dy + _+x+4+$+8] Dz + 779

2 1 2z+9 x+3
Dx + _l_ 2—1—9:c+27:| Dq + x(22492427)

© o0 3 O O

N.B.: The scalar P—F operator Ly is equivalent to
the 2 x 2 matrix P—F operator computed by Dwork (1964).
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‘ Canonical Weight-1 Modular Forms (with character) |

N (1) fn(zn(T)) cond(xn)
2 2P/ (1t (2 —
3 30 [3)12/ [1)12 1%/ [3 —
4 28/ (1 [= folaa(r))]  —
5 5% (5] [1)° {1/ 15)}° —
6 232 [ll6/ 18] [°[6] /2P [3)° 3
7T [ [ {7/ -
S 2P/ THE = fama(r))] 4
9 3393/ [1)? = falas(r)] 3

N.B.: Fractional powers in f5, f7 are related to €5, £7 having a
singular fibre of Kodaira type 111, I1, rather than just /; and I5, I5.
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‘ The General Theorem I

Let "' < I'(1) = PSL(2,7Z), and choose M > 1.
Let I := gy I'gy)} < PSL(2,R), and let ') .= T' N T,

It T, T M) are of genus zero, with Hauptmoduls =, (™), then x(7), z(MT)
have rational representations ¢(z*) (7)), ¢'(z™) (7)), and...

If f = f(x) is the canonical weight-1 modular form from the
P—F equation for the elliptic family & = I" \ H*, then
f(gb(x(M))) — PREFACTOR(z™)) . f (gb’(x(M))) .

Example: I' = I'o(N), I™M) = T'o(MN).

In this way, every (genus-zero) covering X (M N)/X(N) yields an
algebraic transformation of a special function.
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‘ Algebraic Transformations: Examples #1, 2, 3 |

® Xo(8)/Xo(4). Let f = 2% . [1]%[4]19/[2]*4, a weight-1 form on X (4);
view it as a function of the alternative H'modul 74 = 2*-[1]%[4]'% /[2]**.
This is simply the complete elliptic integral, K> = Ks(«)! Parametrize
the relation between z,(7), 24(27) by x5 to get |dentity #1.

@ Xo(25)/Xo(5). Let f = f5 = {[1]/[5]}"/?, a weight-1 form on X,(5);
view it as a function of the Hauptmodul 5.
(This was the function “fs = f5(z)”.) Parametrize the relation
between z5(7), z5(57) by x5 to get ldentity #2.

® Xp(12)/X0(6), Xo(18)/X (6). Let f = [2]°[3]°/[1]%[6]°, a weight-1 form
on X, (6); view it as a function of the alt. Hauptmodul x4/ (zg + 9).
(This was the generating function “F = F(z)”.) Parametrize the
relation between x4(7), 4(27) by x15 to get Identity #3a, etc.
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‘ Ramanujan’s Elliptic Integrals |

e Ramanujan’s complete elliptic integral
Ki(ay) o< oF1(1/r, 1 —1/7r; 15 «p)

when r = 2, 3, 4, is associated with families €4, €3, £, (respectively).
It is simply a canonical weight-1 modular form on the base curve,
I.e., a period, written as a function of an (alternative) Hauptmodul.

e In consequence: many new algebraic transformations of K3 and Ky,
e.g.,

1/2
:1:(:1:+4)5 22 4+ 6z + 4 / a:5(:l:+4)
Ka | 2 2 (2 =% 13 Ka |2 2 2
(x% + 62 + 4)#(x= + 8x + 20) x“ + 30z 4+ 100 (x% + 8z 4 20) (x4 4 30x + 100)

which comes from €19 — €, i.€., from Xy(10)/Xy(2) or I'(10) < I'(2).
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‘ Current and Future Work I

e [reating more elliptic families.

o & 5 T \ H*, where I' is a general genus-zero congruence
subgroup of PSL(2,7Z), other than an Xy(V).
(Classified by Cummins—Pauli.)

o & 5 T'\ H*, where I' is a genus-zero non-congruence subgroup.
(Not yet classified.)

o Elliptic families that are not of this quotient form.
(Cf. Herfurtner’s classification, for 4 singular fibres.)

e Extending these computations to pencils of other algebraic varieties.
(E.g., lattice-polarized K3 surfaces; cf. Doran.)

e Treating multivariate families, discovering (perhaps) new algebraic
transformations of multivariate hypergeometric functions.
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