Two tales of networks and quantization

Fei Yan

Rutgers University

Western Hemisphere Colloquium on Geometry and Physics

May 3rd, 2021

Fei Yan (Rutgers University)

Two tales of networks and quantization

May 3rd, 2021 1 / 34

I will describe two quantization scenarios.

A. Construction of a link "invariant" (with possible wall-crossing behavior) for links L in a 3-manifold M, where M is a Riemann surface C times a real line. [Neitzke-Y,JHEP09(2020)153], [Neitzke-Y,wip]

- This construction computes familiar link invariants in a new way.
- It unifies that computation with the computation of framed BPS indices counting ground states with spin for line defects in 4d N=2 theories of class-S.
- Certain networks play an important role in the construction.
- Potentially extendable to general 3-manifolds M admitting tetrahedron triangulations.

B. Exact WKB method for Schrödinger equations and higher order analogues, arsing as quantization of Seiberg-Witten curves in 4d N=2 theories. Similar networks also play an important part. (short review plus new results [Y,arXiv:2012.15658],[Y,wip])

I will also briefly sketch a possibility to bridge these two scenarios. (discussion w/ D. Gaiotto, G. Moore and A. Neitzke)

イロト 不得下 イヨト イヨト

Line defects in 4d N = 2 theories

- Line operators are important tools in studying QFTs: capture global structure of QFTs, affect local dynamics of the theory compactified on S¹, info on bulk spectrum, ...
- Consider 4d N = 2 theory, with the insertion of a susy line defect extending along time direction, sitting at the origin of spacial R³. (susy Wilson-'t Hooft lines and generalizations)

[Kapustin-Saulina], [Drukker-Morrison-Okuda], [Alday-Gaiotto-Gukov-Tachikawa-Verlinde], [Gaiotto-Moore-Neitzke], [Córdova-Neitzke], [Aharony-Seiberg-Tachikawa], [Gaiotto-Kapustin-Seiberg-Willett], [Gaiotto-Kapustin-Komargodski-Seiberg], [Ang-Roumpedakis-Seifnashri], [Agmon-Wang], [Bhardwaj, Hubner, Schafer-Nameki],...

 In abelian gauge theories, they are labeled by electromagnetic charge γ and a parameter ζ ∈ C[×] (preserved supercharges): Example: 4d N = 2 U(1) theory, γ purely electric:

$$\mathbb{L}(\gamma,\zeta) = \exp\left[i\gamma \int_{\mathbb{R}_t} \left(A + \frac{1}{2}\left(\zeta^{-1}\phi + \zeta\bar{\phi}\right)\right)\right]$$

イロト 不得下 イヨト イヨト

The UV-IR map

4d N = 2 theories have a subspace of vacua called the Coulomb branch; the low energy effective field theory is $U(1)^r$ gauge theory. [Seiberg-Witten] Starting with a susy line defect \mathbb{L} in the UV, deform onto the CB, \rightarrow superposition of line defects in effective abelian theory. [Gaiotto-Moore-Neitzke]

- 4 同 6 4 日 6 4 日 6

The UV-IR map

4d N = 2 theories have a subspace of vacua called the Coulomb branch; the low energy effective field theory is $U(1)^r$ gauge theory. [Seiberg-Witten] Starting with a susy line defect \mathbb{L} in the UV, deform onto the CB, \rightarrow superposition of line defects in effective abelian theory. [Gaiotto-Moore-Neitzke]

An UV-IR map for line defects:

Line defects in class-S theory

6d (2,0) $\mathfrak{gl}(N)$ theory on $C \times \mathbb{R}^{3,1}$ (C: Riemann surface) with certain twisting, compactify on $C \rightsquigarrow 4d$ N=2 theory of class S. [Gaiotto].[GMN]

Line defects \mathbb{L} in class-S theory \leftrightarrow "loops" ℓ on C (junctions, laminations)

[Drukker-Morrison-Okuda], [Drukker-Gaiotto-Gomis], [Alday-Gaiotto-Gukov-Tachikawa-Verlinde], [Gaiotto-Moore-Neitzke]...

 $[\mathsf{Fock}\mathsf{-}\mathsf{Goncharov}], [\mathsf{Sikora}], [\mathsf{Le}], [\mathsf{Xie}], [\mathsf{Saulina}], [\mathsf{Coman-Gabella}\mathsf{-}\mathsf{Teschner}], [\mathsf{Tachikawa}\mathsf{-}\mathsf{Watanabe}], [\mathsf{Gabella}] \ldots = \mathsf{Gabella}, [\mathsf{Gabella}], [\mathsf{Gabella}],$

The surface defect carries representation of $\mathfrak{gl}(N)$, consider fundamental representation.

・ 同 ト ・ ヨ ト ・ ヨ ト

The UV-IR map: geometric picture

A pt. in Coulomb branch \leftrightarrow a *N*-fold branched covering $\widetilde{C} \to C$, $\widetilde{C} \subset T^*C$ is the Seiberg-Witten curve.

IR: bulk theory approx. by 6d (2,0) theory of type $\mathfrak{gl}(1)$ on $\widetilde{C} \times \mathbb{R}^{3,1}$. IR line defects \leftrightarrow loops $\tilde{\ell}$ on \widetilde{C}

• • = • • = •

The UV-IR map as the trace map

Class-S theory on $S^1 \rightarrow 3d \ N = 4$ sigma model with target $M_{\text{Hitchin [GMN]}}$ M_{Hitchin} hyper-Kähler, cplx. structure labeled by $\zeta \in \mathbb{CP}^1$:

- * ζ = 0, cplx integrable system, fibered over Hitchin base (4d CB)
- * $\zeta \in \mathbb{C}^{\times}$, moduli space of flat $GL(N, \mathbb{C})$ -connections \mathcal{A}_{ζ} on C
 - VEV of UV line defect \mathbb{L} wrapping S^1 : holomorphic trace functions

$$\langle \mathbb{L}(\zeta, \ell) \rangle = \mathsf{Tr}\left[\mathsf{Hol}_{\ell}\mathcal{A}_{\zeta}\right]$$

- VEV of IR line defect X_{γ} wrapping S^1 : Darboux coordinates \mathcal{X}_{γ}
- The UV-IR map \rightarrow the trace map:

$$\mathsf{Tr}\left[\mathsf{Hol}_\ell\mathcal{A}_\zeta
ight] = \sum_\gamma \overline{\underline{\Omega}}(\mathbb{L},\gamma)\mathcal{X}_\gamma$$

refined index $\underline{\overline{\Omega}}(\mathbb{L}, \gamma, q) \rightarrow \text{quantization of UV-IR map/trace map}$?

ヘロト 不良 トイヨト イヨト

Line defects OPE

algebra of hol. functions on $M_{\text{Hitchin}} \leftrightarrow$ line defects operator products: $\langle \mathbb{L}_1(\zeta) \mathbb{L}_2(\zeta) \rangle = \langle \mathbb{L}_1(\zeta) \rangle \langle \mathbb{L}_2(\zeta) \rangle$

This algebra structure admits a quantization via skein algebras.

[Reshetikhin-Turaev],[Turaev],[Witten],[Alday-Gaiotto-Gukov-Tachikawa-Verlinde],[Gaiotto-Moore-Neitzke],

[Drukker-Gomis-Okuda-Teschner], [Tachikawa-Watanabe], [Coman-Gabella-Teschner], [Gabella]...

Turning on Ω -bkg on a \mathbb{R}^2 -plane: non-commutative associative OPE * [Nekrasov-Shatashvili], [Gaiotto-Moore-Neitzke], [Ito-Okuda-Taki], [Yagi], [Oh-Yagi],...

IR: quantum torus algebra $X_{\gamma_1} * X_{\gamma_2} = (-q)^{\langle \gamma_1, \gamma_2
angle} X_{\gamma_1 + \gamma_2}$

quantum UV-IR map: UV skein algebra \rightarrow quantum torus algebra

The UV and IR skein algebras

UV skein algebra: $\mathfrak{gl}(N)$ HOMFLY skein algebra of $M = C \times \mathbb{R}^h$ IR skein algebra: (twisted) $\mathfrak{gl}(1)$ skein algebra of $\widetilde{M} = \widetilde{C} \times \mathbb{R}^h$ algebra structure \leftrightarrow stacking links along \mathbb{R}^h

IR: $\mathbb{Z}[q^{\pm 1}]$ -module of oriented framed links $\widetilde{L} \subset \widetilde{M}$

iso, to quantum torus

The quantum UV-IR map

The quantum UV-IR map sends $L \subset M$ to combinations of $\widetilde{L} \subset \widetilde{M}$:

See also [Bonahon-Wong],[Goncharov-Shen],[Douglas-Sun],...

A D A D A D A

The quantum UV-IR map: construction

Given $L \subset M$, enumerate all possible $\widetilde{L} \subset \widetilde{M}$, assoc. with factor $\alpha(\widetilde{L})$.

Physics: twisted and Ω -deformed 5d N = 2 U(N) super Yang-Mills on $M \times \mathbb{R}^2_{\epsilon}$, w/ fund. Wilson line insertion along $L \subset M$, in a background that generically breaks $U(N) \to U(1)^N$ labeled by $\widetilde{M} \to M$.

"Expand" the partition function via partition function of IR effective theory, with IR Wilson line insertions.

• • = • • = •

The quantum UV-IR map: construction

Given $L \subset M$, enumerate all possible $\widetilde{L} \subset \widetilde{M}$, assoc. with factor $\alpha(\widetilde{L})$.

Physics: twisted and Ω -deformed 5d N = 2 U(N) super Yang-Mills on $M \times \mathbb{R}^2_{\epsilon}$, w/ fund. Wilson line insertion along $L \subset M$, in a background that generically breaks $U(N) \to U(1)^N$ labeled by $\widetilde{M} \to M$.

"Expand" the partition function via partition function of IR effective theory, with IR Wilson line insertions.

This hints at the strategy of enumerating \widetilde{L} .

• locally away from branch points:

i-th entry $\stackrel{(0,...,1,...,0)}{\longrightarrow}$

The quantum UV-IR map: network of webs

 corrections from massive W-bosons ↔ networks of webs on C (BPS *ij*-trajectories introduced by [Gaiotto-Moore-Neitzke])

The quantum UV-IR map: BPS leaves

Given a point in CB, labeled by \widetilde{C} : $\lambda^{N} + p_{1}(z)\lambda^{N-1}(z) + ... + p_{N}(z) = 0$ BPS *ij*-leaves: 1-dim leaves on *C*, Im $\left[e^{-i\theta}(\lambda_{i} - \lambda_{j})\right] = 0$ (mutually BPS)

Two tales of networks and quantization

May 3rd, 2021 14 / 34

Example of W-boson webs: $C=\mathbb{R}^2$, $M=\mathbb{R}^2\times\mathbb{R}^h$, N=3

The quantum UV-IR map: bootstrapping $lpha(\widetilde{L})$

Prescriptions for $\alpha(\widetilde{L})$ determined by bootstrap-like method: the quantum UV-IR map F preserves skein relations, is isotopy invariant. e.g. weights associated with webs determined in a recursive way:

Example of protected spin character: SU(2) with $N_f = 4$

Take N = 2, $M = C \times \mathbb{R}^h$ where C is a four-punctured sphere,

$$\widetilde{C} = \{\lambda : \lambda^2 + \phi_2 = 0\} \subset T^*C, \quad \phi_2 = -\frac{z^4 + 2z^2 - 1}{2(z^4 - 1)^2}dz^2.$$

Fei Yan (Rutgers University)

Two tales of networks and quantization

May 3rd, 2021 17 / 34

過 ト イヨ ト イヨト

The quantum UV-IR map F depends on the covering $\widetilde{M} \to M$. Moving on the Coulomb branch, the framed BPS index could change discontinuously. This is called (framed) wall-crossing, controlled by the BPS spectrum of bulk 4d theory. [Kontsevich-Soibelman].[Fock-Goncharov], [Gaiotto-Moore-Neitzke], [Dimofte-Gukov-Soibelman]...

For example, across a wall corres. to a BPS hypermultiplet with charge γ :

$$F(L) \rightarrow E_q(X_\gamma)F(L)E_q(X_\gamma)^{-1},$$

where $E_q(x)$ is the quantum dilogarithm.

By studying F(L) before and after the jump, we obtain information about the bulk BPS spectrum with spin. (motivic Donaldson-Thomas invariants)

General three-manifold M

We have taken $M = C \times \mathbb{R}$. What about more general three-manifold M? Reducing the 6d theory (with surface defect) on M gives a 3d N = 2theory with line defect insertion. One could also make a perturbation, labeled by $\widetilde{M} \to M$, under which the bulk theory flows to a Lagrangian theory in the IR. [Dimofte-Gaiotto-Gukov],[Cecotti-Córdova-Vafa],[Dimofte-Gaiotto-van der Veen],...

Q: how does a UV line defect decompose in terms of IR line defects? Here the quantum UV-IR map should go from the $\mathfrak{gl}(N)$ skein module of M to the (twisted) $\mathfrak{gl}(1)$ skein module of \widetilde{M} .

Extend the construction to 3-mfds admitting tetrahedron triangulations?

M has an new kind of singularity, one within each tetrahedron. [Dimofte-Gaiotto-van der Veen].[Cecotti-Córdova-Vafa].[Freed-Neitzke]

Summary A

- The quantum trace map/quantum UV-IR map, embedding gl(N) HOMFLY skein algebra into the quantum torus algebra.
- A new computation of HOMFLY polynomial, unified with computation of refined framed BPS index for line defects in class-*S* theories.
- Interesting to consider more general 3-mfd *M* and the UV-IR map for line defects in 3d N=2 theories, as a map between UV and IR skein modules.
- Certain networks of webs play an important role in the construction. A subset of networks (spectral networks [GMN]) also appear in a seemly different setup.

- 4 週 ト - 4 三 ト - 4 三 ト

There has been many interesting developments in application of resurgence theory and exact WKB analysis to quantum mechanics.

[Alvarez-Casares],[Zinn-Justin,Jentschura],[Dunne-Ünsal],[Basar-Dunne-Ünsal],[Behtash-Dunne-Schäfer-Sulejmanpasic-Ünsal], [Misumi-Nitta-Sakai],[Fujimori-Kamata-Misumi-Nitta-Sakai],[Sueishi-Kamata-Misumi-Ünsal] ...

The (complex) Schrödinger equation:

$$\left[\partial_z^2 + \hbar^{-2} P(z)\right] \psi(z) = 0,$$

P(z) is holomorphic or meromorphic.

Geometric approach to study exact quantization conditions (e.g. for bound states), Stokes data etc.

イロト 不得下 イヨト イヨト

21 / 34

Schrödinger equations as quantum Seiberg-Witten curves

• Consider the Seiberg-Witten curve of certain 4d N = 2 theory:

$$\widetilde{C}: y^2 + P(z) = 0,$$

Promoting y (momentum) and z (position) to Heisenberg operators, in position representation:

$$\left[\partial_z^2 + \hbar^{-2} P(z)\right] \psi(z) = 0$$

Schrödinger equations as quantum Seiberg-Witten curves

• Consider the Seiberg-Witten curve of certain 4d N = 2 theory:

$$\widetilde{C}: y^2 + P(z) = 0,$$

Promoting y (momentum) and z (position) to Heisenberg operators, in position representation:

$$\left[\partial_z^2 + \hbar^{-2} P(z)\right] \psi(z) = 0$$

Polynomial potential ↔ Argyres-Douglas theories
 (Modified) Mathieu potential cosh(z), cos(z) ↔ pure SU(2) SYM
 Certain polynomials in e^{±iz} ↔ SU(2) with fundamental matter
 [Gaiotto].[Dunne-Ünsal]. [Basar-Dunne-Ünsal].[Huang].[Grassi-Hatsuda-Mariño].[Codesido-Grassi-Mariño].
 [Grassi-Mariño].[Ito-Mariño-Shu].[Kashani-Poor, Troost].[Ashok-Jatkar-John-Raman-Troost].[Ito-Kanno-Okubo].
 [Hollands-Neitzke].[Grassi-Gu-Mariño].[Coman-Longhi-Teschner].[Dumas-Neitzke].[Imaizumi].[Grassi-Hao-Neitzke]....
 Warning: subtleties regarding choices of quantization

イロト 不得下 イヨト イヨト 三日

4d N = 2 theories and quantum mechanical systems

- The gauge/Bethe correspondence: [Nekrasov-Shatashvili],[Nekrasov-Rosly-Shatashvili] 4d N = 2 gauge theories in the NS limit ($\epsilon_1 = \hbar, \epsilon_2 \rightarrow 0$) of Ω -bkg \rightarrow quantization of the underlying SW integrable systems.
- The TS/ST correspondence: [Grassi-Hatsuda-Mariño].[Mariño].[Codesido-Grassi-Mariño] Association of a quantum mechanical operator to a toric Calabi-Yau, explicit spectrum computable via topological string free energy.
- The conformal limit: [Gaiotto] Class-S theory on $S_R^1 \rightarrow 3d N = 4$ sigma model with target M_{Hitchin} . scaling limit: $R \rightarrow 0, \zeta \rightarrow 0, \hbar = \zeta/R$ fixed. (ζ : cplx. structure) Hitchin section \longrightarrow variety of opers Rk: geometric reformulation of exact WKB via abelianization.

[Gaiotto-Moore-Neitzke], [Hollands-Neitzke], ...

[Voros],[Silverstone],[Delabaere-Dillinger-Pham],[Kawai-Takei],[Iwaki-Nakanishi],...

Exact WKB for Schrödinger equations

WKB ansatz:
$$\psi(z) = \exp\left(\hbar^{-1}\int_{z_0}^z \lambda(z')dz'\right) \rightarrow [\partial_z^2 + \hbar^{-2}P(z)]\psi(z) = 0$$

 $\lambda(z)$ obeys the Ricatti equation

$$\lambda(z)^2 + P(z) + \hbar \partial_z \lambda(z) = 0.$$

Build a formal series solution λ^{formal} in powers of \hbar ,

order-
$$\hbar^0$$
: $y^2 + p(z) = 0$, classical SW curve

Choose a branch labeled by $i \in \{\pm\}$:

$$\lambda_i^{\text{formal}} = y_i - \hbar \frac{P'}{4P} + \hbar^2 y_i \frac{5P'^2 - 4PP''}{32P^3} + \dots$$

 \longrightarrow Two formal solutions $\psi^{\text{formal}}_{\pm}(z,\hbar)$ as series in \hbar .

Exact WKB for Schrödinger equations

- \exists two actual solutions $\psi_{\pm}(z)$ within each region, where the solutions jump across a Stokes curve.
- In class-S theory context: Stokes curves ↔ spectral networks [GMN] corresponds to the critical networks in part A of the talk

The Voros symbol

The Voros symbol: $\mathcal{X}_{\gamma}(\hbar) \in \mathbb{C}^{\times}$, $\gamma \leftrightarrow 1$ -cycles of Seiberg-Witten curve

• $\mathcal{X}_{\gamma}(\hbar)$ captures the Borel resummed quantum periods:

$$\Pi_{\gamma}(\hbar) := \oint_{\gamma} \lambda^{\mathsf{formal}}(\hbar) dz = \sum_{n=0}^{\infty} \Pi_{\gamma}^{(n)} \hbar^{n}$$

- *X*_γ(ħ) expressed as Wronskians of distinguished local solutions:
 * asymptotically decaying solutions as z approaches a singularity
 * eigenvectors of the monodromy around a loop
- X_γ(ħ) could be identified as spectral coordinates on a moduli space of flat SL(2, C)-connections.
 (conformal limit of Darboux coordinate X_γ(ζ) in part A of the talk)

The Voros symbol: modified Mathieu operator

$$\begin{bmatrix} -\hbar^2 \partial_x^2 + 2\cosh(x) - 2E \end{bmatrix} \psi(x) = 0 \quad (E > 1)$$
$$z = -e^{-x} \rightarrow \left[\hbar^2 \partial_z^2 + \left(\frac{1}{z^3} + \frac{1}{z} + \frac{2E + 0.25\hbar^2}{z^2} \right) \right] \tilde{\psi}(z) = 0. \quad \text{SU(2) SYM}$$

bound states: s prop. to $t \rightarrow \mathcal{X}_{\gamma_2} = 1$ (exact quantization condition)

[Mironov-Morozov], [He-Miao], [Basar-Dunne], [Dunne-Ünsal], [Codesido-Marino-Schiappa], [Hollands-Neitzke],...

Fei Yan (Rutgers University)

Two tales of networks and quantization

May 3rd, 2021 27 / 34

イロト イポト イヨト イヨト

The Voros symbol: 4d N = 2 theory perspective

• $\mathcal{X}_{\gamma}(\hbar)$ obey TBA-like integral equation: [Gaiotto],[Gaiotto-Moore-Neitzke],[Ito-Mariño-Shu]

$$\mathcal{X}_{\gamma}(\hbar) = \exp\left[\frac{Z_{\gamma}}{\hbar} + \frac{1}{4\pi i} \sum_{\mu} \frac{\Omega(\mu) \langle \gamma, \mu \rangle}{\frac{BPS \text{ index}}{}{} \frac{d\hbar'}{\hbar' - \hbar} \frac{\hbar'}{\hbar' - \hbar} \log(1 + \mathcal{X}_{\mu}(\hbar'))\right]$$

• Instanton calculus resums special quantum periods $\{a_i(\hbar), a_D^i(\hbar)\}$

$$a_D^i(a_1, \dots, a_r; \hbar) = \frac{\partial F_{\rm NS}(a_1, \dots, a_r; \hbar)}{\partial a_i}, \quad i = 1, \dots, r$$

 $a(\hbar), a_D(\hbar) \leftrightarrow$ special Voros symbols: Fenchel-Nielsen coordinates

[Nekrasov-Rosly-Shatashvili], [Hollands-Kidwai], [Jeong-Nekrasov],...

Fei Yan (Rutgers University)

- 4 同 6 4 日 6 4 日 6

Higher rank generalization

Interesting and challenging to generalize the story to higher order Schrödinger-like equations

[Aoki-Kawai-Takei],[Hollands-Neitzke],[Jeong-Nekrasov],[Haouzi-Oh],[Dumas-Neitzke],[Ito-Kondo-Kuroda-Shu],...

$$\left[\partial_z^N + P_2(z,\hbar)\partial_z^{N-2} + \dots P_N(z,\hbar)\right]\psi(z) = 0.$$

Network of Stokes curves (spectral networks [GMN]) becomes complicated:

Pure SU(3) SYM: strong coupling region

Strong-coupling region: 12 BPS states

30 / 34

A (1) > A (2) > A

Pure SU(3) SYM: strong coupling region

The Voros symbols $\mathcal{X}_{\gamma}(\hbar)$ expressed via special solutions $s, t, M^{\pm}s, M^{\pm}t$.

	$\hbar=rac{1}{2}\mathrm{e}^{\mathrm{i}\pi/3}$		
	evaluation of (3.4)	$\frac{1}{\hbar}\Pi_{\gamma}(\hbar)$ at $o(\hbar^6)$	
$\log \mathcal{X}_{\gamma_1}$	-11.21119	-11.21120	
$\log \mathcal{X}_{\gamma_2}$	-11.21119	-11.21120	
$\log \mathcal{X}_{\gamma_3}$	5.60559 + 2.71805i	5.60560 + 2.71808i	
$\log \mathcal{X}_{\gamma_4}$	5.60559 + 2.71805i	5.60560 + 2.71808i	

Pure SU(3) SYM: strong coupling region

The Voros symbols $\mathcal{X}_{\gamma}(\hbar)$ expressed via special solutions $s, t, M^{\pm}s, M^{\pm}t$.

		$\hbar = \frac{1}{2} \mathrm{e}^{\mathrm{i}\pi/3}$		
$\rightarrow 0$: 1		evaluation of (3.4)	$\frac{1}{\hbar}\Pi_{\gamma}(\hbar)$ at $o(\hbar^6)$	
$(\mathcal{X}_{\gamma}(\hbar)) \sim \frac{-}{\hbar} \Pi_{\gamma}(\hbar)$	$\log \mathcal{X}_{\gamma_1}$	-11.21119	-11.21120	
1	$\log \mathcal{X}_{\gamma_2}$	-11.21119	-11.21120	
quantum periods	$\log \mathcal{X}_{\gamma_3}$	5.60559 + 2.71805i	5.60560 + 2.71808i	
	$\log \mathcal{X}_{\gamma_4}$	5.60559 + 2.71805i	5.60560 + 2.71808i	

 $\mathcal{X}_\gamma(\hbar)$ also computable via integral equations [Gaiotto],[Gaiotto-Moore-Neitzke]

$$\mathcal{X}_{\gamma}(\hbar) = \exp\left[\frac{Z_{\gamma}}{\hbar} + \frac{1}{4\pi i} \sum_{\mu} \frac{\Omega(\mu) \langle \gamma, \mu \rangle}{\text{BPS index}} \int_{\hbar' \in \mathbb{R}_{-} Z_{\mu}} \frac{d\hbar' \hbar' + \hbar}{\hbar' \hbar' - \hbar} \log(1 + \mathcal{X}_{\mu}(\hbar'))\right]$$

Fei Yan (Rutgers University)

 \hbar log

Two tales of networks and quantization

May 3rd, 2021 31 / 34

Summary

• Two different quantization scenarios:

 \star quantum UV-IR map: a new computation of HOMFLY polynomial, unified with computation of refined framed BPS indices for line defects in class-S theories

 \star Exact WKB method for Schrödinger-like equations, as quantum Seiberg-Witten curves of 4d N=2 theories

- Both involve certain networks on Riemann surface C
- Possibility to unite these two scenarios? Turning on the full Ω-background?

I will briefly sketch a different possibility. (discussions w/ Gaiotto-Moore-Neitzke)

K 4 E K 4 E K

q-deformed integral equations

The VEV of IR line defects $X_{\gamma}(\zeta)$ around S_R^1 obeys integral equations [GMN]:

Turning on half Omega background, OPE becomes non-commutative.

q-deformed integral equations: operator equation respecting quantum torus, jumps consists of quantum dilogarithm. Solution to q-TBA solve q-deformed RH problem. [Barbieri-Bridgeland-Stoppa] Simplification happens if q is N-th root of unity.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Thank You and Stay Healthy!

Fei Yan (Rutgers University)

Two tales of networks and guantization

-May 3rd, 2021 34 / 34

3

Image: A match a ma