K3 surfaces from Seiberg-Witten curves

GTP Seminar, UCSB October $4^{\rm th}$, 2013

Andreas Malmendier, Colby College (joint work with Chuck Doran)

F-theoretic interpretation of Kummer pencil (Sen '95)

- Kummer pencil on T^4/\mathbb{Z}_2 is 2dim subspace of moduli space:
 - 1) Base is T^2/\mathbb{Z}_2 with complex structure $\tau_b = \tau_1$.
 - 2) Elliptic fiber has constant modulus $\tau_f = \tau_2$.
 - 3) Over $z = 0, 1, \lambda_1, \infty$ there are I_0^* -fibers $(\operatorname{ord}_D(\Delta) = 6)$.
 - 4) Monodromy acts by $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ on periods, but trivially on au_f .
- Theory is equivalent to orientifold in type IIB string
 - 1) Base is T^2/\mathbb{Z}_2 .
 - 2) Axion-dilaton modulus is constant.
 - 3) 4 sets of 6 coincident D7-branes located at $z=0,1,\lambda_1,\infty$
 - 4) Monodromy is identified with transformation $(-1)^{F_L} \cdot \Omega$

Embedding of SW-curve into F-theory

- Physics near orientifold plane = Seiberg-Witten solution for $\mathcal{N}=2$, d=4 SYM for SU(2) with four quark flavors.
- Sen provided embedding of SW-curve into F-theory:

	$\mathcal{N} = 2 \text{ SYM}$	\leftrightarrow	F-theory
total space:	rational elliptic surface		elliptic K3 surface
elliptic fiber:	gauge coupling		axion-dilaton modulus
base:	vev u of adjoint scalar		base pt z of IIB compactification
limit:	all quarks massless	\leftrightarrow	orbifold limit T^4/\mathbb{Z}_2
fibration:	$2I_0^*$ (isotrivial)	\leftrightarrow	$4 I_0^*$ (isotrivial)
parameter:	$j(au_0)$	=	$j(au_f)$
WEq:	$g_2(u) \doteq E_4(\tau_0) (u-1)^2$ $g_3(u) \doteq E_6(\tau_0) (u-1)^3$	\leftrightarrow	$G_2(z) = g_2(z) z^2 (z - \lambda_1)^2$ $G_3(z) = g_3(z) z^3 (z - \lambda_1)^3$
deformation:	masses $m_i > 0$	=	location of seven branes c_i
gen. fibration:	$6I_1 + I_0^*$	\leftrightarrow	$6I_1 + I_0^* + 2I_0^*$
WEq:	$g_2(u) = f_2(u, m_i)$ $g_3(u) = h_3(u, m_i)$	\leftrightarrow	$G_2(z) = f_2(z, c_i) z^2 (z - \lambda_1)^2$ $G_3(z) = h_3(z, c_i) z^3 (z - \lambda_1)^3$

Results (Doran, M.):

- replaced SW-curve $(2 I_0^*)$ with any extremal rational elliptic surfaces **S** with section (classified by **Miranda, Persson '86**),
- obtained 2-parameter families $\mathbf{X}_1(\mathbf{S})$ of lattice polarized K3 surfaces of Picard rank $\rho=8+2\cdot 4+2=18$, and 2-parameter families $\mathbf{X}_2(\mathbf{S})$ as their double covers,
- after restricting to simple one-parameter subfamily: reproduced periods for families of M_n -polarized K3 surfaces (n=1,2,3,4,6), new family whose periods satisfy the Apery recurrence for $\zeta(2)$,
- determined quadratic period relation and interpretation of periods and twist-parameters as modular forms,
- generalization to 3-parameter family w/ $\rho = 17$ selects SW-curve ($N_f = 0$) \rightarrow moduli: genus-2 curve of level 2

Rational surfaces

• Rational elliptic surfaces **S** over $\mathbb{C}P^1$ with section:

• Consider extremal rational elliptic srfc: $rk(MW) = 0, \rho = 10$.

Examples:

• SW-curve **S** for pure SU(2)-gauge theory: Legendre family over the *t*-line, t Hauptmodul for $\Gamma(2)$,

$$y^2 = x(x-1)(x-t)$$

$$\begin{array}{c|cccc} E_{\text{sing}} & I_2 & I_2 & I_2^* (= D_6) \\ \hline t & 0 & 1 & \infty \\ \hline E_{\text{sing}} & I_1 & I_1 & I_4^* (= D_8) \\ \hline \end{array}$$

Pencil related by 2-isogeny

Extremal rational surfaces and their periods

• Rational elliptic surfaces **S** with section

$$\mathbf{\bar{S}}: y^2 = 4x^3 - g_2x - g_3, \qquad \begin{array}{c} g_2 \in H^0(\mathcal{O}(4)), \\ g_3 \in H^0(\mathcal{O}(6)), \end{array} [t:1] \in \mathbb{C}\mathrm{P}^1.$$

Extremal rational surfaces (up to *-transfer):

isot	trivial		G
I_0	<i>I</i> ₀ *	<i>I</i> ₀ *	\mathbb{Z}_2
I_0	IV	IV^*	\mathbb{Z}_3
I_0	III	<i>III*</i>	\mathbb{Z}_4
10	11	<i>11</i> *	\mathbb{Z}_6

		, ,	
mo	dula	G	
I_1	I_1	<i>I</i> ₄ *	$\Gamma_0(4)$
I_2	I_2	I_2^*	Γ(2)
<i>I</i> ₃	I_1	IV^*	$\Gamma_0(3)$
I_2	I_1	<i>III</i> *	$\Gamma_0(2)$
I_1	I_1	<i>11</i> *	Γ

u	c.).						
mo	modular (4) G						
<i>I</i> ₄	I_2	<i>I</i> ₂	<i>I</i> ₄	4 <i>E</i> ⁰			
I_2	I_1	I_1	I_8	$\Gamma_{0}(8)$			
I_3	I_3	I_3	I_3	Γ(3)			
I_9	I_1	I_1	I_1	$\Gamma_0(9)$			
I_5	I_1	I_1	I_5	$\Gamma_1(5)$			
I_6	I_1	I_2	I_3	$\Gamma_0(6)$			

 $G \subset \mathrm{SL}(2,\mathbb{Z})$ generated monodromy group

Extremal rational surfaces and their periods

• Rational elliptic surfaces S with section

$$\mathbf{\bar{S}}: y^2 = 4x^3 - g_2x - g_3, \qquad \begin{array}{c} g_2 \in H^0(\mathcal{O}(4)), \\ g_3 \in H^0(\mathcal{O}(6)), \end{array} [t:1] \in \mathbb{C}\mathrm{P}^1.$$

Extremal rational surfaces (up to *-transfer):

mo	dula	r (3)	μ
I_1	I_1	<i>I</i> ₄ *	1/2
I_2	I_2	I_2^*	1/2
<i>I</i> ₃	I_1	\bar{lV}^*	1/3
I_2	I_1	<i>III*</i>	1/4
I_1	I_1	<i>11</i> *	1/6

mo	dula	r (4)		а	q
I_4	I_2	I_2	I_4	-1	0
I_2	I_1	I_1	I_8	-1	0
<i>I</i> ₃	I_3	I_3	I_3	$\frac{1-i\sqrt{3}}{2}$	$\frac{3-i\sqrt{3}}{2}$
I 9	I_1	I_1	I_1	$\frac{1-i\sqrt{3}}{2}$	$\frac{3-i\sqrt{3}}{2}$
<i>I</i> ₅	I_1	I_1	I_5		
I_6	I_1	I_2	I_3	1/9	1/3

Solutions to Picard-Fuchs rank-2 first order linear system:

$$\omega = {}_{2}F_{1}(\mu, 1 - \mu; 1|t)$$
 $\omega = HI(a, q; 1, 1, 1, 1|t)$

• Construction 1: quadratic twist with polynomial h

$$ar{\mathbf{X}}_1 = ar{\mathbf{S}}_h: \ Y^2 = 4 \, X^3 - h^2 \, g_2 \, X - h^3 \, g_3$$
 \downarrow
 $\mathbf{\bar{S}}: \ y^2 = 4 \, x^3 - g_2 \, x - g_3 \ .$

- Twist adds 2 fibers of type I_0^*
- Parameter defines position of additional I_0^* , h = t(t A)
- ullet 1-parameter families of lattice-polarized K3 surfaces (
 ho=19)
- Example: $T_{\mathbf{X}} = \langle 2 \rangle^{\oplus 2} \oplus \langle -2 \rangle$, $A \notin \{0, 1\}$:

• Construction 1: quadratic twist with polynomial h

$$f{f ar{X}}_1 = f{ar{S}}_h: \ Y^2 = 4 \, X^3 - h^2 \, g_2 \, X - h^3 \, g_3$$
 \downarrow
 $f{ar{S}}: \ y^2 = 4 \, x^3 - g_2 \, x - g_3 \ .$

- 2 I_0^* 's, h = t(t A), 2-form: $dt \wedge \frac{dX}{Y} = \frac{1}{\sqrt{h(t)}} dt \wedge \frac{dx}{y}$
- Represent K3-periods as **Euler transform** of a HGF $\Omega_{ij} = \oiint_{S_{ij}} dt \wedge \frac{dX}{Y} = \int_{t_i^*}^{t_j^*} dt \, \frac{1}{\sqrt{h(t)}} \, \omega$
- They solve a 3rd oder ODE (=symmetric square of 2nd order).

Solutions to the rank-3 integrable linear system of K3 periods:

$$\Omega = {}_{3}F_{2}\left(\begin{array}{c} \mu, \frac{1}{2}, 1-\mu \\ 1.1 \end{array} \middle| A\right) \qquad \Omega = \left[\begin{array}{c} HI\left(a, \frac{q}{4}; \frac{1}{4}, \frac{3}{4}, 1, \frac{1}{2} \middle| A\right) \end{array}\right]^{2}$$

• Construction 1: quadratic twist with polynomial h

$$\mathbf{\bar{X}}_1 = \mathbf{\bar{S}}_h : Y^2 = 4X^3 - h^2 g_2 X - h^3 g_3$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \mathbf{\bar{S}} : y^2 = 4x^3 - g_2 x - g_3.$$

- 2 I_0^* 's, h = t(t A), 2-form: $dt \wedge \frac{dX}{Y} = \frac{1}{\sqrt{h(t)}} dt \wedge \frac{dx}{y}$
- Represent K3-periods as **Euler transform** of a HGF $\Omega_{ij} = \oiint_{S_{ij}} dt \wedge \frac{dX}{Y} = \int_{t_i^*}^{t_j^*} dt \, \frac{1}{\sqrt{h(t)}} \, \omega$
- They solve a 3rd oder ODE (=symmetric square of 2nd order).

Solutions to the rank-3 integrable linear system of K3 periods:

$$\Omega = \left[{}_{2}F_{1}\left(\frac{\mu}{2}, \frac{1-\mu}{2}; 1 \middle| A \right) \right]^{\frac{2}{2}} \qquad \Omega = \left[\left. HI\left(a, \frac{q}{4}; \frac{1}{4}, \frac{3}{4}, 1, \frac{1}{2} \middle| A \right) \right. \right]^{2}$$

Proposition (M.-Doran)

• There is a fundamental set of solutions $\{x_1, x_2, x_3\}$ such that

μ	quadric surface	series
1/2	$x_1^2 + x_2^2 - x_3^2 2x_1^2 + 2x_2^2 - 2x_3^2$	
1/3	$4x_1^2 + 3x_2^2 - 3x_3^2$	
1/4	$4x_1^2 + 2x_2^2 - 2x_3^2$	
1/6	$x_1^2 + 4x_2^2 - x_3^2$	${}_{3}F_{2}\left(\begin{array}{c c} \frac{1}{6}, \frac{3}{6}, \frac{5}{6} \\ 1, 1 \end{array} \middle A\right) = \sum_{n=0}^{\infty} \frac{(6n)!}{n!^{3}(3n)!} \frac{A^{n}}{2^{6n}3^{3n}}$

- First 4 cases with 4 singularities are obtained as double covers.
- Cases 5 and 6 are related to Apery's recurrence for $\zeta(2)$ and $\zeta(3)$:

e.g.,
$$\Omega = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 \right) \frac{A^n}{4^n}$$

• Construction 2: double cover branched at t = 0 and t = A:

$$egin{array}{lcl} ar{\mathbf{X}}_2 = ar{\mathbf{S}}_{[0,A]}: & Y^2 & = & 4\,X^3 - s^4\,g_2(t(s))\,X - s^6\,g_3(t(s)) \\ & \downarrow & & \downarrow \\ ar{\mathbf{S}}: & Y^2 & = & 4\,X^3 - g_2(t)\,X - g_3(t) \;. \end{array}$$

- with $t = \frac{(s+A/4)^2}{s}$ we have $ds \wedge \frac{dX}{Y} = \frac{1}{\sqrt{t(t-A)}} dt \wedge \frac{dx}{y}$
- Example of 1-param. family of lattice-polarized K3 surface of Picard rank 19, $T_{\mathbf{X}} = H \oplus \langle -2 \rangle$, $A \notin \{0,1\}$:

• \mathbf{X}_2 's are one-parameter families with n=1,2,3,4,5,6,8,9 and $M_n=H\oplus E_8\oplus E_8\oplus \langle -2n\rangle$ lattice polarization.

Proposition (M.-Doran)

- The two constructions give rise to degree-two rational maps $X_2 \longrightarrow X_1$ that leave the holomorphic two-form invariant.
- The Picard-Fuchs differential equations of each pair X_2 , X_1 coincide.

Remarks:

- The periods of the families with M_n lattice polarization for n=1,2,3,4,6 agree with the results of **Lian, Yau ['96]**, Dolgachev ['96], Verrill, Yui['00], Doran ['00], and Beukers, Stienstra, Peters ['84, '85, '86].
- One can "undo" the Kummer construction and provide interpretation of K3 periods in terms of modular forms:

Set
$$h(t) = (t - A)(t - B)$$
 in \mathbf{X}_1 and $t = \frac{16 \, s^2 + 8 \, (A + B) \, s + (A - B)^2}{16 \, s}$ in \mathbf{X}_2 s.t.

$$ds \wedge \frac{dX}{Y} = \frac{1}{\sqrt{h(t)}} dt \wedge \frac{dx}{y}$$

Proposition (M.-Doran)

- The two constructions give rise to degree-two rational maps $\mathbf{X}_2 \dashrightarrow \mathbf{X}_1$ (for all cases with $\kappa = 0$) that leave the holomorphic two-form invariant.
- The Picard-Fuchs linear systems for each pair X_2, X_1 coincide.
- K3-periods solve an integrable rank-4 linear system in ∂_A , ∂_B .
- In cases with 3 singular fibers, solution is Appell HGF:

$$\Omega_{\mu}(A,B) = rac{1}{B^{\mu}} F_2\left(\mu;rac{1}{2},\mu;1,2\mu \middle| 1 - rac{A}{B},rac{1}{B}
ight)$$

Remarks:

• F_2 satisfies equations of a linear system of rank 4:

$$A(1 - A) F_{AA} + A B F_{AB} + (\gamma - (\alpha + \beta + 1) A) F_{A} - \beta B F_{B} - \alpha \beta F = 0,$$

$$B(1 - B) F_{BB} + A B F_{AB} + (\gamma' - (\alpha + \beta' + 1) B) F_{B} - \beta' A F_{A} - \alpha \beta' F = 0.$$

• Example ($\mu = 1/6$): $M = H \oplus E_8 \oplus E_8$ -polarized case,

• Examples realize elliptic fibrations $\mathfrak{J}_3, \mathfrak{J}_4, \mathfrak{J}_6, \mathfrak{J}_7, \mathfrak{J}_{11}$ on $\operatorname{Kum}(E_1 \times E_2)$ from **Oguiso ['88]**.

Remarks:

- Ω 's satisfy Quadratic Condition (cf. **Sasaski, Yoshida ['88]**): fundamental solutions (x_1, x_2, x_3, x_4) are quadrically related, solution surfaces $S \subset \mathbb{P}^3$ reduces to $\mathbb{P}^1 \times \mathbb{P}^1$.
- Clausen-type equation:

$$\begin{split} &\frac{1}{B^{\mu}}\,F_{2}\left(\mu;\frac{1}{2},\mu;1,2\mu\middle|1-\frac{A}{B},\frac{1}{B}\right) = \frac{1}{(1-A-B)^{\mu}} \cdot \frac{{}_{2}F_{1}\!\left(\frac{\mu}{2},\,\frac{\mu+1}{2};\,1\middle|x\right)}{{}_{2}F_{1}\!\left(\frac{\mu}{2},\,\frac{\mu+1}{2};\,\mu+\frac{1}{2}\middle|y\right)} \\ &\text{where } x(1-y) = \left(\frac{A-B}{1-A-B}\right)^{2} \;,\; y(1-x) = \left(\frac{1}{1-A-B}\right)^{2} \;. \end{split}$$

• F_2 satisfies linear and quadratic transformations (symmetries) linear: $\Omega_{\mu}(A,B) = \Omega_{\mu}(B,A)$

Remarks:

• F₂ satisfies linear and quadratic transformations (symmetries)

quadratic:
$$\Omega_{1/2}(A,B) = \left(\frac{2\,B}{1-A-B}\right)^{1/2} \, \Omega_{1/4}(\tilde{A},\tilde{B})$$
 with $\tilde{A} = \left(\frac{A-B+1}{A+B-1}\right)^2, \; \tilde{B} = \left(\frac{A-B-1}{A+B-1}\right)^2.$

• If we specialize $A = (\lambda/4)^2$, B = 1 + A then we obtain

$$\Omega_{1/2}(A, B) = \Omega_{1/4} \left(0, \left(\frac{4}{\lambda} \right)^4 \right) = {}_{3}F_{2} \left(\begin{array}{c} \frac{1}{4}, \frac{2}{4}, \frac{3}{4} \\ 1, 1 \end{array} \middle| \left(\frac{4}{\lambda} \right)^4 \right)$$

for the period of the sub-family $\mu = \frac{1}{2}$ (agrees with Narumiya, Shiga ['01]) which is birational to

$$\mathcal{F} = \left\{ \textit{xyz} \left(\textit{x} + \textit{y} + \textit{z} + \textit{\lambda} \right) + 1 = 0 \right\} \subset \mathbb{P}^{3} \; ,$$

Periods of 3-parameter families of K3 surfaces

- There is only <u>one</u> family where the construction of \mathbf{X}_1 can be turned into a 3-parameter family of K3 surfaces with lattice polarization of Picard rank 17: SW-curve $\mu=1/2$.
- Use h(t) = (t A)(t B)(t C) to obtain linear system of rank 5 in A, B, C for the K3-periods on \mathbf{X}_1 = specialization of Aomoto-Gel'fand HGF of type (3,6)

$$E(3,6)\left(\alpha_i = \frac{1}{2} \Big| u, v, 0, w\right)$$

where
$$u = \left(\frac{C-A}{B-A}\right) \frac{B}{C}, v = \frac{B}{C}, w = B$$
.

• Linear system specialization of the one in **Matsumoto et. al** ['93] for a family of K3 surfaces of Picard rank 16 associated with six lines in the complex plane, no three of which are concurrent.

Kummer surfaces from SU(2)-Seiberg-Witten curve

Proposition (M.-Doran)

- The family $\mathbf{X}_1 = \mathbf{S}_h \to \mathbb{CP}^1$ ($\mu = 1/2$) is a family of Jacobian K3 surfaces of Picard rank 17.
- There is a family $\mathbf{X}_2 \to \mathbb{CP}^1$ obtained from the covering map $t = (C s^2 B)/(s^2 1)$.
- $X_2 = Kum(A)$ where

ρ	parameter	Α	equation	moduli space
17	u,v,w	$\operatorname{Jac} C^{(2)}$	$y^2 = x(x-1)(x-\lambda_1)(x-\lambda_2)(x-\lambda_3)$	$\Gamma_2(2) \backslash \mathbb{H}_2$
18	u,w,v=0	$E_1 \times E_2$	$y_i^2 = (2x_i - 1)[(4x_i + 1)^2 + 9r_i]$	$\Gamma \backslash \mathbb{H} \times \mathbb{H}$
19	u,v=0,w=1	$E_1 \times E_1$	$y_1^2 = (2x_1 - 1)[(4x_1 + 1)^2 + 9r_1]$	$\Gamma_0(2)ackslash \mathbb{H}$

Mayr, Stieberger ['95], Kokorelis ['99]: moduli space of genus-two curves with level-two structure = moduli space of $\mathcal{N}=2$ heterotic string theories compactified on $K3\times T^2$ with one Wilson line.