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From the UV to the IR
A common problem in physics is to find the long-distance (IR) 
behavior of a given short-distance (UV) theory.
One of the main tools is to constrain the possible answers by 
matching the global symmetries and their ’t Hooft anomalies.
The short-distance theory has a global symmetry group 𝒢𝒢𝑈𝑈𝑈𝑈.  
Its subgroup 𝐺𝐺𝑈𝑈𝑈𝑈 ⊂ 𝒢𝒢𝑈𝑈𝑈𝑈 that does not act on the coordinates is the 
internal symmetry group.
The action of 𝒢𝒢𝑈𝑈𝑈𝑈 on the coordinates depends on whether the UV 
theory is in the continuum or on a lattice (and on the kind of 
lattice).   
It is common that the IR theory is a continuum field theory.  
It has a global symmetry 𝒢𝒢𝐼𝐼𝐼𝐼 and an internal symmetry group 𝐺𝐺𝐼𝐼𝐼𝐼 ⊂
𝒢𝒢𝐼𝐼𝐼𝐼.



From the UV to the IR – comparing 𝐺𝐺𝑈𝑈𝑈𝑈 and 𝐺𝐺𝐼𝐼𝐼𝐼
Often, the UV internal symmetry group 𝐺𝐺𝑈𝑈𝑈𝑈 differs from the IR 
internal symmetry group 𝐺𝐺𝐼𝐼𝐼𝐼.
Every internal symmetry operator in the UV is mapped to a 
symmetry operator in the IR (homomorphism)

𝐺𝐺𝑈𝑈𝑈𝑈 → 𝐺𝐺𝐼𝐼𝐼𝐼
Some UV symmetries are trivial in the IR (kernel)
New symmetries in the IR theory.
• Emergent (accidental) symmetries

– Arise when the IR theory has no relevant, 𝐺𝐺𝑈𝑈𝑈𝑈-preserving, but 
𝐺𝐺𝐼𝐼𝐼𝐼-violating operators (e.g., 𝐵𝐵 − 𝐿𝐿 in the Standard Model, 
continuous rotation in lattice models).

– The low-energy effective Lagrangian includes irrelevant 
operators that violate the emergent symmetries (e.g., proton 
decay or neutrino masses in the Standard Model).



From the UV to the IR – comparing 𝐺𝐺𝑈𝑈𝑈𝑈 and 𝐺𝐺𝐼𝐼𝐼𝐼
𝐺𝐺𝑈𝑈𝑈𝑈 → 𝐺𝐺𝐼𝐼𝐼𝐼

New symmetries in the IR theory.
• Emanant symmetries emanate from 𝑈𝑈𝑈𝑈 space symmetries, 

typically from UV translations. Unlike emergent symmetries:
– There can be relevant operators violating the emanant 

symmetries, but they are not present in the low-energy 
effective Lagrangian (or Hamiltonian).

– The low-energy effective Lagrangian does not include even 
irrelevant operators that violate the emanant symmetries.

– The emanant symmetries are exact in the low-energy theory.
– ‘t Hooft anomaly matching for emanant symmetries.
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From the UV to the IR – comparing 𝐺𝐺𝑈𝑈𝑈𝑈 and 𝐺𝐺𝐼𝐼𝐼𝐼
• Emanant symmetries

– Examples in this talk (old wine in a new bottle): 
• Majorana chain
• 1 + 1𝑑𝑑 lattice Ising model
• 1 + 1𝑑𝑑 system with a global 𝑈𝑈 1  symmetry with a 

chemical potential
• Heisenberg Chain (XXZ model)

– Many others
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Majorana chain [many references]

A lattice with 𝐿𝐿 sites and real periodic fermions 𝜒𝜒ℓ at the sites
𝜒𝜒ℓ = 𝜒𝜒ℓ+𝐿𝐿 , {𝜒𝜒ℓ,𝜒𝜒ℓ′} = 2𝛿𝛿ℓ,ℓ′

Impose invariance under lattice translation and fermion-parity
𝑇𝑇:𝜒𝜒ℓ → 𝜒𝜒ℓ+1 , −1 𝐹𝐹:𝜒𝜒ℓ → −𝜒𝜒ℓ

Typical Hamiltonian        𝐻𝐻+ = 𝑖𝑖
2
∑ℓ=1𝐿𝐿 𝜒𝜒ℓ+1𝜒𝜒ℓ

Add a fermion-parity defect (equivalently, use 𝐻𝐻+ with anti-periodic 
boundary conditions)    𝐻𝐻− = 𝑖𝑖

2
∑ℓ=1𝐿𝐿−1 𝜒𝜒ℓ+1𝜒𝜒ℓ −

𝑖𝑖
2
𝜒𝜒1𝜒𝜒𝐿𝐿

Most of our discussion is independent of the details of 𝐻𝐻±.
𝐻𝐻+– periodic boundary conditions
𝐻𝐻− – like 𝐻𝐻+ with anti-periodic boundary conditions, equivalently 
same as 𝐻𝐻+ with a −1 𝐹𝐹 defect.
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Majorana chain [many references]

𝐻𝐻± =
𝑖𝑖
2
�
ℓ=1

𝐿𝐿−1

𝜒𝜒ℓ+1𝜒𝜒ℓ ±
𝑖𝑖
2
𝜒𝜒1𝜒𝜒𝐿𝐿

Most of our discussion is independent of the details of 𝐻𝐻±.
Four fermionic theories:
• Even 𝐿𝐿.  𝐻𝐻− leads in the continuum to the NSNS Majorana CFT 

and 𝐻𝐻+ leads to the RR theory.
• Odd 𝐿𝐿.  𝐻𝐻− leads in the continuum to the RNS theory Majorana 

CFT and 𝐻𝐻+ leads to the NSR theory.  (Here the quantization is 
notoriously confusing.  Will comment about it below.)
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Majorana chain – even 𝐿𝐿 = 2𝑁𝑁 [many references]
Typical Hamiltonians     

𝐻𝐻± =
𝑖𝑖
2
�
ℓ=1

𝐿𝐿−1

𝜒𝜒ℓ+1𝜒𝜒ℓ ±
𝑖𝑖
2
𝜒𝜒1𝜒𝜒𝐿𝐿

Symmetries generated by translation 𝑇𝑇± and fermion parity −1 𝐹𝐹.  
With appropriate phases in their definitions:
For 𝐻𝐻−                                         𝑇𝑇−𝐿𝐿 = −1 𝐹𝐹

𝑇𝑇− −1 𝐹𝐹 = −1 𝐹𝐹𝑇𝑇−
For 𝐻𝐻+                                       𝑇𝑇+𝐿𝐿 = 1

𝑇𝑇+ −1 𝐹𝐹 = − −1 𝐹𝐹𝑇𝑇+
[Rahmani, Zhu, Franz, Affleck; Hsieh, Hal´asz, Grover]

The minus sign reflects an anomaly between fermion-parity and 
lattice-translation.
In the continuum, no anomaly involving translations. How is this UV 
anomaly realized at low energies? 8



𝐻𝐻± =
𝑖𝑖
2
�
ℓ=1

𝐿𝐿−1

𝜒𝜒ℓ+1𝜒𝜒ℓ ±
𝑖𝑖
2
𝜒𝜒1𝜒𝜒𝐿𝐿

For the specific 𝐻𝐻±, normal mode expansion leading to free fermions:
                          

• Right-movers and left-movers from the two ends of the spectrum
• 𝐻𝐻+ leads to the RR theory.  𝐻𝐻− leads to the NSNS theory.
• On the lattice, only −1 𝐹𝐹; no −1 𝐹𝐹𝐿𝐿, −1 𝐹𝐹𝑅𝑅.
• Without a chiral symmetry, why is the fermion massless? 9

𝐸𝐸(𝑘𝑘)

𝑘𝑘𝐿𝐿
2

𝐿𝐿
4

𝐻𝐻−𝐸𝐸(𝑘𝑘)

𝑘𝑘𝐿𝐿
2

𝐿𝐿
4

𝐻𝐻+

Majorana chain – even 𝐿𝐿 = 2𝑁𝑁 [many references]
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Consider 𝐻𝐻+.  On the lattice, no −1 𝐹𝐹𝐿𝐿.  In the IR, it emanates from 
𝑇𝑇+.                                                𝑇𝑇+𝐿𝐿 = 1 

𝑇𝑇+ = −1 𝐹𝐹𝐿𝐿𝑒𝑒
2𝜋𝜋𝑖𝑖𝑃𝑃+
𝐿𝐿

𝑒𝑒2𝜋𝜋𝑖𝑖𝑃𝑃+ = 1 
• 𝑃𝑃+ is the momentum of the continuum RR theory.
• On the lattice, only 𝑇𝑇+ is well-defined.  In the continuum, −1 𝐹𝐹𝐿𝐿  

and 𝑃𝑃+ are separately meaningful exact symmetries. 

• The relation 𝑇𝑇+ = −1 𝐹𝐹𝐿𝐿𝑒𝑒
2𝜋𝜋𝜋𝜋𝑃𝑃+

𝐿𝐿  is exact, without finite 𝐿𝐿 
corrections.  Otherwise, cannot satisfy 𝑇𝑇+𝐿𝐿 = 1.

• Anomaly in the continuum RR theory […; Delmastro, Gaiotto, Gomis; ...] 
−1 𝐹𝐹 −1 𝐹𝐹𝐿𝐿 = − −1 𝐹𝐹𝐿𝐿 −1 𝐹𝐹

It matches the UV fermion-parity/lattice-translation anomaly.
Similarly for 𝐻𝐻−, except 𝑒𝑒2𝜋𝜋𝑖𝑖 𝑃𝑃− = 𝑇𝑇−𝐿𝐿 = −1 𝐹𝐹
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The −1 𝐹𝐹𝐿𝐿  symmetry of the continuum theory is exact.
• It is not an emergent symmetry.
• It emanates from lattice translation.
• It explains why the fermion is massless without a UV chiral 

symmetry (a fermion mass is −1 𝐹𝐹 invariant, but it violates 
lattice-translation and hence the emanant −1 𝐹𝐹𝐿𝐿).

• The UV fermion-parity/lattice-translation anomaly is matched in 
the IR with an anomaly involving the internal symmetry −1 𝐹𝐹 
and the emanant −1 𝐹𝐹𝐿𝐿. 11
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Odd number of real fermions 𝜒𝜒ℓ.
An irreducible representation of the Clifford algebra has no −1 𝐹𝐹.
Alternatives:
• Declare the problem inconsistent and ignore it.
• Canonical quantization

– Give up on −1 𝐹𝐹 and then the Hilbert space is not graded.  
We will follow this approach.

– Add a decoupled fermion such that the total number of 
fermions is even and then define −1 𝐹𝐹.

– Either way, tensor products of such systems are confusing.
• Assume a standard tensor product and use the path integral to 

find that there is no Hilbert space interpretation, e.g., Tr 1 = 2 
[…; Delmastro, Gaiotto, Gomis; Witten; ...] 

Majorana chain – odd 𝐿𝐿 = 2𝑁𝑁 + 1
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𝐻𝐻± =
𝑖𝑖
2
�
ℓ=1

𝐿𝐿−1

𝜒𝜒ℓ+1𝜒𝜒ℓ ±
𝑖𝑖
2
𝜒𝜒1𝜒𝜒𝐿𝐿

Take an irreducible representation of the Clifford algebra.
No −1 𝐹𝐹𝐿𝐿, −1 𝐹𝐹𝑅𝑅, −1 𝐹𝐹.  Only lattice translation 𝑇𝑇±, with an 

anomaly                        𝑇𝑇±
𝐿𝐿 = 𝑒𝑒∓

2𝜋𝜋𝜋𝜋
16  

                                 

• Right-movers and left-movers from the two ends of the spectrum
• 𝐻𝐻+ leads to the NSR theory. 𝐻𝐻− leads to the RNS theory.

Majorana chain – odd 𝐿𝐿 = 2𝑁𝑁 + 1
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𝑘𝑘𝐿𝐿
2

𝐿𝐿
4

𝑘𝑘𝐿𝐿
2

𝐿𝐿
4

𝐻𝐻−𝐻𝐻+ 𝐸𝐸(𝑘𝑘)𝐸𝐸(𝑘𝑘)
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• No −1 𝐹𝐹𝐿𝐿, −1 𝐹𝐹𝑅𝑅, −1 𝐹𝐹 on the lattice.  
• Consider 𝐻𝐻+.  In the IR, −1 𝐹𝐹𝐿𝐿  emanates from 𝑇𝑇+

𝑇𝑇+𝐿𝐿 = 𝑒𝑒−
2𝜋𝜋𝑖𝑖
16  

𝑇𝑇+ = −1 𝐹𝐹𝐿𝐿𝑒𝑒
2𝜋𝜋𝑖𝑖𝑃𝑃+
𝐿𝐿

𝑒𝑒2𝜋𝜋𝑖𝑖𝑃𝑃+ = −1 𝐹𝐹𝐿𝐿𝑒𝑒−
2𝜋𝜋𝑖𝑖
16  

– 𝑃𝑃+ is the momentum of the continuum NSR theory.
– On the lattice, only 𝑇𝑇+ is well-defined.  In the continuum, −1 𝐹𝐹𝐿𝐿  

and 𝑃𝑃+ are separately meaningful exact symmetries. 

– The relation 𝑇𝑇+ = −1 𝐹𝐹𝐿𝐿𝑒𝑒
2𝜋𝜋𝜋𝜋𝑃𝑃+

𝐿𝐿  is exact, without finite 𝐿𝐿 
corrections.

• For 𝐻𝐻−, change 𝑇𝑇+ → 𝑇𝑇−, 𝑒𝑒−
2𝜋𝜋𝜋𝜋
16 → 𝑒𝑒

2𝜋𝜋𝜋𝜋
16 , 𝑃𝑃+ → 𝑃𝑃−, 𝐹𝐹𝐿𝐿 → 𝐹𝐹𝐼𝐼.  This is 

the RNS theory.

Majorana chain – odd 𝐿𝐿 = 2𝑁𝑁 + 1
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From the Majorana chain to the Ising 
model – GSO on the lattice

Sum over the “spin structures” by first doubling the Hilbert space 
(related work in [Baake, Chaselon, Schlottmann; Grimm, Schutz; Grimm; ...])  

�ℋ = ℋ⊕ℋ

with the Hamiltonian         �𝐻𝐻 = 𝐻𝐻− 0
0 𝐻𝐻+

(𝐻𝐻+ corresponds to fermions with periodic boundary conditions.  𝐻𝐻− 
corresponds to fermions with antiperiodic boundary conditions.)

Translation symmetry        �𝑇𝑇 = 𝑇𝑇− 0
0 𝑇𝑇+

Because of the doubling of the Hilbert space, a quantum ℤ2 symmetry

�𝜂𝜂 = 1 0
0 −1
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From the Majorana chain to the Ising 
model – even 𝐿𝐿 = 2𝑁𝑁

Some operators in the doubled Hilbert space �ℋ are nonlocal.  So 
imitating the continuum, we project:

• �𝜂𝜂 −1 𝐹𝐹 = +1 leads to the Ising model     �ℋ|𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼 = ℋ𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼

     Using a Jordan-Wigner transformation in ℋ𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼,

𝐻𝐻𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼 = �𝐻𝐻 �
𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼

= −
1
2
�
𝑗𝑗=1

𝑁𝑁 

𝑍𝑍𝑗𝑗 −
1
2
�
𝑗𝑗=1

𝑁𝑁

𝑋𝑋𝑗𝑗𝑋𝑋𝑗𝑗+1

     (𝑋𝑋𝑗𝑗 ,𝑍𝑍𝑗𝑗  are Pauli matrices at the site 𝑗𝑗 = 1,⋯ ,𝑁𝑁)

• �𝜂𝜂 −1 𝐹𝐹 = −1 leads to the ℤ2-twisted Ising model 

𝐻𝐻𝑡𝑡𝑡𝑡𝑖𝑖𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡 𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼 = −1
2
∑𝑗𝑗=1𝑁𝑁 𝑍𝑍𝑗𝑗 −

1
2
∑𝑗𝑗=1𝑁𝑁−1𝑋𝑋𝑗𝑗𝑋𝑋𝑗𝑗+1 + 1

2
𝑋𝑋𝑁𝑁𝑋𝑋1
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From the Majorana chain to the Ising 
model – even 𝐿𝐿 = 2𝑁𝑁

Because of the anomaly, 𝑇𝑇+ does not commute with −1 𝐹𝐹 . 

Therefore, �𝑇𝑇 = 𝑇𝑇− 0
0 𝑇𝑇+

  does not commute with the �𝜂𝜂 −1 𝐹𝐹 =

+ 1 projection and does not act in the projected Hilbert space 
�ℋ|𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼.  

It is not a symmetry.    

�𝑇𝑇2 and �𝜂𝜂  act in �ℋ|𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼.  Standard symmetries of the Ising model

𝑇𝑇𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼 = �𝑇𝑇2 �
𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼

 , 𝜂𝜂 = �𝜂𝜂 �
𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼

Lattice-translation                  𝑇𝑇𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼𝑁𝑁 = 1

ℤ2 Ising symmetry                     𝜂𝜂2= 1 17



From the Majorana chain to the Ising 
model – even 𝐿𝐿 = 2𝑁𝑁

𝑇𝑇− 0
0 0  commutes with the �𝜂𝜂 −1 𝐹𝐹 = +1 projection and hence it 

acts in �ℋ|𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼. 

New symmetry of the lattice Ising model (related to Kramers–Wannier 
duality)

𝐷𝐷 = 𝑇𝑇− 0
0 0 �

𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼

It is a partial isometry (a unitary symmetry on the orthogonal 
complement of its kernel) – a noninvertible symmetry 

𝐷𝐷2 =
1
2

1 + 𝜂𝜂 𝑇𝑇𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼

Can express 𝐷𝐷 in terms of the local operators 𝑋𝑋𝑗𝑗 ,𝑌𝑌𝑗𝑗 ,𝑍𝑍𝑗𝑗  and check 
explicitly that it commutes with the Hamiltonian. 18



From the Majorana chain to the Ising 
model – even 𝐿𝐿 = 2𝑁𝑁

The noninvertible lattice symmetry 𝐷𝐷 = 𝑇𝑇− 0
0 0

|𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼 flows to a 

noninvertible symmetry of the continuum theory 𝒟𝒟 [Oshikawa, Affleck; 
Petkova, Zuber; Frohlich, Fuchs, Runkel, Schweigert; Chang, Lin, Shao, Wang, Yin]

𝐷𝐷 =
1
2
𝒟𝒟𝑒𝑒

2𝜋𝜋𝑖𝑖𝑃𝑃
2𝑁𝑁

𝒟𝒟2 = 1 + 𝜂𝜂 , 𝜂𝜂2 = 1 , 𝜂𝜂𝒟𝒟 = 𝒟𝒟𝜂𝜂 = 𝒟𝒟 , 𝑒𝑒2𝜋𝜋𝑖𝑖𝑃𝑃 = 1

𝐷𝐷 and 𝒟𝒟 satisfy different algebras, 𝐷𝐷2 = 1
2

1 + 𝜂𝜂 𝑇𝑇𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼.

𝒟𝒟 is an emanant noninvertible symmetry.  It is exact in the IR effective 
theory.  (Not violated even by irrelevant operators.)
On the lattice, only 𝑇𝑇𝐼𝐼𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼 and 𝐷𝐷.  In the continuum, 𝑃𝑃 and 𝒟𝒟.

The relation 𝐷𝐷 = 1
2
𝒟𝒟𝑒𝑒

2𝜋𝜋𝜋𝜋𝑃𝑃
2𝑁𝑁  is exact.  No finite 𝑁𝑁 corrections. 19



From the Majorana chain to the Ising 
model – odd 𝐿𝐿 = 2𝑁𝑁 + 1

In this case, no −1 𝐹𝐹, and hence, no projection is needed. 
A Jordan-Wigner transformation in the doubled Hilbert space �ℋ 
leads to the Ising model with a 𝐷𝐷 defect [Schutz; Grimm, Schutz; 
Grimm; Ho, Cincio, Moradi, Gaiotto, Vidal; Hauru, Evenbly, Ho, Gaiotto, Vidal; 
Aasen, Mong, Fendley]

𝐻𝐻 = −
1
2
�
𝑗𝑗=1

𝑁𝑁

𝑍𝑍𝑗𝑗 −
1
2
�
𝑗𝑗=1

𝑁𝑁

𝑋𝑋𝑗𝑗𝑋𝑋𝑗𝑗+1 −
1
2
𝑋𝑋1𝑌𝑌𝑁𝑁+1

It flows in the IR to the continuum Ising CFT with a noninvertible 
defect 𝒟𝒟 [Oshikawa, Affleck; Petkova, Zuber; Frohlich, Fuchs, Runkel, 
Schweigert; Chang, Lin, Shao, Wang, Yin].
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Explicit breaking of winding symmetry
Consider the 𝑐𝑐 = 1 compact boson and use the dual field �𝜙𝜙 ∼ �𝜙𝜙 + 2𝜋𝜋

𝑆𝑆 = �𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑
1

4𝜋𝜋𝑅𝑅2
𝜕𝜕𝜇𝜇 �𝜙𝜙

2 + 𝜆𝜆 cos �𝜙𝜙

Only 𝑈𝑈 1 𝑚𝑚 (and discrete symmetries).  No winding symmetry 𝑈𝑈 1 𝑡𝑡.  
For 𝜆𝜆 = 0,
                                   𝑅𝑅 = 1                               𝑅𝑅 = 2                          𝑅𝑅
                                       |                                         |
                             𝑆𝑆𝑈𝑈 2 1 WZW                    BKT point

cos �𝜙𝜙 is relevant, gapped                                cos �𝜙𝜙 is irrelevant, gapless,
                                                                                  emergent 𝑈𝑈 1 𝑡𝑡

The emergent 𝑈𝑈 1 𝑡𝑡 symmetry is violated by irrelevant operators.  (It 
is not an emanant symmetry.) 21



Add a chemical potential for 𝑈𝑈 1 𝑚𝑚

(related to [Haldane (1980)])

The charge is    𝑄𝑄𝑚𝑚 = 𝐼𝐼2

2𝜋𝜋
∫ 𝑑𝑑𝑑𝑑𝜕𝜕𝑡𝑡𝜙𝜙 = 1

2𝜋𝜋
∫ 𝑑𝑑𝑑𝑑𝜕𝜕𝑥𝑥 �𝜙𝜙     and hence,

𝑆𝑆 = �𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑
1

4𝜋𝜋𝑅𝑅2
𝜕𝜕𝑡𝑡 �𝜙𝜙

2 −
1

4𝜋𝜋𝑅𝑅2
𝜕𝜕𝑥𝑥 �𝜙𝜙 +

2𝜋𝜋𝜋𝜋
𝑳𝑳

2

+ 𝜆𝜆 cos �𝜙𝜙

Space is a circle 𝑑𝑑 ∼ 𝑑𝑑 + 𝑳𝑳.  The chemical potential is such that the 
total charge is near 𝜋𝜋 ∈ ℤ.

In terms of �𝜙𝜙 = �𝜙𝜙 + 2𝜋𝜋𝜋𝜋𝑥𝑥
𝑳𝑳

𝑆𝑆 = �𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑
1

4𝜋𝜋𝑅𝑅2
𝜕𝜕𝑡𝑡 �𝜙𝜙

2 −
1

4𝜋𝜋𝑅𝑅2
𝜕𝜕𝑥𝑥 �𝜙𝜙

2 + 𝜆𝜆 cos �𝜙𝜙 −
2𝜋𝜋𝜋𝜋𝑑𝑑
𝑳𝑳

 

For 𝜆𝜆 = 0, same as without the chemical potential (spectral flow).
For nonzero 𝜆𝜆, the winding operator can be relevant or irrelevant.  
Either way, for large 𝜋𝜋, it oscillates rapidly in space.  Hence, it does not 
act in the low-energy theory.  

22



Finding an emanant symmetry

𝑆𝑆 = �𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑
1

4𝜋𝜋𝑅𝑅2
𝜕𝜕𝑡𝑡 �𝜙𝜙

2 −
1

4𝜋𝜋𝑅𝑅2
𝜕𝜕𝑥𝑥 �𝜙𝜙

2 + 𝜆𝜆 cos �𝜙𝜙 −
2𝜋𝜋𝜋𝜋𝑑𝑑
𝑳𝑳

 

Now, the 𝑈𝑈 1 𝑡𝑡 winding symmetry is an emanant symmetry.  It 
emanates from the UV translation symmetry:  
• Operators that violate it, like cos �𝜙𝜙, are not invariant under 

translations of the UV theory.  Hence, they are absent in the low-
energy effective action.

• Operators that violate it, like cos �𝜙𝜙 − 2𝜋𝜋𝜋𝜋𝑥𝑥
𝑳𝑳

, are invariant under 
UV translations, but not invariant under translation of the IR 
theory.  Hence, they have vanishing matrix elements between 
low-energy states.

• The emanant symmetry is not violated by relevant or irrelevant 
operators in the low-energy theory.  It is exact.  (Not an 
emergent (accidental) symmetry.) 23



XXZ model – Heisenberg chain  [many references]

𝐻𝐻𝑋𝑋𝑋𝑋𝑍𝑍 = 2�
𝑗𝑗=1

𝑁𝑁

(𝑋𝑋𝑗𝑗𝑋𝑋𝑗𝑗+1 + 𝑌𝑌𝑗𝑗𝑌𝑌𝑗𝑗+1 + 𝜆𝜆𝑧𝑧𝑍𝑍𝑗𝑗𝑍𝑍𝑗𝑗+1)

𝑋𝑋𝑗𝑗 ,𝑌𝑌𝑗𝑗 ,𝑍𝑍𝑗𝑗  Pauli-matrices at site number 𝑗𝑗 ∼ 𝑗𝑗 + 𝑁𝑁.
The global internal symmetry is 𝐺𝐺𝑈𝑈𝑈𝑈 = 𝑂𝑂 2 ⊂ 𝑆𝑆𝑂𝑂(3).  For 
−1 < 𝜆𝜆𝑧𝑧≤ 1, it is known to flow to the free compact boson with 
radius 𝑅𝑅 𝜆𝜆𝑧𝑧 ≥ 1.
𝜆𝜆𝑧𝑧 = 1 corresponds to the Heisenberg chain with 𝐺𝐺𝑈𝑈𝑈𝑈 = 𝑆𝑆𝑂𝑂(3). 
i.e., 𝑅𝑅 1 = 1. 
The winding operator cos �𝜙𝜙 preserves 𝐺𝐺𝑈𝑈𝑈𝑈 and depending on 𝜆𝜆𝑧𝑧, it 
can be relevant.  Why isn’t it present in the low-energy Hamiltonian 
and gaps the system?  For example, for 𝜆𝜆𝑧𝑧 = 1, there is an 𝑆𝑆𝑂𝑂(3)-
preserving relevant operator.
Why are these models robust (stable)? 24



The low-energy limit of the XXZ Chain
The model flows to

𝑆𝑆 = �𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑
1

4𝜋𝜋𝑅𝑅2
𝜕𝜕𝜇𝜇 �𝜙𝜙

2 + 𝜆𝜆 cos 2 �𝜙𝜙

with an emanant (not emergent) ℤ2 symmetry.
No term of the form cos(𝑛𝑛 �𝜙𝜙) with odd 𝑛𝑛.
This emanant ℤ2 symmetry arises from lattice translation as

𝑇𝑇 = 𝐶𝐶𝑒𝑒2𝜋𝜋𝑖𝑖
𝑃𝑃
𝑁𝑁

𝑃𝑃 is the momentum of the continuum theory.
𝐶𝐶 generates a ℤ2 𝑒𝑒𝑖𝑖𝜋𝜋 𝑄𝑄𝑚𝑚+𝑄𝑄𝑤𝑤  symmetry of the continuum theory.

On the lattice, only 𝑇𝑇 is well-defined, but at energies of order 1
𝑁𝑁

 (and 
therefore also in the continuum), 𝑃𝑃 and 𝐶𝐶 are separately well-defined.

The relation 𝑇𝑇 = 𝐶𝐶𝑒𝑒2𝜋𝜋𝑖𝑖
𝑃𝑃
𝑁𝑁 is exact without finite 𝑁𝑁 corrections.
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Summary
• Microscopic translation (e.g., lattice translation) can lead to an 

emanant symmetry.  
– Unlike an emergent symmetry, it is exact at low energies – not 

violated by relevant or irrelevant operators.
• Four versions of the lattice Majorana chain flow to four continuum 

models, NSNS, RR, NSR, and RNS.  
– In each case, −1 𝐹𝐹𝐿𝐿  (or −1 𝐹𝐹𝑅𝑅) emanates from microscopic 

translation 𝑇𝑇.  The microscopic 𝑇𝑇/ −1 𝐹𝐹 anomaly is matched in 
the IR by −1 𝐹𝐹𝐿𝐿/ −1 𝐹𝐹  (or −1 𝐹𝐹𝑅𝑅/ −1 𝐹𝐹) anomaly.

• Summing over the spin structures on the lattice leads to three 
lattice models: Ising, twisted Ising, and Ising with a 𝐷𝐷 defect. 
– These models flow to the three continuum Ising models with 

defects.  The noninvertible duality symmetry 𝒟𝒟 of the CFT 
emanates from 𝐷𝐷. 26



Summary

• A system with a 𝑈𝑈(1) global symmetry with chemical potential can 
have an emanant symmetry. 

• Various lattice spin models, including the Heisenberg chain, lead to 
a ℤ2 emanant symmetry.

• Anomalies involving lattice translations are matched in the IR by 
anomalies in internal emanant symmetries. We exhibited it in:
– the Majorana chain
– Luttinger theorem and filling constraints (the example with a 

chemical potential)
– Lieb-Schultz-Mattis type theorems (the example with the 

Heisenberg chain)

27



Thank you
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