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Continuum and lattice quantum field theories

Continuum QFT: an assignment of operators to (sub)manifolds +
consistent rules for computing expectation values

Lattice QFT: a tensor product of finite-dimensional Hilbert spaces
associated to components of a finite graph + a Hamiltonian
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Continuum and lattice quantum field theories

Continuum QFT: an assignment of operators to (sub)manifolds +
consistent rules for computing expectation values

Lattice QFT: a tensor product of finite-dimensional Hilbert spaces
associated to components of a finite graph + a Hamiltonian

Why continuum? Why lattice?

» Marvelous mathematical » Amenable to numerics

structure and insights > Experiments (condensed

» Useful for describing matter, AMO, optics)

our own world » Nonperturbative definition
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The lattice-continuum correspondence

» Some notions are more natural in one framework than in the other,
e.g. chiral theories in the continuum, or confinement on the lattice

» Puzzles: Is there a lattice formulation of every continuum QFT?
How can the entire continuum structure emerge from a lattice?
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The lattice-continuum correspondence

» Some notions are more natural in one framework than in the other,
e.g. chiral theories in the continuum, or confinement on the lattice

» Puzzles: Is there a lattice formulation of every continuum QFT?
How can the entire continuum structure emerge from a lattice?

» This talk will answer this for QFT in (04+1)D = QM

» Lattice QM: finite target space, e.g. Zg
Continuum QM: target is an n-manifold for n > 0, e.g. R™ or S™
Here the focus will be on n = 1 (one-dimensional targets)

3/15



Why ask these questions?

» To unify divergent viewpoints on QFT

» To pave the road to new rigorous definitions and proofs:

» Proof of Abelian bosonization in (1+1)D [1912.01022]
» Derivation of OPE coefficients in the Ising CFT [1912.13462]

» A definition of continuum QM that does not rely on functional
analysis [this talk!]

» A nonperturbative formulation of many higher-dimensional QFTs of
interest, with gravity as the ultimate prize [in progress]
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Rough outline

1. Smoothing and Gaussianization: elementary procedures that
restrict a lattice theory to a subtheory with continuum properties.
Most easily presented in the canonical/Hamiltonian formalism

2. Same as above, but in the path integral formalism. Here we also
define temporal smoothing, a mutilation of the path integral that
allows its evaluation and leads to various familiar concepts

3. Fermions and supersymmetry (if time allows). Lattice origins of the
SUSY harmonic oscillator; the simplest nonlagrangian SUSY theory;
and a no-go theorem (Witten index = 0 in any SUSY lattice theory)
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Smoothing: a natural example
» Lattice QM with Hilbert space H = Span{|ei¢’>}, o= %}rn =ndo
» Algebra generated by clock and shift operators [Schwinger 1960]

Z|ei¢> _ ei¢|ei¢>’ X|ei¢> _ |ei(¢—d¢)>

» Free clock model, H = 22()5@)2( , diagonal in the momentum basis

lp) = \ﬁ2¢> d¢>elp¢’ei¢>a _g <p< %
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Smoothing: a natural example
» Lattice QM with Hilbert space H = Span{|ei¢’>}, o= %}rn =ndo
» Algebra generated by clock and shift operators [Schwinger 1960]

Z|ei¢> _ ei¢|ei¢>’ X|ei¢> _ |ei(¢—d¢)>

» Free clock model, H = 22()5@)2( , diagonal in the momentum basis

lp) = \ﬁ2¢> d¢>elp¢’ei¢>a _g <p< %

» The smooth subspace contains only low momentum states:
Hs =span{|p)}, -ps<p<ps, 1<Kps <K
» Smoothing = projecting to a unital algebra that preserves Hg
X" (XM)s = X7, 2P (ZP)s; (2075 # (27)5(27)s
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Gaussianization

» The subspace Hg is also spanned by smooth position states

) = LYl o), = 2Zn=ndp, 1<n<2ps

These are smearings of original states |¢!?) over an angle dyp > d¢

» Define the Gaussian subspace Hg C Hg as

He =span {[e¥)}, —pc < <pa

» Gaussanization is a corresponding projection of operators to a
unital subalgebra that preserves H,

(Xn)s =X"— (Xn)(;, (Zp)s — (Zp)(;

For a generic pair of operators, (0102)g # (01)c(O2)c
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Remarks

» Smoothing restricts to wavefunctions that vary slowly:

b(¢ +do) = d(9) + O(ps/ K)

» Gaussianization restricts to smooth wavefunctions with “compact”
support; this support can also be centered around any value ¢°!
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Remarks

» Smoothing restricts to wavefunctions that vary slowly:

b(¢ +do) = d(9) + O(ps/ K)

» Gaussianization restricts to smooth wavefunctions with “compact”
support; this support can also be centered around any value ¢°!

» Smooth/Gaussian states and operators defined this way behave just
like continuum objects in the QM of a particle on S* or R

» The hierarchy Hg C Hg C H is somewhat analogous to the rigged
Hilbert space used by Gel'fand as a rigorous foundation of QM,

Dom(A) ¢ L*(R) € Dom*(A)
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When and how to use these reductions?

» If there exists an energy eigenspace invariant under these projections,
we can talk about a flow to an effective continuum QM

> In the free clock model, all energy eigenstates are invariant under
smoothing, and none under Gaussianization (“the Hamiltonian of a
free particle on R has no normalizable eigenstates”)

» If an invariant eigenspace exists, it is natural to work with

_ X—Xxft _ z-zt
P = 2idé Q= 2

Acting on Gaussian states, these are “canonical” operators
Pgle'?) ~ —id,[e?), Qgle'?) = ¢le'¥), [Q,Plgle'?) ~ ile')

NB: it is crucial to multiply first and then Gaussianize!
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Smoothing via path integrals

3 =Tr e_ﬁH = Z Hf:dT<CPT+dT|e_dTH|(PT>
{e-}

—_ B —
dr = Ny’ (‘Pﬁ—i-d’r = Qqr

v

Conventionally, insert a(n over)complete set of states at each time 7

v

Smooth path integrals: insert the undercomplete set {|el*)}

This is justified (35 ~ 3) if 5> 21;7%}{ for the free clock model
S

v

v

At 3 ~ (log K)/p3 there is a roughening transition [Parisi 1979]

v

If pZdr < 1, the smooth partition function has the familiar form

(AT ‘P)

35~ (27(:31970- No/2 Z{gof}e QZT akr = f dy] e 2f0 dr(9r¢)°
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Evaluating smooth path integrals

» Usual idea: Fourier-transform ¢, and integrate modes one by one
» . = ¢, + 27 means Fourier modes are not independent variables!

» The product over Matsubara frequencies is intractable, anyway
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Evaluating smooth path integrals

Usual idea: Fourier-transform ¢, and integrate modes one by one
©r = @, + 27 means Fourier modes are not independent variables!

The product over Matsubara frequencies is intractable, anyway

vvyyy

Solutions: keep only small fluctuations around saddle points, and
then simply discard their high frequency modes

or =02 +60r, —pg <8pr < g, PG < \/%V—O

1 54,0 elwnfr}_)&p( ) ZHS*l &Pneiw"T

n=-—ng

dpr = ZQNO

» This temporal smoothing is not an approximation and has no
canonical counterpart. It is a miracle of physics that there exists a
procedure (renormalization) that takes the resulting quantity
3g = I ! é and outputs part of the sought answer 3g
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Two consequences of temporal smoothing

» Many familiar concepts are only defined after temporal smoothing.
For example, dilatations:

Spr = AM20par Vs Jp(T) = A23p(AT)

Only the latter transformation even makes sense!
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Two consequences of temporal smoothing

» Many familiar concepts are only defined after temporal smoothing.
For example, dilatations:

Spr = A200xr Vs 8p(T) = A28p(AT)

Only the latter transformation even makes sense!

» Consider the path integral for a two-point function:

G(1) = 371 3 pay [1d6¢] bpodip, e 51

Temporal smoothing affects both the action and the operator
insertions. The smoothed quantity G(7) differs from G(7) both by
an overall renormalization (reflected by counterterms in the action)
and by an additive term (reflected by contact terms)
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Fermions

» Fermion QM = a clock model with K =2
» No canonical smoothing procedure, since K is not large

» The Berezin path integral allows the definition of temporal
smoothing even in the absence of canonical smoothing

» Ideal playground for exploring counter/contact terms
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Supersymmetry

>

Elementary definition: a theory is SUSY if it has nilpotent symmetries

Standard setup in QM: a clock model coupled to a fermion, with
nilpotent symm. generators (supercharges) and Hamiltonian given by

o=B'f, o' =Bft, H={0, QN

Minimal SUSY model: two fermions, H = ng + ny — 2ngng
SUSY harmonic oscillator: B =iP + W(Q) for W(Q) = wQ

In all examples there is a doubly degenerate ground state! This is a
general feature of all SUSY models (a version of “fermion doubling”)
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Conclusions

» The construction shown here leads to a “finitary” definition of
continuum QM that appears as powerful as the conventional ones

» Closely related ideas work in higher-dimensional QFTs. There it is
necessary to separately smooth in both target and position spaces

> Provocative idea: maybe “It from Qubit” can be taken literally, and
maybe we can get everything around us from a discrete setup. . .
. without handwaving!
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Conclusions

» The construction shown here leads to a “finitary” definition of
continuum QM that appears as powerful as the conventional ones

» Closely related ideas work in higher-dimensional QFTs. There it is
necessary to separately smooth in both target and position spaces

> Provocative idea: maybe “It from Qubit” can be taken literally, and
maybe we can get everything around us from a discrete setup. . .
. without handwaving!

Thank you!

15/15



