Emanant symmetries Nathan Seiberg IAS

Meng Cheng and NS, arXiv:2211.12543 NS and Shu-Heng Shao, arXiv:2307.02534 NS and Shu-Heng Shao, to appear NS, Sahand Seifnashri, and Shu-Heng Shao, to appear Thanks to Tom Banks

From the UV to the IR

- A common problem in physics is to find the long-distance (IR) behavior of a given short-distance (UV) theory.
- One of the main tools is to constrain the possible answers by matching the global symmetries and their 't Hooft anomalies.
- The short-distance theory has a global symmetry group \mathcal{G}_{UV} .
- Its subgroup $G_{UV} \subset G_{UV}$ that does not act on the coordinates is the internal symmetry group.
- The action of \mathcal{G}_{UV} on the coordinates depends on whether the UV theory is in the continuum or on a lattice (and on the kind of lattice).
- It is common that the IR theory is a continuum field theory.
- It has a global symmetry G_{IR} and an internal symmetry group $G_{IR} \subset G_{IR}$.

From the UV to the IR – comparing G_{UV} and G_{IR}

Often, the UV internal symmetry group G_{UV} differs from the IR internal symmetry group G_{IR} .

Every internal symmetry operator in the UV is mapped to a symmetry operator in the IR (homomorphism)

$G_{UV} \rightarrow G_{IR}$

Some UV symmetries are trivial in the IR (kernel)

New symmetries in the IR theory.

- Emergent (accidental) symmetries
 - Arise when the IR theory has no relevant, G_{UV} -preserving, but G_{IR} -violating operators (e.g., B L in the Standard Model, continuous rotation in lattice models).
 - The low-energy effective Lagrangian includes irrelevant operators that violate the emergent symmetries (e.g., proton decay or neutrino masses in the Standard Model).

From the UV to the IR – comparing G_{UV} and G_{IR} $G_{UV} \rightarrow G_{IR}$

New symmetries in the IR theory.

- Emanant symmetries emanate from *UV* space symmetries, typically from UV translations. Unlike emergent symmetries:
 - There can be relevant operators violating the emanant symmetries, but they are not present in the low-energy effective Lagrangian (or Hamiltonian).
 - The low-energy effective Lagrangian does not include even irrelevant operators that violate the emanant symmetries.
 - The emanant symmetries are exact in the low-energy theory.
 - 't Hooft anomaly matching for emanant symmetries.

From the UV to the IR – comparing G_{UV} and G_{IR}

- Emanant symmetries
 - Examples in this talk (old wine in a new bottle):
 - Majorana chain
 - 1 + 1d lattice Ising model
 - 1 + 1d system with a global U(1) symmetry with a chemical potential
 - Heisenberg Chain (XXZ model)
 - Many others

Majorana chain [many references]

A lattice with L sites and real periodic fermions χ_{ℓ} at the sites

$$\chi_{\ell} = \chi_{\ell+L}$$
, $\{\chi_{\ell}, \chi_{\ell'}\} = 2\delta_{\ell,\ell'}$

Impose invariance under lattice translation and fermion-parity

$$T: \chi_{\ell} \to \chi_{\ell+1}$$
 , $(-1)^F: \chi_{\ell} \to -\chi_{\ell}$

Typical Hamiltonian $H_{+} = \frac{i}{2} \sum_{\ell=1}^{L} \chi_{\ell+1} \chi_{\ell}$

Add a fermion-parity defect (equivalently, use H_+ with anti-periodic boundary conditions) $H_- = \frac{i}{2} \sum_{\ell=1}^{L-1} \chi_{\ell+1} \chi_{\ell} - \frac{i}{2} \chi_1 \chi_L$

Most of our discussion is independent of the details of H_{\pm} .

 H_+ – periodic boundary conditions

 H_{-} – like H_{+} with anti-periodic boundary conditions, equivalently same as H_{+} with a $(-1)^{F}$ defect.

Majorana chain [many references]

$$H_{\pm} = \frac{i}{2} \sum_{\ell=1}^{L-1} \chi_{\ell+1} \chi_{\ell} \pm \frac{i}{2} \chi_1 \chi_L$$

Most of our discussion is independent of the details of H_{\pm} . Four fermionic theories:

- Even L. H₋ leads in the continuum to the NSNS Majorana CFT and H₊ leads to the RR theory.
- Odd L. H₋ leads in the continuum to the RNS theory Majorana CFT and H₊ leads to the NSR theory. (Here the quantization is notoriously confusing. Will comment about it below.)

Majorana chain – even L = 2N [many references]

Typical Hamiltonians

$$H_{\pm} = \frac{i}{2} \sum_{\ell=1}^{L-1} \chi_{\ell+1} \chi_{\ell} \pm \frac{i}{2} \chi_1 \chi_L$$

Symmetries generated by translation T_{\pm} and fermion parity $(-1)^F$. With appropriate phases in their definitions:

For
$$H_{-}$$

For H_{+}
 $T_{-}^{L} = (-1)^{F}$
 $T_{-}(-1)^{F} = (-1)^{F}T_{-}$
 $T_{+}^{L} = 1$
 $T_{+}(-1)^{F} = -(-1)^{F}T_{+}$

[Rahmani, Zhu, Franz, Affleck; Hsieh, Hal'asz, Grover]

The minus sign reflects an anomaly between fermion-parity and lattice-translation.

In the continuum, no anomaly involving translations. How is this UV anomaly realized at low energies?

Majorana chain – even L = 2N [many references]

$$H_{\pm} = \frac{i}{2} \sum_{\ell=1}^{L-1} \chi_{\ell+1} \chi_{\ell} \pm \frac{i}{2} \chi_1 \chi_L$$

For the specific H_{\pm} , normal mode expansion leading to free fermions:

• Right-movers and left-movers from the two ends of the spectrum

- H_+ leads to the RR theory. H_- leads to the NSNS theory.
- On the lattice, only $(-1)^{F}$; no $(-1)^{F_{L}}$, $(-1)^{F_{R}}$.
- Without a chiral symmetry, why is the fermion massless?

Majorana chain – even L = 2N

Consider H_+ . On the lattice, no $(-1)^{F_L}$. In the IR, it emanates from T_+ . $T_+ = 1$ $T_+ = (-1)^{F_L} e^{\frac{2\pi i P_+}{L}}$ $e^{2\pi i P_+} = 1$

- P_+ is the momentum of the continuum RR theory.
- On the lattice, only T_+ is well-defined. In the continuum, $(-1)^{F_L}$ and P_+ are separately meaningful exact symmetries.
- The relation $T_{+} = (-1)^{F_L} e^{\frac{2\pi i P_{+}}{L}}$ is exact, without finite *L* corrections. Otherwise, cannot satisfy $T_{+}^L = 1$.
- Anomaly in the continuum RR theory [...; Delmastro, Gaiotto, Gomis; ...] $(-1)^{F}(-1)^{F_{L}} \stackrel{\bullet}{=} -(-1)^{F_{L}}(-1)^{F}$

It matches the UV fermion-parity/lattice-translation anomaly. Similarly for H_- , except $e^{2\pi i P_-} = T_-^L = (-1)^F$

Majorana chain – even L = 2N

The $(-1)^{F_L}$ symmetry of the continuum theory is exact.

- It is not an emergent symmetry.
- It emanates from lattice translation.
- It explains why the fermion is massless without a UV chiral symmetry (a fermion mass is $(-1)^F$ invariant, but it violates lattice-translation and hence the emanant $(-1)^{F_L}$).
- The UV fermion-parity/lattice-translation anomaly is matched in the IR with an anomaly involving the internal symmetry $(-1)^F$ and the emanant $(-1)^{F_L}$.

Majorana chain – odd L = 2N + 1

Odd number of real fermions χ_{ℓ} .

An irreducible representation of the Clifford algebra has no $(-1)^F$. Alternatives:

- Declare the problem inconsistent and ignore it.
- Canonical quantization
 - Give up on $(-1)^F$ and then the Hilbert space is not graded. We will follow this approach.
 - Add a decoupled fermion such that the total number of fermions is even and then define $(-1)^F$.

Either way, tensor products of such systems are confusing.

 Assume a standard tensor product and use the path integral to find that there is no Hilbert space interpretation, e.g., Tr $1 = \sqrt{2}$ [...; Delmastro, Gaiotto, Gomis; Witten; ...]

Majorana chain – odd
$$L = 2N + 1$$

$$H_{\pm} = \frac{i}{2} \sum_{\ell=1}^{L-1} \chi_{\ell+1} \chi_{\ell} \pm \frac{i}{2} \chi_1 \chi_L$$

Take an irreducible representation of the Clifford algebra.

- Right-movers and left-movers from the two ends of the spectrum
- H_+ leads to the NSR theory. H_- leads to the RNS theory.

Majorana chain – odd L = 2N + 1

- No $(-1)^{F_L}$, $(-1)^{F_R}$, $(-1)^F$ on the lattice.
- Consider H_+ . In the IR, $(-1)^{F_L}$ emanates from T_+
 - $T_{+}^{L} = e^{-\frac{2\pi i}{16}}$ $T_{+} = (-1)^{F_{L}} e^{\frac{2\pi i P_{+}}{L}}$ $e^{2\pi i P_{+}} = (-1)^{F_{L}} e^{-\frac{2\pi i}{16}}$
 - $-P_+$ is the momentum of the continuum NSR theory.
 - On the lattice, only T_+ is well-defined. In the continuum, $(-1)^{F_L}$ and P_+ are separately meaningful exact symmetries.
 - The relation $T_{+} = (-1)^{F_L} e^{\frac{2\pi i P_{+}}{L}}$ is exact, without finite L corrections.
- For H_- , change $T_+ \to T_-$, $e^{-\frac{2\pi i}{16}} \to e^{\frac{2\pi i}{16}}$, $P_+ \to P_-$, $F_L \to F_R$. This is the RNS theory.

From the Majorana chain to the Ising model – GSO on the lattice

Sum over the "spin structures" by first doubling the Hilbert space (related work in [Baake, Chaselon, Schlottmann; Grimm, Schutz; Grimm; ...])

$$\widetilde{\mathcal{H}} = \mathcal{H} \bigoplus \mathcal{H}$$

with the Hamiltonian

$$\widetilde{H} = \begin{pmatrix} H_- & 0\\ 0 & H_+ \end{pmatrix}$$

 $(H_+ \text{ corresponds to fermions with periodic boundary conditions. } H_- \text{ corresponds to fermions with antiperiodic boundary conditions.})$

Translation symmetry $\tilde{T} = \begin{pmatrix} T_{-} & 0 \\ 0 & T_{+} \end{pmatrix}$

Because of the doubling of the Hilbert space, a quantum
$$\mathbb{Z}_2$$
 symmetry

$$\tilde{\eta} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

From the Majorana chain to the Ising model – even L = 2N

Some operators in the doubled Hilbert space $\widetilde{\mathcal{H}}$ are nonlocal. So imitating the continuum, we project:

• $\tilde{\eta}(-1)^F = +1$ leads to the Ising model $|\mathcal{H}|_{Ising} = \mathcal{H}_{Ising}$ Using a Jordan-Wigner transformation in \mathcal{H}_{Ising} ,

$$H_{Ising} = \tilde{H} \Big|_{Ising} = -\frac{1}{2} \sum_{j=1}^{N} Z_j - \frac{1}{2} \sum_{j=1}^{N} X_j X_{j+1}$$

 $(X_j, Z_j \text{ are Pauli matrices at the site } j = 1, \dots, N)$

• $\tilde{\eta}(-1)^F = -1$ leads to the \mathbb{Z}_2 -twisted Ising model $H_{twisted \ Ising} = -\frac{1}{2} \sum_{j=1}^N Z_j - \frac{1}{2} \sum_{j=1}^{N-1} X_j X_{j+1} + \frac{1}{2} X_N X_1$

From the Majorana chain to the Ising model – even L = 2N

Because of the anomaly, T_+ does not commute with $(-1)^F$.

Therefore, $\tilde{T} = \begin{pmatrix} T_{-} & 0 \\ 0 & T_{+} \end{pmatrix}$ does not commute with the $\tilde{\eta}(-1)^{F} = + 1$ projection and does not act in the projected Hilbert space $|\widetilde{\mathcal{H}}|_{Ising}$.

It is not a symmetry.

 \tilde{T}^2 and $\tilde{\eta}$ act in $\tilde{\mathcal{H}}|_{Ising}$. Standard symmetries of the Ising model

$$\begin{split} T_{Ising} &= \tilde{T}^2 \Big|_{Ising} , \qquad \eta = \tilde{\eta} \Big|_{Ising} \\ \text{Lattice-translation} \qquad T^N_{Ising} = 1 \\ \mathbb{Z}_2 \text{ Ising symmetry} \qquad \eta^2 = 1 \end{split}$$

From the Majorana chain to the Ising model – even L = 2N $\begin{pmatrix} T_- & 0\\ 0 & 0 \end{pmatrix}$ commutes with the $\tilde{\eta}(-1)^F = +1$ projection and hence it acts in $\tilde{\mathcal{H}}|_{Ising}$.

New symmetry of the lattice Ising model (related to Kramers–Wannier duality)

$$D = \begin{pmatrix} T_{-} & 0\\ 0 & 0 \end{pmatrix} \Big|_{Ising}$$

It is a partial isometry (a unitary symmetry on the orthogonal complement of its kernel) – a noninvertible symmetry

$$D^2 = \frac{1}{2}(1+\eta)T_{Ising}$$

18

Can express D in terms of the local operators X_j , Y_j , Z_j and check explicitly that it commutes with the Hamiltonian.

From the Majorana chain to the Ising model – even L = 2N

The noninvertible lattice symmetry $D = \begin{pmatrix} T_{-} & 0 \\ 0 & 0 \end{pmatrix} |_{Ising}$ flows to a

noninvertible symmetry of the continuum theory \mathcal{D} [Oshikawa, Affleck; Petkova, Zuber; Frohlich, Fuchs, Runkel, Schweigert; Chang, Lin, Shao, Wang, Yin]

$$D = \frac{1}{\sqrt{2}} \mathcal{D} e^{\frac{2\pi i P}{2N}}$$

 $\mathcal{D}^2 = 1 + \eta$, $\eta^2 = 1$, $\eta \mathcal{D} = \mathcal{D}\eta = \mathcal{D}$, $e^{2\pi i P} = 1$

D and *D* satisfy different algebras, $D^2 = \frac{1}{2}(1 + \eta)T_{Ising}$.

 \mathcal{D} is an emanant noninvertible symmetry. It is exact in the IR effective theory. (Not violated even by irrelevant operators.)

On the lattice, only T_{Ising} and D. In the continuum, P and D.

The relation $D = \frac{1}{\sqrt{2}} D e^{\frac{2\pi i P}{2N}}$ is exact. No finite N corrections.

From the Majorana chain to the Ising model – odd L = 2N + 1

In this case, no $(-1)^F$, and hence, no projection is needed.

A Jordan-Wigner transformation in the doubled Hilbert space $\widetilde{\mathcal{H}}$ leads to the Ising model with a D defect [Schutz; Grimm, Schutz; Grimm; Ho, Cincio, Moradi, Gaiotto, Vidal; Hauru, Evenbly, Ho, Gaiotto, Vidal; Aasen, Mong, Fendley]

$$H = -\frac{1}{2} \sum_{j=1}^{N} Z_j - \frac{1}{2} \sum_{j=1}^{N} X_j X_{j+1} - \frac{1}{2} X_1 Y_{N+1}$$

It flows in the IR to the continuum Ising CFT with a noninvertible defect \mathcal{D} [Oshikawa, Affleck; Petkova, Zuber; Frohlich, Fuchs, Runkel, Schweigert; Chang, Lin, Shao, Wang, Yin].

Explicit breaking of winding symmetry

Consider the c = 1 compact boson and use the dual field $\tilde{\phi} \sim \tilde{\phi} + 2\pi$

$$S = \int dt dx \left(\frac{1}{4\pi R^2} \left(\partial_{\mu} \tilde{\phi} \right)^2 + \lambda \cos \tilde{\phi} \right)$$

Only $U(1)^m$ (and discrete symmetries). No winding symmetry $U(1)^w$. For $\lambda = 0$,

The emergent $U(1)^w$ symmetry is violated by irrelevant operators. (It is not an emanant symmetry.)

Add a chemical potential for $U(1)^m$

(related to [Haldane (1980)])

The charge is
$$Q^m = \frac{R^2}{2\pi} \int dx \partial_t \phi = \frac{1}{2\pi} \int dx \partial_x \tilde{\phi}$$
 and hence,
 $S = \int dt dx \left(\frac{1}{4\pi R^2} (\partial_t \tilde{\phi})^2 - \frac{1}{4\pi R^2} (\partial_x \tilde{\phi} + \frac{2\pi q}{L})^2 + \lambda \cos \tilde{\phi} \right)$

Space is a circle $x \sim x + L$. The chemical potential is such that the total charge is near $q \in \mathbb{Z}$.

In terms of
$$\hat{\phi} = \tilde{\phi} + \frac{2\pi qx}{L}$$

$$S = \int dt dx \left(\frac{1}{4\pi R^2} \left(\partial_t \hat{\phi} \right)^2 - \frac{1}{4\pi R^2} \left(\partial_x \hat{\phi} \right)^2 + \lambda \cos \left(\hat{\phi} - \frac{2\pi qx}{L} \right) \right)$$

For $\lambda = 0$, same as without the chemical potential (spectral flow). For nonzero λ , the winding operator can be relevant or irrelevant. Either way, for large q, it oscillates rapidly in space. Hence, it does not act in the low-energy theory.

Finding an emanant symmetry

$$S = \int dt dx \left(\frac{1}{4\pi R^2} \left(\partial_t \hat{\phi} \right)^2 - \frac{1}{4\pi R^2} \left(\partial_x \hat{\phi} \right)^2 + \lambda \cos \left(\hat{\phi} - \frac{2\pi qx}{L} \right) \right)$$

Now, the $U(1)^w$ winding symmetry is an emanant symmetry. It emanates from the UV translation symmetry:

- Operators that violate it, like $\cos \hat{\phi}$, are not invariant under translations of the UV theory. Hence, they are absent in the low-energy effective action.
- Operators that violate it, like $\cos\left(\hat{\phi} \frac{2\pi qx}{L}\right)$, are invariant under UV translations, but not invariant under translation of the IR theory. Hence, they have vanishing matrix elements between low-energy states.
- The emanant symmetry is not violated by relevant or irrelevant operators in the low-energy theory. It is exact. (Not an emergent (accidental) symmetry.)

XXZ model – Heisenberg chain [many references]

$$H_{XXZ} = 2\sum_{j=1}^{N} (X_j X_{j+1} + Y_j Y_{j+1} + \lambda_z Z_j Z_{j+1})$$

 X_j, Y_j, Z_j Pauli-matrices at site number $j \sim j + N$.

The global internal symmetry is $G_{UV} = O(2) \subset SO(3)$. For $-1 < \lambda_z \le 1$, it is known to flow to the free compact boson with

radius $R(\lambda_z) \ge 1$.

 $\lambda_z = 1$ corresponds to the Heisenberg chain with $G_{UV} = SO(3)$. i.e., R(1) = 1.

The winding operator $\cos \tilde{\phi}$ preserves G_{UV} and depending on λ_z , it can be relevant. Why isn't it present in the low-energy Hamiltonian and gaps the system? For example, for $\lambda_z = 1$, there is an SO(3)-preserving relevant operator.

Why are these models robust (stable)?

The low-energy limit of the XXZ Chain

The model flows to

$$S = \int dt dx \left(\frac{1}{4\pi R^2} \left(\partial_{\mu} \tilde{\phi} \right)^2 + \lambda \cos(2\tilde{\phi}) \right)$$

with an emanant (not emergent) \mathbb{Z}_2 symmetry.

No term of the form $\cos(n\tilde{\phi})$ with odd n.

This emanant \mathbb{Z}_2 symmetry arises from lattice translation as $T = Ce^{2\pi i \frac{P}{N}}$

P is the momentum of the continuum theory. *C* generates a $\mathbb{Z}_2 e^{i\pi(Q^m+Q^w)}$ symmetry of the continuum theory. On the lattice, only *T* is well-defined, but at energies of order $\frac{1}{N}$ (and therefore also in the continuum), *P* and *C* are separately well-defined. The relation $T = C e^{2\pi i \frac{P}{N}}$ is exact without finite *N* corrections.

Summary

- Microscopic translation (e.g., lattice translation) can lead to an emanant symmetry.
 - Unlike an emergent symmetry, it is exact at low energies not violated by relevant or irrelevant operators.
- Four versions of the lattice Majorana chain flow to four continuum models, NSNS, RR, NSR, and RNS.
 - In each case, $(-1)^{F_L}$ (or $(-1)^{F_R}$) emanates from microscopic translation T. The microscopic $T/(-1)^F$ anomaly is matched in the IR by $(-1)^{F_L}/(-1)^F$ (or $(-1)^{F_R}/(-1)^F$) anomaly.
- Summing over the spin structures on the lattice leads to three lattice models: Ising, twisted Ising, and Ising with a *D* defect.
 - These models flow to the three continuum Ising models with defects. The noninvertible duality symmetry \mathcal{D} of the CFT emanates from D.

Summary

- A system with a U(1) global symmetry with chemical potential can have an emanant symmetry.
- Various lattice spin models, including the Heisenberg chain, lead to a \mathbb{Z}_2 emanant symmetry.
- Anomalies involving lattice translations are matched in the IR by anomalies in internal emanant symmetries. We exhibited it in:
 - the Majorana chain
 - Luttinger theorem and filling constraints (the example with a chemical potential)
 - Lieb-Schultz-Mattis type theorems (the example with the Heisenberg chain)

Thank you