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Continuum and lattice quantum �eld theories

Continuum QFT: an assignment of operators to (sub)manifolds +
consistent rules for computing expectation values

Lattice QFT: a tensor product of �nite-dimensional Hilbert spaces
associated to components of a �nite graph + a Hamiltonian

Why continuum?

I Marvelous mathematical
structure and insights

I Useful for describing
our own world

Why lattice?

I Amenable to numerics

I Experiments (condensed
matter, AMO, optics)

I Nonperturbative de�nition
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The lattice-continuum correspondence

I Some notions are more natural in one framework than in the other,
e.g. chiral theories in the continuum, or con�nement on the lattice

I Puzzles: Is there a lattice formulation of every continuum QFT?
How can the entire continuum structure emerge from a lattice?

I This talk will answer this for QFT in (0+1)D ≡ QM

I Lattice QM: �nite target space, e.g. ZK
Continuum QM: target is an n-manifold for n > 0, e.g. Rn or Sn

Here the focus will be on n = 1 (one-dimensional targets)
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Why ask these questions?

I To unify divergent viewpoints on QFT

I To pave the road to new rigorous de�nitions and proofs:

I Proof of Abelian bosonization in (1+1)D [1912.01022]

I Derivation of OPE coe�cients in the Ising CFT [1912.13462]

I A de�nition of continuum QM that does not rely on functional
analysis [this talk!]

I A nonperturbative formulation of many higher-dimensional QFTs of
interest, with gravity as the ultimate prize [in progress]
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Rough outline

1. Smoothing and Gaussianization: elementary procedures that
restrict a lattice theory to a subtheory with continuum properties.
Most easily presented in the canonical/Hamiltonian formalism

2. Same as above, but in the path integral formalism. Here we also
de�ne temporal smoothing, a mutilation of the path integral that
allows its evaluation and leads to various familiar concepts

3. Fermions and supersymmetry (if time allows). Lattice origins of the
SUSY harmonic oscillator; the simplest nonlagrangian SUSY theory;
and a no-go theorem (Witten index = 0 in any SUSY lattice theory)
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Smoothing: a natural example

I Lattice QM with Hilbert space H = span
{
|eiφ〉

}
, φ ≡ 2π

K n ≡ n dφ
I Algebra generated by clock and shift operators [Schwinger 1960]

Z|eiφ〉 = eiφ|eiφ〉, X|eiφ〉 = |ei(φ−dφ)〉

I Free clock model, H = 2−X−X†

2(dφ)2 , diagonal in the momentum basis

|p〉 ≡ 1√
K

∑2π
φ=dφ eipφ|eiφ〉, −K

2 ≤ p <
K
2

I The smooth subspace contains only low momentum states:

HS ≡ span {|p〉} , −pS ≤ p < pS, 1� pS � K

I Smoothing ≡ projecting to a unital algebra that preserves HS

Xn 7→ (Xn)S = Xn, Zp 7→ (Zp)S; (Zp1+p2)S 6= (Zp1)S(Zp2)S
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Gaussianization

I The subspace HS is also spanned by smooth position states

|eiϕ〉 ≡ 1√
2pS

∑pS−1
p=−pS

e−ipϕ|p〉, ϕ ≡ 2π
2pS

n ≡ ndϕ, 1 ≤ n ≤ 2pS

These are smearings of original states |eiφ〉 over an angle dϕ� dφ

I De�ne the Gaussian subspace HG ⊂ HS as

HG ≡ span
{
|eiϕ〉

}
, −ϕG ≤ ϕ < ϕG

I Gaussanization is a corresponding projection of operators to a
unital subalgebra that preserves HG,

(Xn)S = Xn 7→ (Xn)G, (Zp)S 7→ (Zp)G

For a generic pair of operators, (O1O2)G 6= (O1)G(O2)G
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Remarks

I Smoothing restricts to wavefunctions that vary slowly:

ψ(φ+ dφ) = ψ(φ) +O(pS/K)

I Gaussianization restricts to smooth wavefunctions with �compact�
support; this support can also be centered around any value φcl

I Smooth/Gaussian states and operators de�ned this way behave just
like continuum objects in the QM of a particle on S1 or R

I The hierarchy HG ⊂ HS ⊂ H is somewhat analogous to the rigged
Hilbert space used by Gel'fand as a rigorous foundation of QM,

Dom(∆) ⊂ L2(R) ⊂ Dom×(∆)
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When and how to use these reductions?

I If there exists an energy eigenspace invariant under these projections,
we can talk about a �ow to an e�ective continuum QM

I In the free clock model, all energy eigenstates are invariant under
smoothing, and none under Gaussianization (�the Hamiltonian of a
free particle on R has no normalizable eigenstates�)

I If an invariant eigenspace exists, it is natural to work with

P ≡ X−X†

2i dφ , Q ≡ Z−Z†

2i

Acting on Gaussian states, these are �canonical� operators

PG|eiϕ〉 ≈ −i∂̂ϕ|eiϕ〉, QG|eiϕ〉 ≈ ϕ|eiϕ〉, [Q,P ]G|eiϕ〉 ≈ i|eiϕ〉

NB: it is crucial to multiply �rst and then Gaussianize!
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Smoothing via path integrals

Z ≡ Tr e−βH =
∑
{φτ}

∏β
τ=dτ 〈φτ+dτ |e−dτH |φτ 〉

dτ ≡ β
N0
, φβ+dτ ≡ φdτ

I Conventionally, insert a(n over)complete set of states at each time τ

I Smooth path integrals: insert the undercomplete set {|eiϕ〉}
I This is justi�ed (ZS ≈ Z) if β � 2 logK

p2
S

for the free clock model

I At β ∼ (logK)/p2
S there is a roughening transition [Parisi 1979]

I If p2
Sdτ � 1, the smooth partition function has the familiar form

ZS ≈ (dϕ)N0

(2πdτ)N0/2

∑
{ϕτ} e−

1
2

∑β
τ=dτ

(∆τϕ)2

dτ ≡
∫

[dϕ] e−
1
2

∫ β
0 dτ(∂τϕ)2
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Evaluating smooth path integrals

I Usual idea: Fourier-transform ϕτ and integrate modes one by one

I ϕτ ≡ ϕτ + 2π means Fourier modes are not independent variables!

I The product over Matsubara frequencies is intractable, anyway

I Solutions: keep only small �uctuations around saddle points, and
then simply discard their high frequency modes

ϕτ ≡ ϕcl
τ + δϕτ , −ϕG ≤ δϕτ < ϕG, ϕG � 1√

N0

δϕτ =
∑ 1

2
N0−1

n=− 1
2
N0
δϕn eiωnτ 7→ δϕ(τ) ≡

∑nS−1
n=−nS

δϕn eiωnτ

I This temporal smoothing is not an approximation and has no
canonical counterpart. It is a miracle of physics that there exists a
procedure (renormalization) that takes the resulting quantity
Z̃S =

∏nS−1
n=1

1
ω2
n
and outputs part of the sought answer ZS
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Two consequences of temporal smoothing

I Many familiar concepts are only de�ned after temporal smoothing.
For example, dilatations:

δϕτ 7→ λ∆δϕλτ vs δϕ(τ) 7→ λ∆δϕ(λτ)

Only the latter transformation even makes sense!

I Consider the path integral for a two-point function:

G(τ) = Z−1
∑
{ϕcl}

∫
[dδϕ] δϕ0δϕτ e−S[ϕ]

Temporal smoothing a�ects both the action and the operator
insertions. The smoothed quantity G̃(τ) di�ers from G(τ) both by
an overall renormalization (re�ected by counterterms in the action)
and by an additive term (re�ected by contact terms)
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Fermions

I Fermion QM = a clock model with K = 2

I No canonical smoothing procedure, since K is not large

I The Berezin path integral allows the de�nition of temporal
smoothing even in the absence of canonical smoothing

I Ideal playground for exploring counter/contact terms
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Supersymmetry

I Elementary de�nition: a theory is SUSY if it has nilpotent symmetries

I Standard setup in QM: a clock model coupled to a fermion, with
nilpotent symm. generators (supercharges) and Hamiltonian given by

Q = B†f, Q† = Bf †, H = {Q,Q†}

I Minimal SUSY model: two fermions, H = nB + nF − 2nFnB

I SUSY harmonic oscillator: B = iP +W (Q) for W (Q) = ωQ

I In all examples there is a doubly degenerate ground state! This is a
general feature of all SUSY models (a version of �fermion doubling�)
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Conclusions

I The construction shown here leads to a ��nitary� de�nition of
continuum QM that appears as powerful as the conventional ones

I Closely related ideas work in higher-dimensional QFTs. There it is
necessary to separately smooth in both target and position spaces

I Provocative idea: maybe �It from Qubit� can be taken literally, and
maybe we can get everything around us from a discrete setup. . .
. . . without handwaving!

Thank you!
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