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Prediction of Quantum Theory

 Quantum computing is possible

* There are non-abelian anyons

Thm: Prediction 2 implies Prediction 1.

Anyon=Localized Non-Local Properties



Favorite Theorems

* Poincare-Hopf Index Thm

 Gauss-Bonnet-Chern Thm



Quantum Systems

« A pair Q=(£, H), where £ is a Hilbert space
and H an Hermitian operator, physically H
should be local.

Examples:

0) £ =®; C?, H=Y; IQ0,'®I, g.5.5]1>Q..Q|1>, C2=C |0>@C|1>
1) Toric code---Z,-homology (Turaev-Viro type TQFT or Levin-Wen model)

2) Hofstadter model---Chern number ¢; (Free fermions)



Toric Code

H=-g%, A, -J%,B,

‘Z :®edges o
Av:®e8v o’ ®others Ide’

Bp:®68p c* ®others lde’



Hofstadter Model

H((P» ﬂ):'zv,v’ hv,v’ av+av1 B ”Zvav-l_av

Where Ry, on’ m') £ =®pyertices C°
=lifm=m'+1,n=n’
=et2mime if n=p' + 1, m=m'
=0 otherwise

and v=(m,n), v’=(m’,n’) are vertices, a,*, a,, are fermion creation and
annihilation operators at v, v’.



All Physics Is Local

A physical guantum system Q=(<, H) on a
space Y has a decomposition =), L,0r

@, L,, and H is local w.r.t. the
decomposition.

* An n-dim quantum theory Is a Hamiltonian
schema that defines a quantum system
one each n-manifold (space) Y.



Phase Diagram

* Given a set of quantum systems Q(X)
Indexed by a parameter set X, a subset
X\C of admissible ones, and an
equivalence relation on X\C, then each
equivalence class of X\C is a phase.

* The set X\C divided into phases Is a phase
diagram.



Hofstadter Butterfly

Fractal phase diagram of the Hofstadter model

Each of the infinite phases is characterized by the Chern number of its

Hall conductance. Warm colors indicate positive Chern numbers; cool

colors, negative numbers, and white region Chern numbers=0
H-axis=chemical potential, V-axis=magnetic flux

D. Osadchy, J. Avron, J. Math. Phys. 42, 2001



Topological Phases of Matter

A topological quantum phase is represented by a
guantum theory whose low energy physics in the
thermodynamic limit is modeled by a stable unitary
topological quantum field theory (TQFT) and
topological responses.

Remarks:

1. Low energy physics might be modeled only partially
2. Stability is related to energy gap



Ground States Form TQFTs

Given a quantum theory H on a physical space Y with
Hilbert space Ly= @®V/(Y), where V,(Y) has energy A;
and V,(Y) is the ground state manifold. If H is
topological, then the functor Y— V(Y) is a part of a
TQFT.

Classification of topological phases of
matter, to first approximation, is to
classify unitary topological guantum
field theories?



Atiyah’s Axioms of (n+1)-TQFT

(TQFT w/o excitations and anomaly)

A symmetric monoidal functor (V,2):
Bord(n+1)-> Vec

e.g. n=2, V(Y)=C[H{(Y;Z,)]
Oriented closed n-mfd Y = vector space V(Y)
Orient (n+1)-mfd Xwith o0X=Y = vector Z(X)eV(0X)

V(D) =C

V(Y. U'Y,) 2 V(Y,)®V(Y,)
VY) 2 VA(Y)

Z(Yx )=ldy,

Z(X Wy Xo)=Z(Xy) » Z(Xy) Z(X1) Z(X3)
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2D Topological Phases in Nature

Quantum Hall States
1980 Integral Quantum Hall Effect (QHE)---von Klitzing
(1985 Nobel, now called Chern Insulators)

1982 Fractional QHE---Stormer, Tsul, Gossard at v=1/3
(1998 Nobel for Stormer, Tsui and Laughlin)

1987 Non-abelian FQHE??7---R. Willet et al at v=5/2

(All are more or less Witten-Chern-Simons TQFTS)

Topological superconductor p+ip (Ising TQFT)

2D topological insulator HgTe



Quantum Hall States

N electrons in a plane bound to the interface between two
semiconductors immersed in a perpendicular magnetic field

kR i1 Classes of ground state wave functions that
,",.",.",.",.*',.",_",.",,",,",.",,",",",';’;';';';°;:;';‘. have_s_imilar properties or no phase
transitions as N—o (N ~ 101! cm™2)
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ASASEEANESSAE ,‘,*,*;‘,”j, " Interaction is dynamical entanglement and
o RN i1 guantum order is materialized entanglement

Fundamental Hamiltonian:
1
H=x," 5 VA A(Z)] % +Vpg(2)} + Zj<iV(2j-21)

Model Hamiltonian:
szlN{ﬁ [|7]—q A(Zj)] 2 } + ?, e.g. Zj<k S(Zj-Zk) Z; position of j-th electron



Classical Hall effect

On a new action of the magnet on electric currents
Am. J. Math. Vol. 2, No. 3, 287—292
E. H. Hall, 1879

“It must be carefully remembered, that the mechanical
force which urges a conductor carrying a current across
the lines of magnetic force, acts, not on the electric
current, but on the conductor which carries it..."

Maxwell, Electricity and Magnetism Vol. Il, p.144



Birth of Integer Quantum Hall Effect

Hall Effect

Edwin H. Hall (1879)
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New Method for High-Accuracy Determination of
the Fine-Structure Constant Based on Quantized
Hall Resistance,
K. v. Klitzing, G. Dorda and M. Pepper
Phys. Rev. Lett. 45, 494 (1980).

These experimental data, available to the public 3 years
before the discovery of the quantum Hall effect, contain
already all information of this new quantum effect so that
everyone had the chance to make a discovery that led to the
Nobel Prize in Physics 1985. The unexpected finding in the
night of 4./5.2.1980 was the fact, that the plateau values in
the Hall resistance x-y are not influenced by the amount of
localized electrons and can be expressed with high precision

by the equation Ry = _

ve?



Fractional Quantum Hall Effect

D. Tsui enclosed the distance between B=0 and the
position of the last IQHE between two fingers of
one hand and measured the position of the new
feature in this unit. He determined it to be three
and exclaimed, “quarks!” H. Stormer

The FQHE is fascinating for a long list of reasons,
but it is important, in my view, primarily for one: It
established experimentally that both particles
carrying an exact fraction of the electron charge e
and powerful gauge forces between these patrticles,
two central postulates of the standard model of
elementary particles, can arise spontaneously as
emergent phenomena. R. Laughlin

FILLING FACTOR »
432 1 2/3 /2 1/3 1/4
T T T T

XXXX

(h/e?)

Py

|

2 PO U1 "
50 100 150 200

o T 2 1 a3

MAGNETIC FIELD B (kG)

In 1998, Laughlin, Stormer, and Tsui
are awarded the Nobel Prize

“for their discovery of a new form
of quantum fluid with fractionally
charged excitations.”

D. C. Tsui, H. L. Stormer, and A. C. Gossard
Phys. Rev. Lett. 48, 1559 (1982)



How Many Fractions Have Been Observed? ~80

Magnetic field (T)

1/3 1/5 1/7 1/9 2/11 2/13 2/15 2/17
213 2/5 2/7 2/9 3/11 3/13 4/15 3/17
4/3 3/5 3/7 4/9 4/11 4/13 7/15 4/17
5/3 4/5 4/7 5/9 5/11 5/13 8/15 5/17
7/3 6/5 5/7 7/9 6/11 6/13 11/15 6/17
8/3 7/5 9/7 11/9 7/11 7/13 22/15 8/17

8/5 10/7 13/9 8/11 10/13 23/15 9/17

11/5 12/7 25/9 16/11 20/13

12/5 16/7 17/11

19/7
m/5, m=14,16, 19

filling factor or fraction
V= N, =# of electrons
0] Ng, =# of flux quanta

How to model the quantum
state(s) at a filling fraction?

What are the electrons doing
at a plateau?

3/19 5/21 6/23 6/25

4/19 10/21
5/19
9/19
10/19
5/2
7/2
19/8

Pan et al (2008)
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Pattern of long-ranged entanglement

All electrons participate in a collective dance
following strict rules to form a non-local,
iInternal, dynamical pattern---topological order

1. Electrons stay away from each other as much as possible

2. Every electron is in its own constant cyclotron motion

3. Each electron takes an integer number of steps to go around
another electron



_ - 1,7./4
v Vs = H(Zi - Zj)se :

<]
R. Laughlin
U(1)-WCS theory, abelian anyons
v=5/2 ?
1 2 —Zzifj/4
W, = PI H(Zi_zj) €
Zi T Zj I<j

Moore-Read
Ising TQFT or “SU(2),” WCS theory, non-abelian anyons



Classify Fractional Quantum Hall States

Wave functions of bosonic FQH liquids

Chirality:

Y(z,,...,2y) IS @ polynomial (Ignore Gaussian)
Statistics:

symmetric=anti-symmetric divided by I1;;(z-z)
Translation invariant:

Y(z,+*c,...,zytC) = ¥(z4,...,zy) foranyc

Filling fraction:

v=lim ——, where Ng IS max degree of any z;

"o

Conformal blocks of CFTs—> TQFTs



FOQH States =WCS TQFTs?

Physical Thm: Topological properties of abelian bosonic
FQH liquids are modeled by Witten-Chern-Simons theories
with abelian gauge groups T".

Conjecture: Topological properties of FQH liquids at

v:2+% are modeled (partially) by SU(2),-WCS theories.

k=1,2,3,4, v= g g 1—53 g. (Read-Rezayi). 5/2 + physically



Expansion of Quantum Hall Physics

* Topological phases of free fermion systems—
local gapped free fermions

« Topological phases with anyons in 2D---
Schwartz type (2+1)-TQFTs including Witten-
Chern-Simons theories

« Short-ranged entangled phases---Witten type
cohomological TQFTs?



I: Free Fermions

— +

h=(h; ) Is an IxI Hermitian matrix

Introduce Majorana operators
_L +
Hx=; 2ik Xik Vi Yk

X=(X;,) Is a real 2Ix2| anti-symmetric matrix

“Gapped”, and “local”: the hopping matrix local x;, =0 if |j-k| large.



Q
Q+SLS

No or P.H.S
T only
Tand Q
Three -1
Four

Five

Six

Seven

Kitaev Periodic Table
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Topological Invariants m,

A Z 0 Z IQHE 0
Alll 0 Z 0 Z

D Z, Z, Z 0
DI 0 7, Z, HgTe Z
All Z 0 Z, Z,
Cll 0 Z 0 Z,
C 0 0 Z 0
Cl 0 0 0 Z
Al Z 0 0 0
BDI Z, Z 0 0



II: 2D with Anyons

In R?, an exchange is of infinite order

K X

Braids form groups B,, then braid
statistics of anyons is A: B,~ U(k)

If k=1, but not 1 or -1, abelian anyons

If k>1, but not in U(1), non-abelian



Laughlin wave function for v=1/3
Laughlin 1983

Good trial wavefunction for N electrons at z; in ground state

Gaussian
&
5. 402
¥13=1(2-2)° e Xkl

Physical Theorem:

1. Laughlin state is incompressible: density and gap in limit (Laughlin 83)
2. Elementary excitations have charge e/3 (Laughlin 83)
3. Elementary excitations are abelian anyons (Arovas-Schrieffer-Wilczek 84)

Experimental Confirmation:

1.and 2., but 3. ?, thus Laughlin wave function is a good model



Elementary Excitations=Anyons

Quasi-holes/particles in v=1/3 are abelian anyons

-ef3

- - e/3 e/3 \

¥1/3=I1k(Mo-z)° I1(z-2)° a-Zilzil?/4
=Hk(n1'zj) Hk(nZ'Zj) Hk(nB'Zj) Hi<j(zi'zj)3 e'zi|2i|2/4

n anyons at well-separated n;, i=1,2,.., n, _
there is a unique ground state \I’ en 1/3
— b4



Non-abelian Anyons

Given n anyons of type x in a disk D, their ground state degeneracy

dim(V(D,x,....x))=D,, ~d"
The asymptotic growth rate d is called the quantum dimension.

An anyon d=1 is called an abelian anyon, e.g. Laughlin anyon, d=1
An anyon with d >1 is an non-abelian anyon, e.qg. the Ising anyon o, d=v/2.

For n even, Dn:% 22 with fixed boundary conditions,

n—1

nodd, D,=2 2. (Nayak-Wilczek 96)

Degeneracy for non-abelian anyons in a disk grows exponentially with # of
anyons, while for an abelian anyon, no degeneracy---it is always 1.



Non-abelian Statistics

If the ground state is not unique, and has
a basis vy, Wy, «.ey Yy

Then after braiding some particles.

V., apVitagpyot...Fagy,
YV, apVitagyt...Fany,

A B, U(K),
when k>1, non-abelian anyons.



Moore-Read or Pfafflan State
G. Moore, N. Read 1991

Pfaffian wave function (MR w/ ~ charge sector)
— _ 732 a-2ilz 24
Y1 ,2=Pf(1/(z;-z))) I1;<(z;-2))* el
Pfaffian of a 2nx2n anti-symmetric matrix M=(a;;) is
o™ =n! Pf (M) dxl/\dxz/\.../\dxzn if (D:zi<]’ Clij dxi/\ dX]
Physical Theorem:

1. Pfaffian state is gapped
2. Elementary excitations are non-abelian anyons, called Ising anyon o
...... Read 09



Enigma of v=5/2 FQHE

R. Willett et al discovered v=5/2 in1987
 Moore-Read State, Wen 1991
» Greiter-Wilczek-Wen 1991
« Nayak-Wilczek 1996
 Morf 1998

R, (hfe)

R, (k)

MR (maybe some variation) is a good trial state for 5/2
« Bonderson, Gurarie, Nayak 2011, Willett et al, PRL 59 1987
A landmark (physical) proof for the MR state
“‘Now we eagerly await the next great step: experimental

confirmation.” ---Wilczek
Experimental confirmation of 5/2:
gap and charge e/4 V, but non-abelian anyons ???



Extended (2+1)-TOFT

Put atheory H on a closed surface Y with anyons a,, a,, ..., a, at
Ny---M, (PUNctures), the (relative) ground states of the system
“outside” n,,...,n, Is a Hilbert space V(Y; a;, a,, ..., a,).

For anyons in a surface w/ boundaries (e.g. a disk), the
boundaries need conditions.

Stable boundary conditions correspond to anyon types (labels,
super-selection sectors, topological charges). Moreover, each
puncture (anyon) needs a tangent direction, so anyon is
modeled by a small arrow (combed point), not just a point.

((M

label |




Extended (2+1)-TQFT Axioms

Moore-Seiberg, Walker, Turaeyv,...

Let L={a,b,c,...d} be the labels (particle types), a » a*, and a**=a,
0 (or 1) =trivial type

)
Disk Axiom:;

V(D?; a)=0if a= 0, Cif a=0

Annulus Axiom: @

V(A: a,b)=0 if a= b*, C if a=b*

Gluing Axiom:
V(Y; I) = 6_Dx&ZL V(Ycut; I’X’x*)




Algebraic Theory of Anyons

L={a,b,c,...d} alabel setand P,;, . a pair of pants labeled by a,b,c.
Ngp c=dim V(Pgy ), then Ny, . Is the fusion rule of the theory.

a®b=@Ngy, .C &

a b

Every surface Y can be cut into disks D, annuli A, and pairs of pants. If V(D),
V(A), V(Pgp,c) are known, then V(Y) is determined by the gluing axiom.

Conversely a TQFT can be constructed from V(Y) of disk, annulus and pair of
pants. Need consistent conditions: a modular tensor category

Unitary modular categories are algebraic data of unitary (2+1)-TQFTs
and algebraic theories of anyons: anyon=simple object, fusion=tensor product,
statistics of anyons are representations of the mapping class groups.



Rank < 5 Unitary Modular Categories

joint work w/ E. Rowell and R. Stong

A
Trivial
A NA 2
Semion Fib
BU
A NA 8 | NA 2
(U(1),3) Ising (SO(3),5)
BU
A 51A NA 4 | NA 2 | NA 3
Toric code (U(1),4) Fib x Semion (SO(3),7) DFib
BU BU BU

The ith-row is the classification of all rank=i unitary modular tensor categories.
Middle symbol: fusion rule. Upper left corner: A=abelian theoy, NA=non-
abelian. Upper right corner number=the number of distinct theories. Lower
left corner BU=there is a universal braiding anyon.




Witt Group

 Two modular categories are Witt
equivalence If they are the same up to
Drinfeld centers

 All equivalence classes form an Abelian
group.



Ill. Short-ranged Entangled

* Group cohomology
X.-G. Wen et al

Complete classification of 1D gapped phases

» Generalized cohomology theory
A. Kitaev



Table of Topological Phases of Matter

Mathematically, define and classify unitary TQFTs
« Stability? Energy gap
 How to combine TQFTs with symmetry?

 Where is the geometry?

“All physics is geometry”---J. A. Wheeler

Quantum topology + Quantum geometry
to better understand guantum phases of matter



Topological Quantum Computation

Computation Physics

readout < \ / > fusion

-»> a» -» L\
applying gates / braiding particles
z
a» - 4P [/

initialize / N\ /T create




Topological Quantum Computation




