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I Today we will be discussing the volume of the moduli space
Mg of Riemann surfaces of genus g , and also the volume of
the corresponding moduli space Mg of super Riemann
surfaces.

I We will also consider Riemann surfaces with punctures and/or
boundaries.

I We will discuss how these volumes are related to random
matrix ensembles.

I This is actually an old story with a very contemporary twist.

I Main references (apart from classic ones on torsion,
Weil-Petersson volumes, and super Riemann surfaces): P.
Saad, S. Shenker, D. Stanford, arXiv:1903.11115 (SSS), D.
Stanford and EW, arXiv:1907.03363 (SW). Also see P.
Norbury, arXiv:1712.03662, Y. Huang, R. Penner, and A. M.
Zeitlin, arXiv:1907.09978. A written version of today’s lecture
will be on the arXiv tomorrow.



I will start with ordinary Riemann surfaces and the corresponding
classical moduli space Mg , and postpone super Riemann surfaces
to the end of the lecture.



I What is meant by the volume of Mg?

I One answer is that Mg has a natural (Weil-Petersson)
symplectic structure. It parametrizes a family of flat
PSL(2,R) connections A over a genus g surface Σ – modulo
the action of the mapping class group of Σ. This leads to a
natural definition of a symplectic structure:

ω =
1

4π

∫
Σ

Tr δA ∧ δA.

The volume is then

Vg =

∫
Mg

Pf(ω) =

∫
Mg

eω.

I From this point of view, a Riemann surface is not just a
complex manifold of dimension 1.

I It is the quotient of the upper half plane H ∼= SL(2,R)/U(1)
by a discrete group, and accordingly it carries a hyperbolic
metric, which is a Riemannian metric of constant curvature
R = −2.



Volumes can also be related to intersection theory of tautological
(Mumford-Morita-Miller) classes on Mg . Mirzakhani proved a sort
of converse of this statement: from a knowledge of the volumes
(for Riemann surfaces possibly with geodesic boundary, as
discussed momentarily) one can deduce the tautological
intersection theory. (These facts do not generalize directly to Mg ,
as there is not a natural intersection theory on a supermanifold.)
For brevity I will not explain any detail about this part of the story.



Volumes for surfaces with boundary are introduced as follows. Let
Σ be a hyperbolic Riemann surface of genus g with n boundaries.
We require the boundaries to be geodesics of prescribed lengths
b1, b2, · · · , bn.

Let M
g ,~b

be the moduli space of such objects.



M
g ,~b

has a symplectic form and volume that can be defined
precisely as before

ω =
1

4π

∫
Σ

Tr δA ∧ δA

V
g ,~b

=

∫
M

g,~b

Pf(ω) =

∫
M

g,~b

eω.

Mirzakhani showed in her thesis that V
g ,~b

is a polynomial in
b1, b2, · · · , bn, and that the canonical intersection numbers are the
coefficients of the top degree terms in this polynomial.



I The relation of volumes to intersection numbers gives one way
to compute them but it is hard to use this to get explicit
formulas.

I This relationship shows that volumes are related to random
matrix ensembles.

I My 1990 conjecture about intersection numbers was
motivated by work (of physicists Douglas and Shenker; Gross
and Migdal; Brezin and Kazakov) relating random matrix
ensembles to two-dimensional gravity.

I Kontsevich’s proof was based on a connection of the
intersection numbers to a different type of random matrix
ensemble that he discovered.

I However the role of the random matrices in all these
considerations was rather obscure, at least to me.

I What I will explain today gives a much more direct link to
random matrices.



I In her thesis, Mirzakhani discovered a new direct way to
compute the bosonic volumes V

g ,~b
.

I I will explain how Saad, Shenker, and Stanford, following
Eynard and Orantin, reinterpreted her results in terms of a
random matrix ensemble.

I In this approach, the role of the random matrix ensemble is
much more transparent than in previous work, in my opinion.

I Then I will explain how Stanford and I developed a
superanalog of this and obtained Mirzakhani-style formulas for
the super-volumes V̂

g ,~b
.



I Let S1 be a circle. An analog of Mg as a symplectic manifold
is diffS1/PSL(2,R) or diffS1/U(1), viewed as homogeneous
symplectic manifolds.

I In fact, diffS1/PSL(2,R) is sometimes called “universal
Teichmuller space” (for example see F. G. Gardiner and W. J.
Harvey, arXiv:math/0012168).

I diffS1/PSL(2,R) and diffS1/U(1) have natural symplectic
forms ω because they are coadjoint orbits of diffS1.

I Writing X = diffS1/PSL(2,R) or X = diffS1/U(1), we
cannot make sense of the infinite-dimensional “volume”

VX =

∫
X
eω.

I It is believed that there is no reasonable definition of this
volume.



I The infinite dimensional integral
∫
X eω is too divergent even

for physicists.

I But we can do the following: Consider a subgroup
U(1) ∼= S1 ⊂ diffS1, consisting of rigid rotations of S1. In
other words, for some parametrization of S1 by an angle θ,
U(1) acts by θ → θ+constant.

I Then there is a moment map H for this action of U(1); in
other words, if V is the vector field on X that generates U(1)
and iV is contraction with V, then

dH = −iVω.

I Then introducing a real constant β, the integral

Z (β) =

∫
X

exp(H/β + ω)

does make sense, as understood by physicists.



We are in an infinite-dimensional version of a situation that was
studied by Duistermaat and Heckman, and then reinterpreted by
Atiyah and Bott in terms of equivariant cohomology. Let Y be a
symplectic manifold with symplectic form ω and action of U(1).
Let p1, . . . , ps be the fixed points of the U(1) action. For simplicity
I assume that there are finitely many. Let H be the moment map
for the U(1) action. The Duistermaat-Heckman/Atiyah-Bott
(D-H/A-B) formula gives∫

Y
exp(H/β + ω) =

∑
i

exp(H(pi )/β)∏
α(ei ,α/2πβ)

,

where the ei ,α are integers that represent the eigenvalues of the
U(1) action on the tangent space to Y at pi .



In the present example, there is only one fixed point in the U(1)
action on diffS1/PSL(2,R) or diffS1/U(1). The product over
eigenvalues at this fixed point becomes formally

∏∞
n=2 n/2πβ

which is treated with (for example) ζ-function regularization. The
result is

Z (β) =
C

4π3/2β3/2
exp(π2/β),

where the constant C depends on the regularization and so is
considered inessential, but the rest is “universal.” (This problem
was first studied by A. Kitaev followed by Maldacena and Stanford;
the explanation I have sketched is in D. Stanford and EW,
arXiv:1703.04612. There are many other derivations of this
formula in the physics literature.)



I have described this somewhat abstractly. To use the D-H/A-B
formula, we did not need to know what is the moment map H
(only its value at the fixed point). But in fact it is a function of
interest. To pick the U(1) subgroup of diff S1 that was used in
this “localization,” we had to pick an angular parameter θ on the
circle; an element of diff S1 maps this to another parameter t, and
H is the integral of the Schwarzian derivative {t, θ}.



It is convenient to take an inverse Laplace transform of the formula
for Z (β) and write

Z (β) =

∫ ∞
0

dEρ(E ) exp(−βE )

with

ρ(E ) =
C ′

4π
sinh(2π

√
E ).

(There are similar formulas for the other case diffS1/U(1).)



I would like to explain why this formula was considered
problematical and how Saad, Shenker, and Stanford (SSS)
interpreted it. But this will require explaining a little more physics.
General relativity is difficult to understand as a quantum theory.
Searching for understanding, physicists have looked for a simpler
model in a lower dimension. Two dimensions is a good place to
look. An obvious idea might be to start with the Einstein-Hilbert
action in two dimensions, I =

∫
Σ d2x

√
gR, with R the Ricci scalar

of a Riemannian metric g . This does not work well, as in
two-dimensions this action is a topological invariant, according to
the Gauss-Bonnet theorem. Instead it turns out to be better to
add a scalar (real-valued) field φ. What turns out to be for many
purposes a simple and illuminating model of two-dimensional
gravity is “Jackiw-Teitelboim (JT) gravity,” with action

I =
1

κ

∫
Σ

d2x
√
g φ(R + 2).



The form of the action

I =
1

κ

∫
Σ

d2x
√
g φ(R + 2)

implies that a classical solution will have R + 2 = 0, so in other
words it is a hyperbolic Riemann surface. The Feynman path
integral for compact Σ without boundary (or with geodesic
boundary of prescribed length) is very simple. The path integral

ZΣ =
1

vol

∫
DφDg exp

(
−1

κ

∫
d2x
√
gφ(R + 2)

)
is studied by integrating first over φ (after rotating the integration
contour φ→ iφ) and gives a delta function setting R + 2 = 0. The
prefactor 1/vol is a schematic way to indicate that we have to
divide by the diffeomorphism group. So the integral “localizes” on
the moduli space of two-manifolds with hyperbolic structure.



If Σ is orientable and of genus g , the moduli space of
two-manifolds with hyperbolic structure is the usual moduli space
Mg of Riemann surfaces of genus g , and one can show that the
integral over Mg gives its usual volume:

ZΣ = Cχ(Σ)

∫
Mg

exp(ω).

(Here χ(Σ) = 2− 2g is the Euler characteristic of Σ, and C is a
constant, independent of g , that depends on the regularization
used in defining the Feynman path integral. It can be absorbed in
the normalization of the Weyl-Petersson form ω, since the
dimension of Mg is a fixed multiple of χ, namely −3χ.)

If Σ is unorientable, there is a more complicated and very
interesting story, for which unfortunately there is not time today.



So far, I’ve assumed that Σ is a compact surface (without
boundary or with geodesic boundary of prescribed length). What
really led to progress in the last few years was applying JT gravity
to, roughly speaking, the whole upper half-plane H – the universal
Teichmuller space. But it turned out that literally taking all of H is
not the right thing to do. This would be rather like trying to
calculate the naive integral

∫
diffS1/PSL(2,R) exp(ω). It turns out

that a better thing to do is to consider not all of H but a very
large region U ⊂ H.



Such a large region U ⊂ H is sketched on the left of this figure:

geodesic of length �

! !′ ∑!

(What is on the right will be discussed later.) One considers JT
gravity on a two-manifold that topologically is a disc. We will not,
however, use the “geodesic” boundary conditions that I mentioned
previously. Instead we will specify the induced metric of the
boundary, which I will call h, and the boundary values of φ.



On a manifold with boundary, the Einstein-Hilbert action needs a
(Gibbons-Hawking-York) boundary correction, which also appears
here:

I =
1

κ

∫
Σ

d2x
√
gφ(R + 2) +

1

κ

∫
∂Σ

dx
√
hφ(K − 1),

where K is the extrinsic curvature of the boundary ∂Σ, and h is
the induced metric of the boundary. A classical solution is going to
have R + 2 = 0 so (as Σ is topologically a disc) it will be a region
in H. The boundary condition is such that the induced metric h of
the boundary is specified (and taken to have extremely large
circumference). φ|∂Σ is also specified to be a large constant. In a
certain scaling limit as the length of the boundary goes to infinity
and φ|∂Σ also becomes large, with fixed ratio β, the Feynman
integral turns into our friend∫

diffS1/PSL(2,R)
exp(H/β + ω).



geodesic of length �

! !′ ∑!

How this happens needs some explanation. diff S1/PSL(2,R)
comes in when one compares a natural parameter on ∂H (unique
up to the action of PSL(2,R)) to the arclength parameter of ∂Σ.
The key step that relates JT gravity to the integral that we
discussed over diffS1/PSL(2,R) is that

∫
∂Σ(K − 1), in the limit

that the perimeter of ∂U and the constant value of φ are both
large, with fixed ratio, becomes a multiple of the moment map H.
Hence the Feynman integral of JT gravity on the disc Σ becomes
our friend ∫

diffS1/PSL(2,R)
exp(H/β + ω).

After steps I have explained, this becomes

Z (β) =

∫ ∞
0

dEρ(E ) exp(−βE ), ρ(E ) = C sinh(2π
√
E ).

In this derivation, β is the renormalized length of the boundary.



I This is a deeply problematic answer for the Feynman integral
on the disc.

I To understand this, one should be familiar with holographic
duality between gravity in the bulk of spacetime and an
ordinary quantum system on the boundary.

I If the bulk where 4-dimensional, the boundary would be
3-dimensional and the “ordinary quantum system” on the
boundary would be a quantum field theory – perhaps not a
very familiar concept

I But here the bulk is 2-dimensional and so the boundary is just
1-dimensional.

I An ordinary quantum system in 1 dimension is just described
by giving a Hilbert space J and a Hamiltonian operator H
acting on J .

I The basic recipe of holographic duality predicts that
Z (β) = TrJ exp(−βH).



In a moment, we will check that that prediction is false, but before
doing so, I want to explain that this is actually not entirely a
surprise:

I Analogous calculations (going back to Hawking, Gibbons, and
others in the 1970’s) have always given the same problem

I The problem is the essential mystery about quantum black
holes

I The calculations were always done in models (like
four-dimensional General Relativity) that were too
complicated for a complete calculation, and there was always
a possibility that a more complete calculation would make the
issue go away

I Holographic duality and a variety of other developments that I
am omitting made it possible to ask the question in a model –
JT gravity – that is so simple that one can do a complete
calculation, demonstrating the problem.



To see that the prediction of the duality is false:

I If we do have a Hilbert space J and a Hamiltonian H acting
on J such that the operator e−βH has a trace, then H must
have a discrete spectrum with eigenvalues E1,E2, · · · (which
moreover must tend to infinity fast enough) and

Tr exp(−βH) =
∑
i

e−βEi =

∫ ∞
0

dE
∑
i

δ(E − Ei ) e
−βE .

I However, the integral over diff S1/PSL(2,R) gave

Z (β) =

∫ ∞
0

dE · C sinh(2π
√
E )e−βE .

I The function C sinh(2π
√
E ) is not a sum of delta functions,

so the prediction of the duality is false.



However, the interpretation via JT gravity gives us a key insight
that we did not have when we were just abstractly integrating over
diffS1/PSL(2,R):

I The constant C is exponentially large near the classical limit
(κ→ 0). We interpret it as eS where S is the classical black
hole entropy, of order 1/κ or 1/~ and thus large.

I When C is exponentially large, the function C sinh(2π
√
E ),

which we now write as eS sinh(2π
√
E ), can be

well-approximated as a sum of delta functions.

I One must look very closely to see the difference.



I The novel idea of Saad, Shenker, and Stanford (SSS) was to
interpret eS sinh(2π

√
E ) as not the density of states of a

particular Hamiltonian, but as the average density of states of
an ensemble of Hamiltonians – a random matrix.

I In terms of the physics involved, this interpretation was sort of
heretical and highly stimulating, but I do not think I will be
able to convey this well.



What made them go in this direction?

I One clue was given by the work of A. Kitaev which had
pointed in the direction of things I am telling you about. His
work had involved a random ensemble (more complicated
than the one used by SSS), but unfortunately there isn’t time
today to describe this ensemble.

I Another clue was the prior history of relations between
two-dimensional gravity and random matrix theory.

I Finally a clue related more directly to today’s lecture had to
do with volumes of moduli spaces of Riemann surfaces.

I Mirzakhani, as I said at the beginning, had found a new way
to compute these volumes and Eynard and Orantin (EO)
(arXiv:0705.3600) had interpreted her work in terms of a
random matrix ensemble.

I And the eigenvalue density of the EO ensemble was precisely
eS sinh(2π

√
E )! (with a different interpretation of the

constant S and a different normalization of the energy E ).



The sort of random matrix ensemble that we are interested in is
the following.

I M will be an N × N hermitian matrix for some N; we are
really interested in N very large or N →∞.

I Picking some suitable function T (M), we consider the integral

Z (T ;N) =
1

vol(U(N))

∫
dM exp(−NTrT (M)).

I This integral or rather its logarithm has an asymptotic
expansion for large N:

logZ (T ;N) ∼ N2F0(T ) + F1(T ) +
1

N2
F2(T ) + · · ·

=
∞∑
g=0

N2−2gFg (T ).



I The expansion

logZ (T ;N) ∼ N2F0(T ) + F1(T ) +
1

N2
F2(T ) + · · ·

=
∞∑
g=0

N2−2gFg (T ).

is constructed by standard Feynman diagram methods (’t
Hooft, 1974).

I In that context Fg (T ) is the sum of connected Feynman
diagrams of genus g .

I Here the “genus” is the genus of a two-manifold on which a
given Feynman diagram can be naturally drawn.



However:

I Instead of a Feynman diagram expansion, we can just try to
evaluate the integral.

I We diagonalize M, writing M = UΛU−1,
Λ = diag(λ1, λ2, · · · , λN).

I The measure is

dM = dU
∏
i

dλi
∏
j<k

(λj − λk)2.

I Here dU is Haar measure on the group U(N) and the integral
over U just cancels the factor 1/(volU(N)) in the integral we
are trying to do.

I We reduce to

Z (T ;N) =

∫
dλ1dλ2 · · · dλN

∏
i<j

(λi−λj)2
∏
k

exp(−NT (λk)).



I The integrand ∏
i<j

(λi − λj)2
∏
k

exp(−NT (λk))

has a sharp maximum as a function of the λ’s,

I Remember there are many of them. If the density of λ’s is
Nρ(λ) for some function ρ (constrained so

∫
dλρ(λ) = 1)

then the integrand is

exp

(
N2

(
−
∫

dλρ(λ)T (λ) +

∫
dλdλ′ρ(λ)ρ(λ′) log |λ− λ′|

))
.

I For a nice function T , the exponent has a unique maximum
at some function ρ(λ), which might look like this:



If F0(T ) is the value of the exponent at its maximum, then the
leading approximation to the integral is

Z ∼ exp(N2F0(T ))

or
logZ ∼ N2F0(T ) + · · · .

How can we compute the corrections to this leading behavior?



Something nice happens, but I won’t have time to explain it. One
should define the “spectral curve” in the y − λ plane:

y2 = −ρ2(λ).

Once one knows ρ(λ), one can forget about doing integrals and
one can forget the original function T . The whole expansion

logZ (T ;N) ∼ N2F0(T )+F1(T )+
1

N2
F2(T )+· · · =

∞∑
g=0

N2−2gFg (T )

(and everything else about this ensemble that we might want to
know) can be worked out just using a knowledge of the spectral
curve. A very useful version of this process is the “topological
recursion” of Eynard and Orantin.



Now let us go back to volumes of moduli spaces:

I As I explained, SSS interpreted the function eS sinh(2π
√
E ) as

the density of eigenvalues Nρ(E ) for a random matrix from
the type of ensemble that I described.

I In principle, the procedure is to start with a function T and
compute the corresponding density of energy levels NρT (E ),
where I make the dependence on T explicit.

I Then we take N →∞ while adjusting the function T so that
NρT (E ) converges to the desired eS sinh(2π

√
E ). (This is

called double-scaling.)

I But we can skip all that work because everything we want to
compute only depends on the spectral curve and we know the
spectral curve is going to be

y2 = − sinh2(2π
√
E ).



In short, all we have to do is to start with the spectral curve

y2 = − sinh2(2π
√
E )

and apply topological recursion to compute the expansion

logZ (T ;N) =
∞∑
g=0

eS(2−2g)Fg (T )

(and other quantities of interest that are introduced momentarily)
where after double-scaling, the expansion parameter is e−S rather
than 1/N.



Now we can compute volumes:

I To compute the volumes of moduli spaces, we compute the
average of Tr exp(−βH) in this random matrix ensemble
(where H = M).

I That can be done explicitly, applying topological recursion to
the spectral curve

y2 = − sinh2(2π
√
E ).

I The result is an expansion in powers of e−2S .



To interpret the result in terms of volumes:

I The Feynman diagram expansion of 〈Tr exp(−βH)〉 in this
ensemble involves Feynman diagrams drawn on an oriented
two-manifold with one boundary component as in the picture

geodesic of length �

! !′ ∑!

I When we make a Feynman diagram expansion, the trace
Tr exp(−βH) turns into a boundary.

I The picture on the left actually corresponds to the leading
answer, the JT integral on diffS1/SL(2,R), which we’ve
interpreted as

∫∞
0 dEρ(E )e−βE . We are now interested in the

higher topologies shown on the right.They contribute the
higher order terms in the expansion in e−2S . (The genus g
term is of relative order exp(−2gS).)



I
geodesic of length �

! !′ ∑!

I On the right is a Riemann surface Σ = U ′ ∪ Σ′. Here U ′

represents diffS1/U(1).
I The JT integral on this homogeneous space is similar to the

integral over diffS1/PSL(2,R) that we discussed before, but
it depends on a parameter b (which appears in the choice of a
coadjoint orbit corresponding to diffS1/U(1)).

I Let us just write Θ(b;β) for the JT integral on this orbit.
I The other half of Σ is a Riemann surface Σ′ of genus g ≥ 1

with a geodesic boundary of length b. Let Mg ,b be its moduli
space and V (g , b) the corresponding volume.

I Then JT gravity in this geometry gives∫ ∞
0

db b Θ(b;β)V (g , b).



On the other hand, a particular term in the expansion of the
matrix integral in powers of e−S is supposed to equal JT gravity
on the surface Σ = U ′ ∪ Σ′

geodesic of length �

! !′ ∑!

Comparing the result one gets that way to∫ ∞
0

db Θ(b;β)V (g , b).

where Θ(b;β) is known by DH/AB localization, one gets explicit
results for V (g , b).



I This procedure gives the right answer for V (g , b) (and it can
be extended to give the right answer for moduli spaces of
surfaces with different numbers of geodesic boundaries)
because Eynard and Orantin showed that topological recursion
applied to the spectral curve

y2 = − sinh2(2π
√
E )

recovers a recursion relation discovered by Maryam
Mirzakhani by means of which she had computed the volumes.

I Matching with Mirzakhani’s recursion relation was how
Eynard and Orantin determined which spectral curve to use.
Having determined the spectral curve, their main insight was
that Mirzakhani’s recursion relation is equivalent to
topological recursion for that spectral curve.

I Another way to find the right spectral curve is to use the
relation of volumes to intersection numbers and the general
relation of intersection numbers to matrix ensembles and
spectral curves.



What Saad, Shenker, and Stanford obtained was a physical
interpretation of the procedure of Mirzakhani and Eynard/Orantin.
This was very interesting for physicists, but if you only care about
volumes, you might not be sure why it is important. One answer is
that possibly we’ve gained a better understanding of the relation
between diffS1/SL(2,R) and Mg ,n. Also, we possibly now have a
more direct understanding of the relation of intersection theory to
random matrices. Yet another possible answer is given by my work
with Stanford. We ran the whole story for super Riemann surfaces.



I First of all, what is a super Riemann surface?

I There are various approaches, but for today’s purposes, we
get a super Riemann surface by just replacing SL(2,R), which
is the group of linear transformations of R2 that preserve the
symplectic form du dv , with OSp(1|2), which is the
supergroup of linear transformations of R2|1 that preserves the
symplectic form dudv − dθ2.

I OSp(1|2) is a Lie supergroup of dimension 3|2. Its Lie algebra
carries a nondegenerate bilinear form that I will denote as Tr.

I The superanalog of the upper half plane H is
Ĥ = OSp(1|2)/U(1).Thus Ĥ is a smooth supermanifold of
real dimension 2|2; it carries a complex structure in which it
has complex dimension 1|1.



A digression for those familiar with other approaches to super
Riemann surfaces: The definition I’ve given is related to a standard
definition as follows:

I First, Ĥ carries a canonical “completely unintegrable
distribution” making it a super Riemann surface. (There is no
natural splitting of osp(1|2) as the direct sum of even and odd
parts, but the choice of a point in Ĥ determines such a
splitting, and the odd part defines a subbundle of the tangent
bundle to Ĥ which is the unintegrable distribution.)

I Now if we are given a flat OSp(1|2) connection (of
appropriate topological type) on an ordinary 2-manifold Σ,
then its monodromies define a homomorphism
ρ : π1(Σ)→ OSp(1|2). Set Γ = ρ(π1(Σ)). Then Σ̂ = Ĥ/Γ is
a smooth supermanifold of real dimension 2|2 that inherits a
complex structure and unintegrable distribution from Ĥ. It is
a super Riemann surface.

I If some of these matters are unfamiliar, they are not really
needed for today.



I With the “hyperbolic” definition that I have given of Mg , we
can imitate the definition of a symplectic form and a volume
that I gave in the ordinary case.

I The symplectic form of Mg is

ω̂ =
1

4π

∫
Σ

Tr δA ∧ δA.

I The volume is

V̂g =

∫
Mg

√
Ber(ω̂).

(Ber is the Berezinian, the superanalog of the determinant.)

I One can also define moduli spaces M
g ,~b

of super Riemann
surfaces with geodesic boundaries of specified lengths
~b = (b1, b2, · · · , bn) and corresponding volumes V̂

g ,~b
.



I It is possible to describe the super volumes V̂g in purely
bosonic terms.

I The “reduced space” of Mg is the moduli space M′g that
parametrizes an ordinary Riemann surface Σ with a spin
structure, which we can think of as a square root K 1/2 of the
canonical bundle K → Σ.

I The normal bundle to M′g is the vector bundle U →M′g
whose fiber is H1(Σ,K−1/2). Viewing U as a real vector
bundle (of twice the complex dimension), we denote its Euler
class as χ(U).

I The symplectic form ω̂ of Mg restricts along M′g to the
ordinary symplectic form ω of M′g (which is a finite cover of
Mg ).



By general arguments about symplectic supermanifolds, one can
show that

V̂g =

∫
M′

g

χ(U)eω.

Thus what I will say about the supervolumes can be interpreted as
a purely classical statement about M′g .



The superanalog of JT gravity is JT supergravity, which computes
volumes of the moduli spaces M

g ,~b
of super Riemann surfaces, in

general with geodesic boundaries of prescribed lengths. As before,
it is important to consider the special case of a Riemann surface
which is the super upper half plane Ĥ, or more precisely a very
large piece of it, as in the left hand side of the familiar picture

geodesic of length �
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The boundary of that large piece (or simply the boundary of Ĥ) is
what I will call S1|1, the superanalog of a circle.



The super JT path integral on a big piece of Ĥ is

Z =

∫
Sdiff S1/OSp(1|2)

exp(H/β + ω̂).

This is the closest universal super Teichmüller space analog of the
supermoduli space volume. (Again H is the moment map for a
U(1) subgroup.) In our first paper, Stanford and I computed this
integral, again using D-H/A-B localization:

Z (β) =

∫ ∞
0

dE exp(−βE )ρ̂(E ), ρ̂(E ) = eS
cosh(2π

√
E )√

E
.

Again, this is not TrJ exp(−βH) for any Hamiltonian H acting on
a Hilbert space J , but now we know what to do: we have to
consider an ensemble of random Hamiltonians.



We can rerun the previous story with a few changes:

I The formula for Z (β) tells us the spectral curve:

y2 = − 1

E
cosh2(2π

√
E ).

I However the matrix ensemble is of a different type from
before.

I One way to see that it must be different is to observe that the
singularity near the endpoint of the spectrum is different from
before: we have ρ̂(E ) ∼ 1/

√
E , while for the type of ensemble

considered before, the behavior near the endpoint is
ρ(E ) ∼

√
E .



In fact, because the dual quantum mechanical system is now
supposed to be supersymmetric, we need to do random
supersymmetric quantum mechanics, not just random quantum
mechanics.



Supersymmetric quantum mechanics means that the Hilbert space
J is Z2-graded by an operator

(−1)F =

(
I 0
0 −I

)
.

The Hamiltonian H commutes with the Z2-grading, but it is
supposed to be the square of an operator Q that is odd, that is an
operatorthat anticommutes with (−1)F :

Q =

(
0 P
P† 0

)
, H = Q2 =

(
P†P 0

0 PP†

)
.

I’ve imposed that Q and (−1)F commute and that Q is
self-adjoint. A random ensemble for Q is defined by the measure
exp(−NTrT (Q2)) for some function T . (This is one of the
standard random matrix ensembles, constructed by Veerbarschot
and Altland-Zirnbauer.)



Let µ be an eigenvalue of Q, and f (µ)dµ the density of
eigenvalues. One has f (µ) = f (−µ). It is generic to have
f (0) 6= 0. Since H = Q2, an eigenvalues of H is E = µ2. Since
f (µ)dµ = f (E 1/2)dE/2

√
E , the density of eigenvalues behaves as

E−1/2 near E = 0. Thus this kind of ensemble is a good candidate
for the present problem.



With this particular matrix ensemble, there is again a version of
topological recursion. Applying this in the double-scaling limit with
the spectral curve

y2 = − 1

E
cosh2(2π

√
E )

we get an expansion of 〈TrJ exp(−βH)〉 in powers of e−2S . By
the same logic as before, the terms in this expansion have an
interpretation in terms of volumes of supermoduli spaces:
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In this way, Stanford and I deduced a recursion relation that
determines the volumes of the supermoduli spaces M

g ,~b
.

Moreover, we were able to prove this formula by repeating what
Mirzakhani had done for ordinary Riemann surfaces. By imitating
Mirzakhani’s derivation, we obtained a Mirzakhani-style recursion
relation for the volumes of supermoduli spaces. And by imitating
the arguments of Eynard and Orantin, we showed that the
recursion relation that comes from the matrix ensemble agrees
with the Mirzakhani-style recursion relation. Unfortunately, to
explain all this would call for another occasion.



There are a few interesting refinements:

(1) The operator P can have a nonzero index (the difference in
dimension between the odd and even subspaces of the Hilbert
space J ). To compute volumes of M

g ,~b
, one takes the index to be

zero. The same type of matrix ensemble, but with P assumed to
have a nonzero index, appears to compute the volumes of moduli
spaces of super Riemann surfaces with Ramond punctures, though
we do not have a general proof of this.

(2) The spin structure of a Riemann surface or super Riemann
surface can be even or odd. To compute volumes separately for
each of the two cases, one has to also consider a somewhat
different matrix ensemble, in which one still has H = Q2 (and the
same spectral curve) but the Hilbert space is not assumed to be
Z2-graded.




