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Generalized Symmetry ”Revolution”



Non-invertible Symmetries in d > 3:
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Symmetries from Topological Operators

Any topological operator in a QFT is a symmetry generator.

1. Higher-form symmetries Γ(p): [Gaiotto, Kapustin, Seiberg, Willett, 2014]

charged objects are p-dimensional defects, whose charge is measured by
codimension p+ 1 topological operators Dg

q=d−(p+1), g ∈ Γ(p):

Dg
q ⊗Dh

q = Dgh
q , g, h ∈ Γ(p)

D
(g)
qD

(h)
q D

(gh)
q

2. Higher-group symmetries:
{p-form symmetries} might not form product groups



3. Non-invertible symmetries:
group ⇒ algebra

D
(a)
q D

(b)
q D

(c1)
q

⊕
· · ·

⊕⊗

D
(ck)
q

Perhaps surprisingly:
These are ubiquitous in higher dimensional QFTs, e.g. 4d pure Yang Mills.

Science-sociological bonus: Provides a really exciting connection between
hep-th, hep-ph, cond-mat, and math.



Examples:

2d: Verlinde lines in a 2d rational conformal field theory (RCFT)

Di
1 ⊗Dj

1 =
⊕
k

N ij
k Dk

1

Nk
ij = RCFT fusion coefficients obtained by the Verlinde formula

3d: Modular tensor categories: classification of topological order:

4d: By now many examples and methods of construction: e.g.

(i) O(2) = U(1)⋊Z2 [Heidenreich, McNamara, Montero,Reece, Rudelius, Valenzuela]

(ii) Outer automorphism gauging, e.g. Pin+(4N) theory. [Bhardwaj, Bottini,

SSN, Tiwari]: Non-invertible 1-form symmetry

(iii) Duality defects: [Choi, Cordova, Hsin, Lam, Shao][Kaidi, Ohmori, Zheng]:
Non-invertible 0-form symmetry



Utility of Non-Invertible Symmetries

Many applications – but clearly only scratching the surface:

1. 2d: constraints on existence of gapped phases, and number of vacua

2. Confinement/Deconfinement: in 4d QFT and holography constrained by
non-invertible defects in N = 1 pure Yang-Mills

3. Applications to hep-ph: e.g. neutrino mass generation from
non-invertible symmetry breaking etc.

4. Swampland/No Global Symmetry conjecture



Non-Invertible to Categorical

Consider more generally a QFT in d-dimensions, with not-necessarily
invertible fusion of topological defects of various dimensions.

What is the proper framework for characterizing such symmetries?

• For 0-form (and p-form) symmetry groups:
Obviously, Group Theory and Representations

Historic note: this was not always so obvious. According to Wigner (1981),
Erwin Schrödinger coined the expression ”Gruppenpest” and stated it ought to
be abandoned.

• For non-invertible symmetries: topological operators of dimensions
0, · · · , d− 1, with non-invertible fusion:
Higher-Fusion Categories

⇒ (Higher) Categorical Symmetries



categories



Categorical Symmetries

Higher-categories play a similar role to groups and group representations.

A fusion p-category has the following structure:

1. A set of objects: Dp of p-dimensional topological defects

2. 1-Morphisms: maps between two defects Dp and D′
p, i.e. Dp−1 defects.

3. 2-Morphisms: maps between two 1-morphisms, i.e. Dp−2 defects.

4. · · ·

Example: 2-fusion categories [Douglas, Reutter; 2018]

D
(a,b)
1 D

(a,b)′

1

D
(a)
2

D
(b)
2

D0

Objects: topological surface operators
1-morphisms: topological lines
2-morphisms: local operators



Monoidal structure: loosely speaking, there is a fusion between objects,
1-morphisms, etc:

D
(a)
p D

(b)
p D

(c1)
p

⊕
· · ·

⊕⊗

D
(ck)
p

D
(b)
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(b′)
2D
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2 D

(a′)
2 D

(c)
2 D

(c)′

2

D
(a,a′)
1 D

(b,b′)
1 D

(c,c′)
1

⊗

D
(c,c′)
1 = D

(a,a′)
1 ⊗D

(b,b′)
1 , D

(a)
2 ⊗D

(b)
2 ⊃ D

(c)
2 etc



Theta-Defects:
Universal Construction of Non-Invertibles

[Bhardwaj, SSN, Wu][Bhardwaj, SSN, Tiwari]



Theta-Defects

Lets start with 4d Maxwell:

LU(1) =
1

g2

∫
F ∧ ⋆F + θ

∫
F ∧ F

We can think of this theory as follows:
Consider a 4d trivial theory with a trivial U(1) global symmetry, background
A, but a symmetry protected phase (SPT)

LT = Ltrivial + SPT , SPT = θ

∫
F ∧ F

Gauging U(1) we obtain Maxwell and the SPT becomes the theta-angle

LT/U(1) =
1

g2

∫
F ∧ ⋆F + θ

∫
F ∧ F

This can be generalized to any theory with U(1) global symmetry that can be
gauged:

Stacking with U(1)-SPT and gauging adds a θ-angle.



Theta Defects

[Bhardwaj, SSN, Wu][Bhardwaj, SSN, Tiwari]

Let T be a d-dim QFT with a G(0) symmetry.
Consider a G-symmetric p-dimensional TQFT. Gauge the diagonal G:

p-dim G-TQFT

T gauge G

Topological line defect Dp

T /G

In the gauged theory, the TQFT is now a topological defect of the theory.
Generically: the fusion of these defects is non-invertible.



Warmup: Gauging in 2d QFTs (Orbifolding)

Let T be a 2d theory with a 0-form symmetry G.

The symmetries of this theory are generated by topological lines D(g)
1 , which

fuse according to the group multiplication in G

D
(g)
1 , g ∈ G, D

(g)
1 ⊗D

(h)
1 = D

(gh)
1

This defines a fusion category: C = Vec(G).

Gauging G: T /G is defined by:

• Couple to G-background: insert a fine mesh of topological lines D(g)
1 :

• Sum over such backgrounds



What are the symmetries of T /G? In the gauged theory, we only allow lines
D1 which are gauge-invariant, i.e. configurations of lines that can move freely
through the G-mesh.

• D
(g)
1 lines can end from the left on D1 subject to

D
(g)
1D

(h)
1

D1

OL

OL

=

D
(g)
1D

(h)
1

OL

D1

• Similarly: couple to G-backgrounds from the right.

• Compatibility of left and right coupling

⇒ The D
(g)
1 lines are invisible to the lines D1 in T /G.

Mathematically, in order to gauge we need to pick an algebra A in C and solve
the above bimodule conditions. For A = ⊕g∈GD

(g)
1 in Vec(G):

BimodVec(G)(A) = Rep(G) = representations of G

This approach generalizes to higher-categories.



Example: Dual Symmetry in 2d

Let T be a 2d theory with a 0-form symmetry G, generated by topological
lines D(g)

1 , which fuse according to the group multiplication in G

D
(g)
1 , g ∈ G, D

(g)
1 ⊗D

(h)
1 = D

(gh)
1

This defines a fusion category: C = Vec(G).

Gauging G means introducing a dynamical G gauge field:

• There is a dynamical G gauge field a and Wilson lines in
G-representations R

D
(R)
1 = TrR e

∫
a

• These Wilson lines fuse according to the representations of G, Rep(G):

D
(R1)
1 ⊗D

(R2)
1 =

⊕
R3

NR1R2

R3
D

(R3)
1

For abelian groups, e.g.

Rep(ZN ) ≡ Hom(ZN ,U(1)) ∼= ZN



Theta-Defects

Theta-defects are a complementary perspective, which naturally generalizes
to higher dims.

Consider a 2d theory T , finite 0-form symmetry G: CT = Vec(G).

Stacking a 1d TQFT with G-symmetry, and gauging the diagonal G results in
topological lines D(R)

1 , R rep of G in the gauged theory:

1d G-TQFT

T gauge G

Topological line defect D1

T /G

1d G-TQFTs:
Characterized by the number of vacua and G action on them, i.e. a
G-representation. They form a subset Rep(G) of the symmetry of T /G.



Theta-Defects: higher dimensions

[Bhardwaj, SSN, Wu][Bhardwaj, SSN, Tiwari]

T

TQFTG
gauge G

T /G

DR
d−1

Stack a fully extended (d− 1)dim G-TQFT and gauge diagonal G
(d− 1)-category (d− 1)Rep(G):

• Objects: (d− 1)-dim G-TQFTs

• 1-morphisms: (d− 2)-dim G-interfaces between TQFTS

• 2-morphisms: (d− 3)-dim G-junctions between interfaces

• etc.



Generalized gauging

T

SPTχ
gauge Γ(p)

T /Γ(p)

Dχ
p+1

Gauging a p-form symmetry of a theory T :
Stack a (p+ 1)-dim TQFT SPTχ, protected by Γ(p), associated to Γ(p) character
χ. Gauging the diagonal Γ(p), results in TQFT becoming a topological defect
in the gauged theory, which generates a (d− p− 2)-form symmetry.



Example: 3d gauge theories

Consider the 3d pure gauge theory with gauge group

PSO(4N)

This is obtained e.g. from Spin(4N) by gauging the center symmetry
Z = Z2 ×Z2:

Spin(4N)

Z
= PSO(4N)

The theory PSO(4N) has magnetic 0-form symmetry Z2 ×Z2, and in addition
there is an outer automorphism coming from the action on the Dynkin
diagram. The combined 0-form symmetry is generated by

D
(g)
2 : g ∈ G = D8 = (Z2 ×Z2)⋊Z2

Its symmetry category is G-graded 2-vector spaces

2Vec(D8)

Gauging the full 0-form symmetry results in a theory with symmetry category

2Rep(D8)

This is in fact Pin+(4N), and the symmetries are non-invertible.



Categorical Symmetry Webs: 3d so(4N)

Spin(4N)

2Vec((Z(1)
2 ×Z(1)

2 )⋊Z(0)
2 )

2-group

PSO(4N)

2Vec(D(0)
8 )

group

Pin+(4N)

2Rep(D8)
non-invertible

Z(1)
2 ×Z(1)

2

Z(0)
2

What is 2Rep(G), precisely?



Fusion 2-categories

Objects: D2 topological surfaces; e.g. Γ(d−3) form symmetry

1-Morphisms: D1 topological lines; e.g. Γ(d−2) form symmetry

2-Morphisms: D0 topological point operators

⊃

D
(2)
2D

(1)
2 D

(3)
2

D
(a,b)
1 D

(a,b)′

1

D
(a)
2

D
(b)
2

D0



Gauging 2-categories

Start with a theory with a 2-fusion category symmetry C, with a G-symmetry
generated by D

(g)
2 , g ∈ G. To gauge G there are again two approaches:

• Coupling the theory to a G-background, and solving for consistent
endings of G-surfaces.
⇒ Bimodules for algebras in 2-categories. [Bartsch, Bullimore, Ferrari,

Pearson][Bhardwaj, Bottini, SSN, Tiwari]

D
(g1g2)
2

D
(g1)
2 D

(g2)
2

D2

D
(g1)
2 D

(g2)
2

D2

• Stacking G-TQFTs and gauging diagonal G. [Bhwardwaj, SSN, Wu]



Generalized Gauging

Our philosophy is to attach 2d G-TQFTs:

T

TQFTG
gauge G

T /G

DR
2

A 2d TQFT (finite, modulo Euler number counter-term) is characterized by an
integer n ∈ N, the number of vacua:

Tn = ⊕n
i=1triviali

The space of local operators has a basis idi, i = 1, · · · , n with

idiidj = δij idi

Defects are domain walls between vacua Iij which compose as

Iij ◦ Ikl = δjkIi,l

These form a fusion 2-category

2Vec : Tn ⊗ Tm = Tnm



2d G-TQFTs to 2d Defects

What are 2d G-TQFTs?

• Single Vaccum: 2d G-SPTs, which are classified by

α ∈ H2(G,U(1))

• Multiple Vacua: we can have spontaneous symmetry breaking to H < G.
A minimal set of G-TQFTs is determined by

T(H,α) : H < G, αH ∈ H2(H,U(1))

and any G-TQFT can be written as⊕
(H,α)

T(H,α)

and has
∑

H<G |G/H| many vacua.

In the gauged theory: TQFTs become 2d topological defects D(H,α)
2 with

fusion:
D

(H,αH)
2 ⊗D

(K,αK)
2 =

⊕
HaK∈H\G/K

D
(H∩aK,αH+αK)
2



Example: G = Z2

G = Z2 then H = 1 or Z2 and α trivial.

Objects:

• D
(H=1)
2 ≡ D

(−)
2 : TQFT with two vacua |±⟩, which is a non-trivial defect.

• D
(H=Z2)
2 ≡ D

(id)
2 : TQFT with 1 vacuum |0⟩, trivial defect (identity).

Fusion:

• Single vacuum: |0⟩ ⊗ |0⟩: D(id)
2 ⊗D

(id)
2 = D

(id)
2

• One Z2-orbit: {|0⟩ ⊗ |±⟩}

D
(id)
2 ⊗D

(−)
2 = D

(−)
2

• Two Z2-orbits |±⟩ ⊗ |±⟩ and |±⟩ ⊗ |∓⟩:

D
(−)
2 ⊗D

(−)
2 = 2D

(−)
2

This is known as the 2-fusion category: 2Rep(Z2).



Relation to condensation defects:

The defects D(−)
2 are precisely condensation defects, [Roumpedakis, Saifnashri,

Shao] obtained by inserting a fine mesh of lines of the dual symmetry D
(−)
1

The topological defects obtained in this way obey non-invertible fusion, and
are precisely the condensation defects of [Gaiotto, Johnson-Freyd][Rumpedakis,

Seifnashri, Shao]:

D
(H,αH)
2 correspond to 1-gauging H < Ĝ(1) on a surface.



2Rep(G)

The generalized 0-form symmetry Z2 gauging in 3d, results in a theory T /Z2

which has symmetry 2-category 2Rep(Z2):

•
D

(id)
2

•
D

(−)
2

Rep(Z2)

Vec

Vec(Z2)

Vec

General lesson:
A 3d theory T with G 0-form symmetry has symmetry (sub-)category
2Vec(G). The gauged theory T /G has symmetry (sub-)category 2Rep(G).



Categorical Symmetry Webs: 3d so(4N)

[Bhardwaj, Bottini, SSN, Tiwari]

Spin(4N)

2Vec((Z(1)
2 ×Z(1)

2 )⋊Z(0)
2 )

2-group

PSO(4N)

2Vec(D(0)
8 )

group

Pin+(4N)

2Rep(D(0)
8 )

non-invertibles

PO(4N)

2Rep((Z(1)
2 ×Z(1)

2 )⋊Z(0)
2 )

non-invertibles

Z(1)
2 ×Z(1)

2

Z(0)
2 ×Z(0)

2

Z(0)
2 Z(1)

2 Z(0)
2 Z(1)

2



d-dim Categorical Symmetry Web

[Bhardwaj, Bottini, SSN, Tiwari]

Spin(4N)

(d− 1)Vec(2-Group)
2-group

Ss(4N)

(d− 1)Rep((d− 1)-Group)
non-invertibles

PSO(4N)

(d− 1)Vec((d− 2)-Group)
(d− 2)-group

SO(4N)

(d− 1)Vecω(Group)
mixed-anomaly

Pin+(4N)

(d− 1)Rep((d− 2)-Group)
non-invertibles

O(4N)

(d− 1)Vec((d− 1)-Group)
(d− 1)-group

PO(4N)

(d− 1)Rep(2-Group)
non-invertibles



Symmetry TFT:
The ”Everything Everywhere All at Once” of Symmetries

[Gaiotto, Kulp][Apruzzi, Bonetti, Garcia-Extebarria, Hosseini, SSN] [Freed, Moore, Teleman]

Different choices of global forms (related by gauging) correspond to different
b.c. on the so-called Symmetry TFT, which is a (d+ 1)dim TQFT that admits
gapped boundary conditions:

SymTFT(C)

Bphys Btop

B.c. result in different ”global forms”.
Example: Turaev-Viro TVC for fusion symmetry C.
More generally: Drinfeld center of the symmetry category. (2-categories
[Bhardwaj, SSN, to appear])



Symmetries and Charged Operators from SymTFT

SymTFT(C)

Bphys Btop

Z

Z

X

Defects that can end on the boundary resulting charged defects.
Defects that cannot end, result in symmetry generators X ∈ C.

C can be any higher fusion category (not necessarily invertible). Some 2d and
4d examples in [Kaidi, Ohmori, Zheng, 2] and general structure will appear in
[Bhardwaj, SSN]



Twisted Theta-Defects

• Theta-defects exist for any theory with G global symmetry: stack with a
p-dimensional G-TQFT and gauge. These are ”universal” defects.

• There are Theta-defects, which are theory-dependent: e.g. if there is an
obstruction to gauging on a defect, such as a ’t Hooft anomaly: Twisted
Theta Defects.

• For 3d topological defects D3 we can also consider G-TQFTs which do not
necessarily admit gapped boundary conditions.



Example:

G(0) = Z2M , Γ(1) = ZM , with mixed anomaly.

A = −2π

M

∫
A1 ∪

(B2 ∪B2)

2

The chiral symmetry generator D(g)
3 transforms as [Kaidi, Ohmori, Zheng]

D
(g)
3 (M3)→ D

(g)
3 (M3) exp

(∫
M4

−2πi

M

(B2 ∪B2)

2

)
To gauge Z(1)

M , requires twisted theta-defect: stack with

AM,1 = U(1)M

which also does not admit gapped boundary conditions.
The Twisted Theta-defect is

N (1)
3 = D

(1)
3 ⊗AM,1

with fusion

N (1)
3 ⊗N (1)

3 = AM,2N (2)
3

N (1)
3 ⊗N (1)†

3 = CZ(1)
M

(M3) =
∑

M2∈H2(M3,ZM )

(−1)Q(M2)D2(M2)

|H0(M3,ZM )|



Connections to Geometry/Strings

Of course many of these theories that have categorical symmetries have
realization in string theory.

Much of the defects/symmetries/etc is realizable in terms of topological
operators in some Lagrangian for the SymTFT, and the interpretation in terms
of branes [Apruzzi, Bah, Bonetti, SSN][Garcia-Extebarria].

Key open question:
determine the full categorical structure (including the SymTFT) directly from
string theory/holography.

Example: Holographic dual of 4d N = 1 SYM.



Holographic Dual Description of Non-Invertible Symmetries

[Apruzzi, Bah, Bonetti, SSN]

Consider the [Klebanov-Strassler] (KS) solution:

• N D3s at the conifold C(T 1,1) have a holographic dual in type IIB on
AdS5 × T 1,1,

∫
F5 = N .

• T 1,1 ∼ S3 × S2: wrap D5-branes on S2, inducing
∫
S3 F3 = M

⇒ breaks conformal invariance

• Dual to a cascade of Seiberg dualities, which for N = kM end in pure
su(M) N = 1 SYM:

ds2 =
r2

R2
dx2 +

R2

r2
dr2︸ ︷︷ ︸

M5

+R2ds2T 1,1 .

r= radial direction, RG-flow; R(r) ∼ ln( r
rs
)1/4, rs = r0e

−N/gM2−1/4.
The near horizon limit is r → r0.

The global form of gauge group is not fixed by this data alone.



Symmetries from Branes

[Apruzzi, Bah, Bonetti, SSN]

Proposal: in the near horizon limit, branes inserted in a holographic setup
furnish symmetry generators. Close to the boundary r → ∞:

TDp ∼ rp, p > 0

such that the DBI part of the action decouples, and only topological couplings
from the WZ term remain.

In the KS setup: D5-branes on S3 ×M3⊂ T 1,1 ×M4 have topological
couplings in the near horizon limit r → r0 → ∞

SD5 = 2π

∫
M3

(
c3 +

M

2
a1da1 + a1db1

)
The fields are c3, from C6 on S3, b1 from C4 on S3, U(1) gauge field a1 on the
brane.

• b1 Neumann: SU(M): the second term is a trivial DW theory

• b1 Dirichlet: PSU(M): precisely the dressing with U(1)M .



Branes realizing Non-Invertible Symmetries

[Apruzzi, Bah, Bonetti, SSN]

Non-invertible symmetries in 4d N = 1 PSU(M) SYM:

N (1)
3 ⊗N (1)

3 = AM,2N (2)
3

can be realized in terms of branes, which translates into (Myers effect)

D5(S3)⊗D5(S3) = D7(T 1,1)

N (1)
3 ⊗N (1)†

3 = CZ(1)
M

(M3) =
∑

M2∈H2(M3,ZM )

(−1)Q(M2)D2(M2)

|H0(M3,ZM )|

has realization in terms of D5-branes is tachyon condensation [see also Bah,

Leung, Waddleton]

D5(S3)⊗D5(S3) =
∑
M2

D3(M2)



Action of Symmetries on Defects as Hanany-Witten Effect

[Apruzzi, Bah, Bonetti, SSN; PRL][Apruzzi, Gould, Bonetti, SSN – wip]

How do symmetry generators act on charged operators (e.g. ’t Hooft and
Wilson line operators)? Hanany-Witten effect:

• Charged line operators:
D3s stretching along the radial direction and wrapped on S2 × S1 give
rise to ’t Hooft lines.

• Topological defects:
D5s on S3 ×M3 generate the non-invertible codim 1 topological defects.

Brane x0 x1 x2 x3 r z1 z2 w1 w2 w3

D3 X X X X

D5 X X X X X X



Brane x0 x1 x2 x3 r z1 z2 w1 w2 w3

D3 X X X X

D5 X X X X X X

Charge conservation implies that the total linking of the branes is conserved –
in particular when we exchange the position of the D3 and D5: The linking is∫

R2
x1,x2

×S3

F5 = −
∫
Rr×S2

F3

which evaluates to ∫
R2

x1,x2

db1 = −
∫
Rr

dc0

On the D5:
db1 = −Mda1

As we pass the D3 through the D5:

db1 = −Mda1 + δ(p ∈ R2
x1,x2

)

which mean there is an additional object that intersects long x3.



Preserving the linking requires the creation of an F1:

D3 D5

=⇒

D5 D3

F1

H N (1)
3

=⇒

HN (1)
3

’t Hooft loop gets flux attachment when it crosses the non-invertible defect –
similar to disorder operator in Kramers-Wannier duality.



Summary and Outlook

1. Higher fusion categories clearly have emerged as the framework to study
symmetries in QFTs.

2. Non-Invertible symmetries are ubiquitous in QFTs. What is the associated
”representation theory”?

3. Symmetry TFT will play a key role in this. And also unifying the
description of various ”global forms”.

4. String Theory: How is the Symmetry TFT realized in the brane-picture?

5. Action of branes on branes (a la Hanany-Witten) as action of
non-invertible symmetries on charged objects. Can this be sharpened and
mapped to a representation-theoretic statement?


