

## Celestial Holography from Bottom-up to Top-down

The Western Hemisphere Colloquium on Geometry and Physics

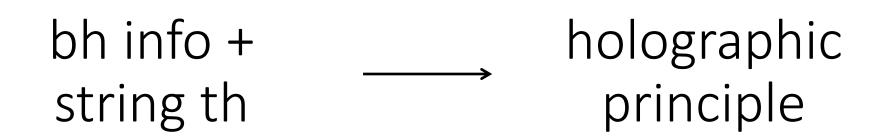
> Sabrina Pasterski Perimeter Institute 12/11/23

#### Soft Thm=Ward Id

u-falloffs and antipodal matching

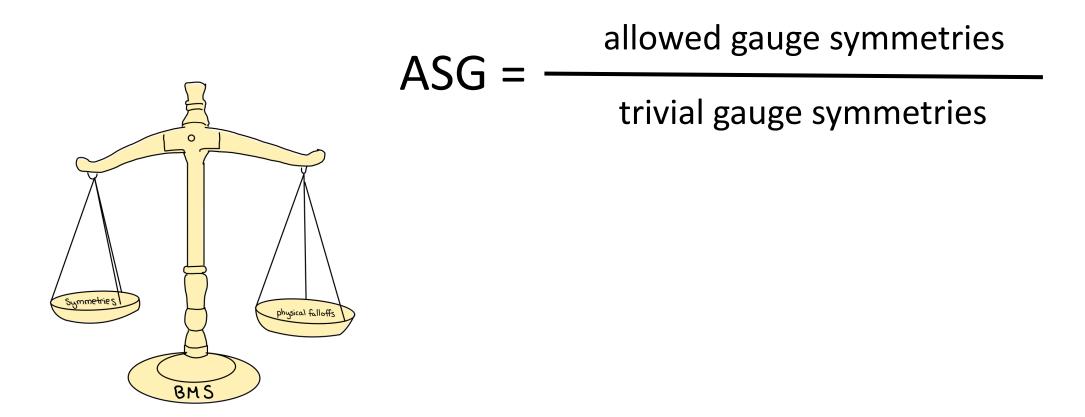
#### **Celestial OPE**

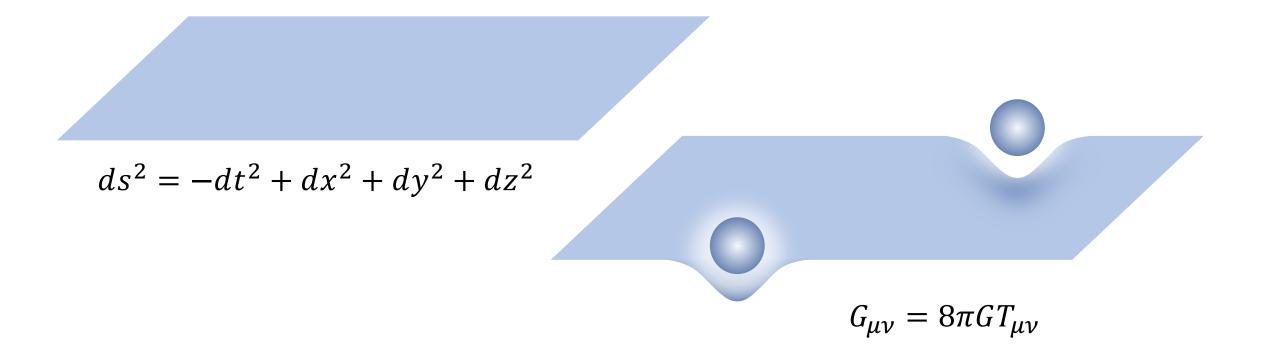
analytic structure of amplitudes, inner product

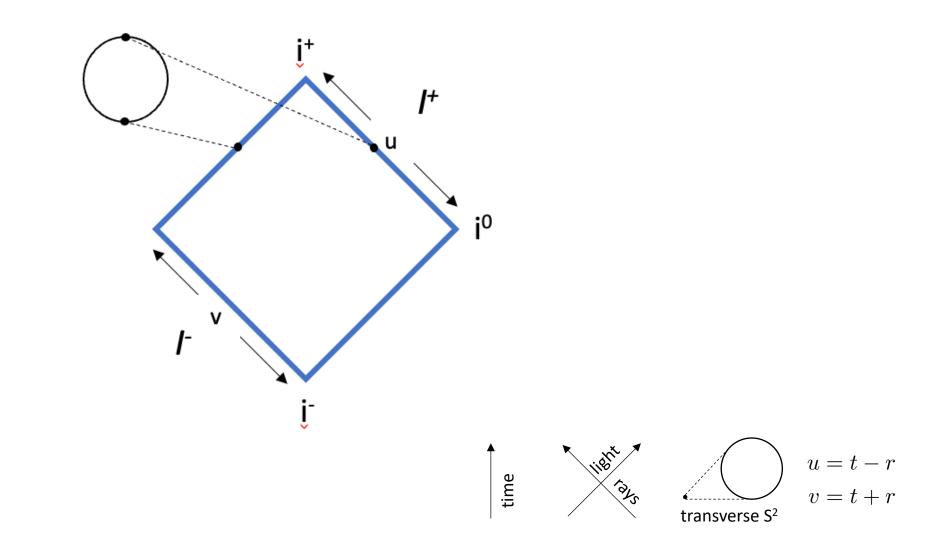

#### **Boost Basis**

principal series vs highest weight reps

#### **Chiral Algebra**


twistor & twisted holography re-interpretations


# WHAT IS CELESTIAL HOLOGRAPHY?




## $\Lambda = 0 \qquad \qquad \text{vs} \qquad \Lambda \to 0$

**Lesson 1:** BMS >> Poincare:  $\Lambda = 0$  spacetimes have a much larger class of possible symmetries.







In Bondi gauge the metric near future null infinity takes the form

$$ds^{2} = -du^{2} - 2dudr + 2r^{2}\gamma_{z\bar{z}}dzd\bar{z} + 2\frac{m_{B}}{r}du^{2} + (rC_{zz}dz^{2} + D^{z}C_{zz}dudz + \frac{1}{r}(\frac{4}{3}N_{z} - \frac{1}{4}\partial_{z}(C_{zz}C^{zz}))dudz + c.c.) + \dots$$
Radiative Data

which is preserved by the residual diffeomorphisms

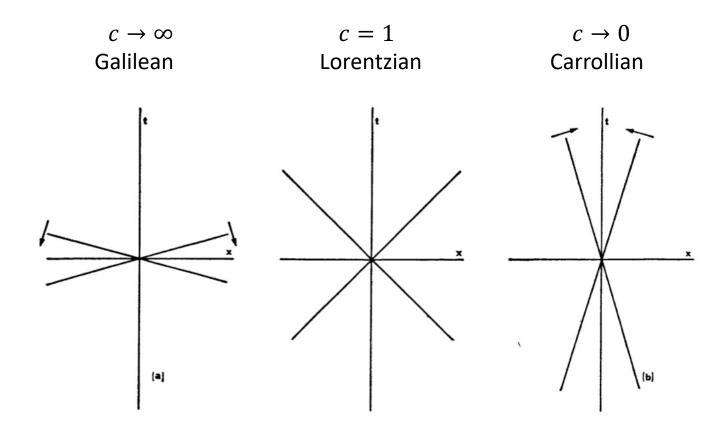
$$\xi^{+} = (1 + \frac{u}{2r})Y^{+z}\partial_{z} - \frac{u}{2r}D^{\bar{z}}D_{z}Y^{+z}\partial_{\bar{z}} - \frac{1}{2}(u+r)D_{z}Y^{+z}\partial_{r} + \frac{u}{2}D_{z}Y^{+z}\partial_{u} + c.c$$

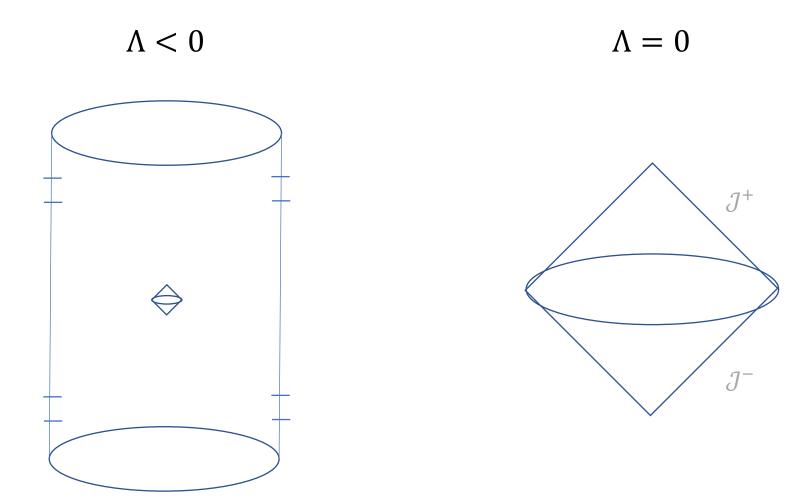
$$+ f^{+}\partial_{u} - \frac{1}{r}(D^{z}f^{+}\partial_{z} + D^{\bar{z}}f^{+}\partial_{\bar{z}}) + D^{z}D_{z}f^{+}\partial_{r}$$
Superrotations
Supertranslations

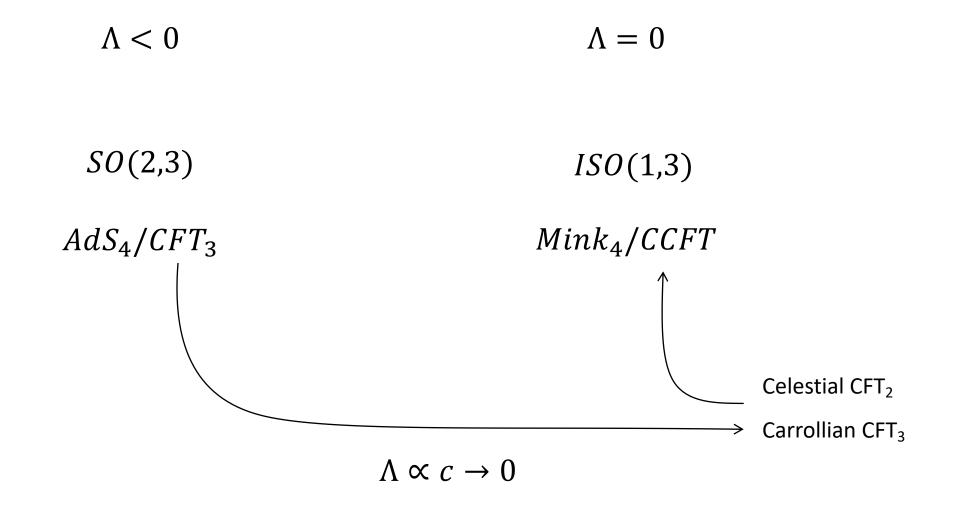
Form this bulk analysis we land on the BMS group

$$[L_m, L_n] = (m - n)L_{m+n}, \quad [\bar{L}_m, \bar{L}_n] = (m - n)\bar{L}_{m+n},$$
$$[L_n, P_{k,l}] = (\frac{1}{2}n - k)P_{k+n,l}, \quad [\bar{L}_n, P_{k,l}] = (\frac{1}{2}n - l)P_{k,l+n},$$
$$[P_{m,n}, P_{k,l}] = 0.$$

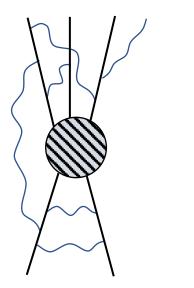
where  $n, m \in \{-1, 0, 1\}$  &  $k, l \in \left\{-\frac{1}{2}, \frac{1}{2}\right\}$  give the Poincare subalgebra


We can see this enhancement from the boundary perspective


$$ds^2 = -c^2 du^2 + dz d\bar{z}$$


#### as a Carrollian limit of of a Lorentzian CFT<sub>3</sub>.

$$\lim_{c \to 0} [\nabla_{\mu} \xi_{\nu} + \nabla_{\nu} \xi_{\mu} = \alpha g_{\mu\nu}]$$
$$\lim_{c \to 0} c^2 [\nabla^{\mu} \xi^{\nu} + \nabla^{\nu} \xi^{\mu} = -\alpha g^{\mu\nu}]$$


$$ds^2 = -c^2 dt^2 + d\vec{x}^2$$







**Lesson 2:** These are indeed symmetries of the perturbative S-matrix!



 $\Leftrightarrow$ 

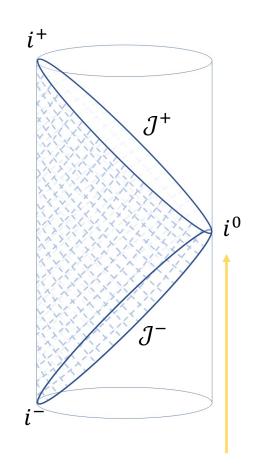
## Soft Thm = Ward Id

$$\langle out|Q^+[Y]\mathcal{S} - \mathcal{S}Q^-[Y]|in\rangle = 0$$

The free data for our solution takes the form

$$\{m_B(u_0, z, \bar{z}), N_z(u_0, z, \bar{z}), C_{zz}(u, z, \bar{z})\}$$

where the u dependence of the Bondi mass and angular momentum aspect are fixed by the constraint equations


$$n^{\mu}[G_{\mu\nu} - 8\pi G T_{\mu\nu}] = 0$$

The free data for our solution takes the form

$$\{m_B(u_0, z, \bar{z}), N_z(u_0, z, \bar{z}), C_{zz}(u, z, \bar{z})\}$$

where the u dependence of the Bondi mass and angular momentum aspect are fixed by the constraint equations

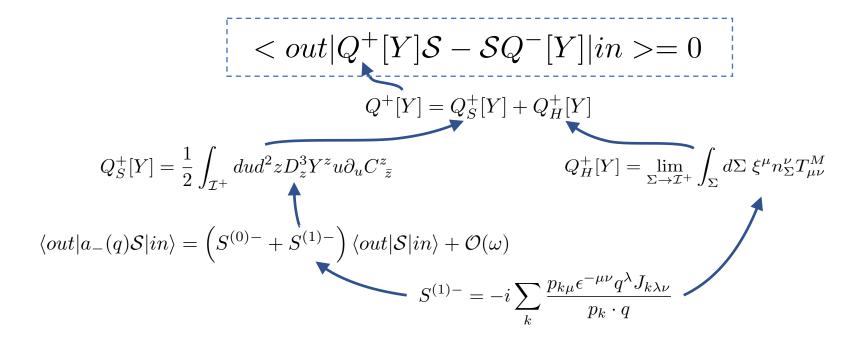
$$\partial_u m_B = \frac{1}{4} [D_z^2 N^{zz} + D_{\bar{z}}^2 N^{\bar{z}\bar{z}}] - T_{uu}$$

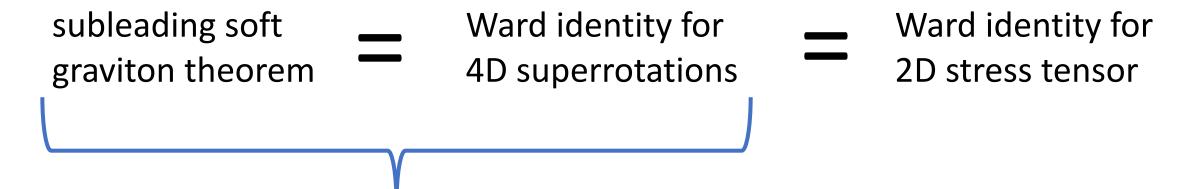


1. Q  $^+$ = Q  $^-$  due to antipodal matching of  $m_B$  &  $N_z$  across  $i^0$ 

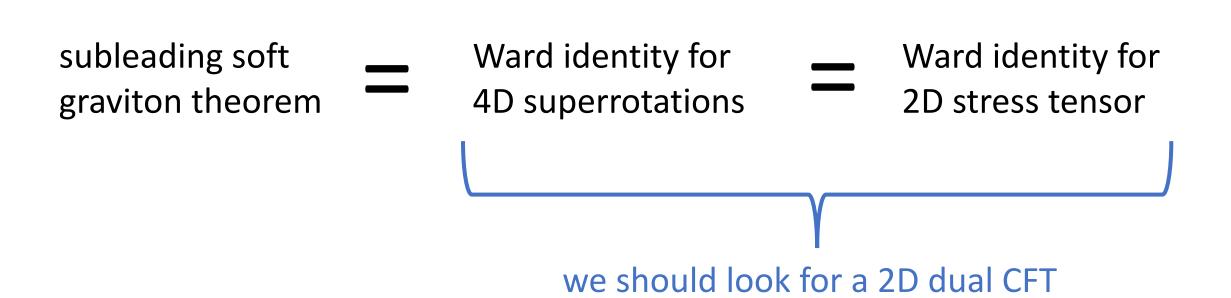
2. Integration by parts turns the charges into fluxes

$$\begin{split} Q_{f}^{+} &= \frac{1}{8\pi G} \int_{\mathcal{F}_{-}^{+}} 2m_{B}f \\ & 8\pi G Q^{+}[Y] = \int_{\mathcal{I}^{+}} \sqrt{\gamma} d^{2}z du \ \left[ -\frac{1}{2} D_{z}^{3} Y^{z} u \partial_{u} C^{zz} + Y^{z} T_{uz} + u D_{z} Y^{z} T_{uu} + h.c. \right] \\ & Q^{+}[Y] = Q_{S}^{+}[Y] + Q_{H}^{+}[Y] \end{split}$$

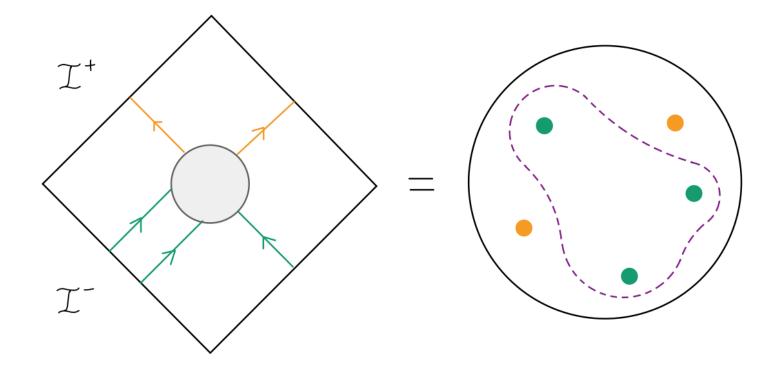

 $C_{zz}|_{\mathcal{J}^+_-} = C_{zz}|_{\mathcal{J}^-_+}, \quad m_B|_{\mathcal{J}^+_-} = m_B|_{\mathcal{J}^-_+},$ 


radiative 
$$h_{\mu\nu}(x) = \sum_{\alpha=\pm} \int \frac{d^3q}{(2\pi)^3} \frac{1}{2\omega_q} \left[ \epsilon_{\mu\nu}^{\alpha*}(\vec{q}) a_\alpha(\vec{q}) e^{iq\cdot x} + \epsilon_{\mu\nu}^\alpha(\vec{q}) a_\alpha(\vec{q})^\dagger e^{-iq\cdot x} \right]$$

$$C_{\bar{z}\bar{z}} = 2 \lim_{r \to \infty} \frac{1}{r} \partial_{\bar{z}} x^\mu \partial_{\bar{z}} x^\nu \sum_{\alpha=\pm} \int \frac{d^3q}{(2\pi)^3} \frac{1}{2\omega_q} \left[ \epsilon_{\mu\nu}^{\alpha*}(\vec{q}) a_\alpha(\vec{q}) e^{-i\omega_q u - i\omega_q r(1 - \cos\theta)} + h.c. \right]$$
saddle
$$C_{\bar{z}\bar{z}} = -\frac{i}{4\pi^2} \hat{\epsilon}_{\bar{z}\bar{z}}^+ \int_0^\infty d\omega_q [a_-(\omega_q \hat{x}) e^{-i\omega_q u} - a_+(\omega_q \hat{x})^\dagger e^{i\omega_q u}]$$

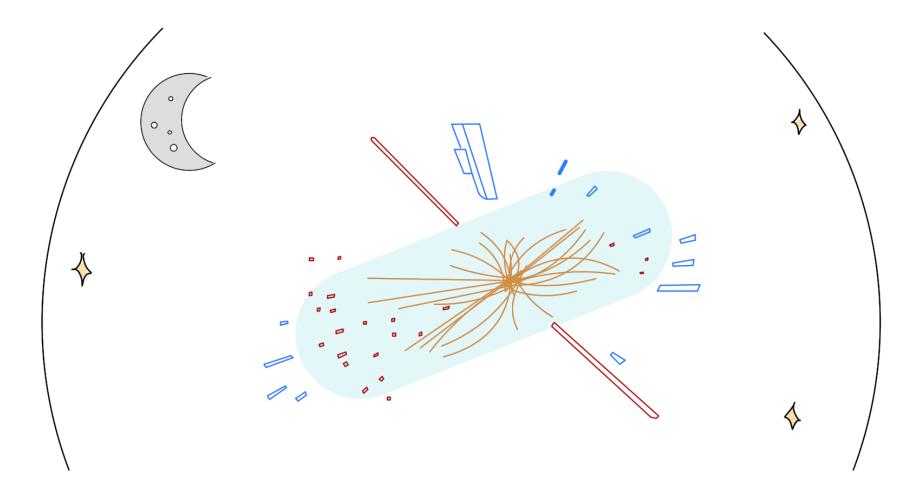

$$\langle out|a_{-}(q)\mathcal{S}|in\rangle = \left(S^{(0)-} + S^{(1)-}\right)\langle out|\mathcal{S}|in\rangle + \mathcal{O}(\omega)$$
$$S^{(0)-} = \sum_{k} \frac{(p_k \cdot \epsilon^{-})^2}{p_k \cdot q} \qquad S^{(1)-} = -i\sum_{k} \frac{p_{k\mu}\epsilon^{-\mu\nu}q^{\lambda}J_{k\lambda\nu}}{p_k \cdot q}$$

#### Soft Thm = Ward Id






the asymptotic symmetry is physical




## 4D Soft Mode = 2D Current



#### The Celestial Conjecture:

scattering in asymptotically flat spacetimes is dual to a CFT living on the celestial sphere



## **4D Amplitude = 2D Correlator**

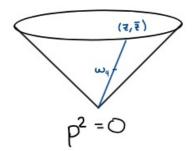
4D Lorentz invariance = 2D global conformal symmetry

$$\langle \mathfrak{G}_{\Delta_1}^{\pm}(z_1, \bar{z}_1) ... \mathfrak{G}_{\Delta_n}^{\pm}(z_n, \bar{z}_n) \rangle = \prod_{i=1}^n \int_0^\infty d\omega_i \omega_i^{\Delta_i - 1} \langle out | \mathscr{S} | in \rangle$$

If we go to a boost basis, amplitudes transform as CFT correlators under the Lorentz group.



$$\underset{\text{scalar}}{\text{massive}} \quad \widetilde{\mathcal{A}}(\Delta_i, \vec{w_i}) \equiv \prod_{k=1}^n \int_{H_{d+1}} [d\hat{p}_k] \, G_{\Delta_k}(\hat{p}_k; \vec{w}_k) \ \mathcal{A}(\pm m_i \hat{p}_i^{\mu})$$

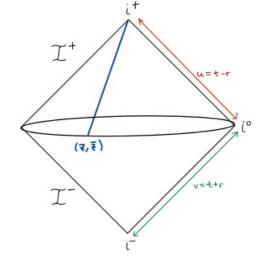

$$\boldsymbol{m} = \boldsymbol{0} \qquad \widetilde{\mathcal{A}}(\Delta_i, \vec{w}_i) \equiv \prod_{k=1}^n \int_0^\infty d\omega_k \omega_k^{\Delta - 1} \,\mathcal{A}(\pm \omega_k q_k^{\mu})$$

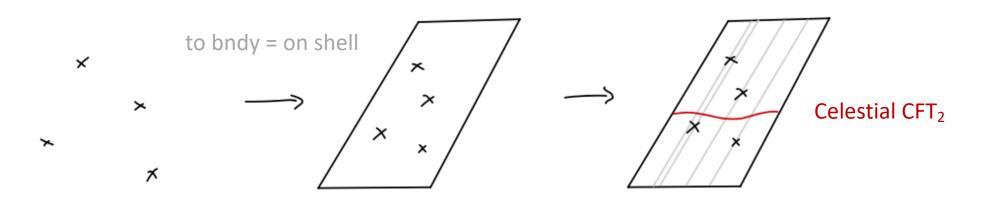
Lorentz covariance guaranteed by this choice of wavepackets, with u-direction captured by a continuous spectrum

 $\Delta = 1 + i\lambda$ 

Meanwhile translations shift the weight

$$p^{\mu} = q^{\mu} e^{\partial_{\Delta}} \Leftrightarrow \Delta \mapsto \Delta + 1$$





## **4D Amplitude = 4D Correlator**

## LSZ $\Leftrightarrow$ Extrapolate Dict.

$$\langle out|S|in\rangle_{boost} = \prod_{i} \lim_{r \to \infty} \int_{-\infty}^{\infty} \mathrm{d}\nu_{i} \,\nu_{i}^{-\Delta_{i}} \,\langle r\Phi(\nu_{1}, r, z_{1}, \bar{z}_{1})...r\Phi(\nu_{n}, r, z_{n}, \bar{z}_{n})\rangle$$

$$\nu = \{u, v\}$$

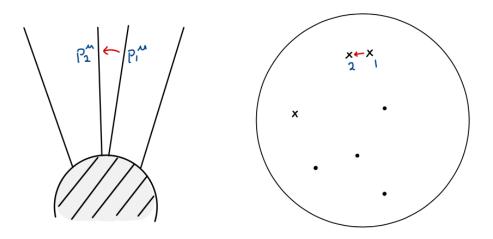




perturbative bulk

Carrollian CFT<sub>3</sub>

## **Operator Spectrum**

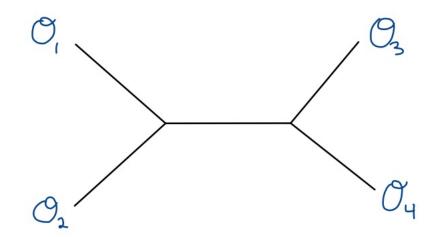

Fock Space  $\leftrightarrow$  4D Hilbert Space  $\leftrightarrow$  2D States  $\leftrightarrow$  2D Operators

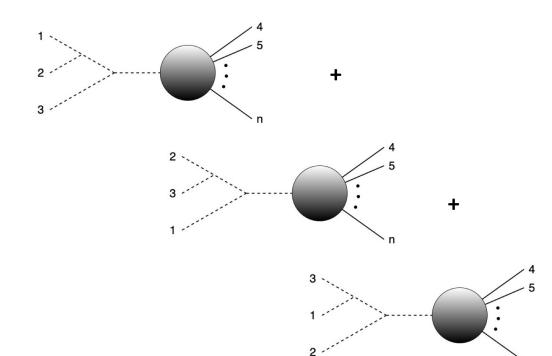
$$\mathfrak{G}_{\Delta}(z,\bar{z}) \equiv \int_{-\infty}^{\infty} \mathrm{d}u \, u^{-\Delta} \lim_{r \to \infty} \left[ r^{\delta} \Phi(u,r,z,\bar{z}) \right]$$

$$: \mathcal{O}^{(\rho)}\mathcal{O}:_{\Delta}(z,\bar{z}) \; \equiv \; \int_{0}^{\infty} d\omega \, \omega^{\Delta-\rho-1} \, \int_{0}^{\omega} \, d\omega_1 \, \omega_1^{\rho-1} \, a^{\dagger}(\omega_1,z,\bar{z}) a^{\dagger}(\omega-\omega_1,z,\bar{z})$$

## **Collinear Limit = OPE**

$$\begin{split} \mathfrak{G}_{\Delta_{1},+2}(z_{1},\bar{z}_{1})\mathfrak{G}_{\Delta_{2},+2}(z_{2},\bar{z}_{2}) &\sim -\frac{\kappa}{2}\frac{\bar{z}_{12}}{z_{12}}B(\Delta_{1}-1,\Delta_{2}-1)\mathfrak{G}_{\Delta_{1}+\Delta_{2},+2}(z_{2},\bar{z}_{2})+\dots, \\ \mathfrak{G}_{\Delta_{1},+2}(z_{1},\bar{z}_{1})\mathfrak{G}_{\Delta_{2},-2}(z_{2},\bar{z}_{2}) &\sim -\frac{\kappa}{2}\frac{\bar{z}_{12}}{z_{12}}B(\Delta_{1}-1,\Delta_{2}+3)\mathfrak{G}_{\Delta_{1}+\Delta_{2},-2}(z_{2},\bar{z}_{2}) \\ &- \frac{\kappa}{2}\frac{z_{12}}{\bar{z}_{12}}B(\Delta_{1}+3,\Delta_{2}-1)\mathfrak{G}_{\Delta_{1}+\Delta_{2},+2}(z_{2},\bar{z}_{2})+\dots, \end{split}$$





## **Celestial OPE**

Celestial OPE









` n

## **Celestial OPE**

Celestial OPE vs Feynman Diagrams

$$\mathcal{O}_{\Delta_{1}}(z_{1},\bar{z}_{1})\mathcal{O}_{\Delta_{2}}(z_{2},\bar{z}_{2})\mathcal{O}_{\Delta_{3}}(z_{3},\bar{z}_{3}) \sim \left(\frac{1}{z_{13}z_{23}\bar{z}_{13}\bar{z}_{23}}\mathcal{C}_{1} + \frac{(z_{23}\bar{z}_{23})^{\Delta_{1}-2}}{(z_{13}\bar{z}_{13})^{\Delta_{1}}}\mathcal{C}_{2}\right)\mathcal{O}_{\Delta_{1}+\Delta_{2}+\Delta_{3}-4}(z_{3},\bar{z}_{3})$$

$$\mathcal{O}_{\Delta_{2}}(z_{2},\bar{z}_{2})\mathcal{O}_{\Delta_{3}}(z_{3},\bar{z}_{3}) \sim \int d\Delta \frac{C_{\Delta_{2},\Delta_{3}}}{(z_{23}\bar{z}_{23})^{\frac{1}{2}(\Delta_{2}+\Delta_{3}-\Delta)}}\mathcal{O}_{\Delta}(z_{3},\bar{z}_{3})$$

$$+ \int d\Delta d\sigma \frac{C_{\Delta_{2},\Delta_{3}}}{(z_{23}\bar{z}_{23})^{\frac{1}{2}(\Delta_{2}+\Delta_{3}-\Delta)}}\mathcal{R}_{\Delta}^{\sigma}(z_{3},\bar{z}_{3})$$

#### **2D** Radial Quantization → More Symmetries

For special weights, the SL(2,C) multiplets have primary descendants.

$$H^{k}(z, \bar{z}) := \lim_{\epsilon \to 0} \epsilon \, \mathfrak{G}_{k+\epsilon,2}(z, \bar{z}), \quad \Delta = k = 2, 1, 0, -1, \dots$$

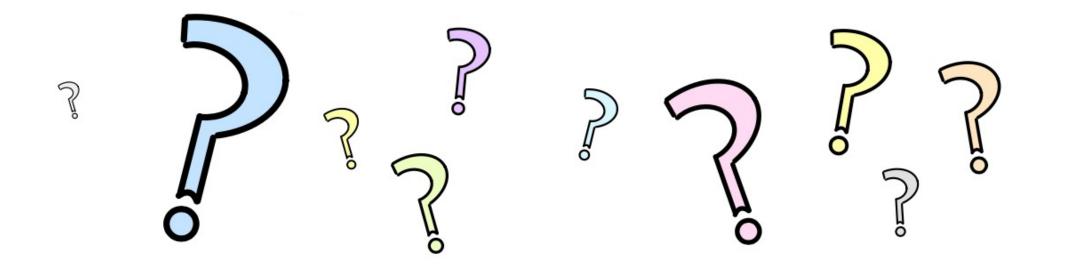
Assuming these multiplets shorten, we have

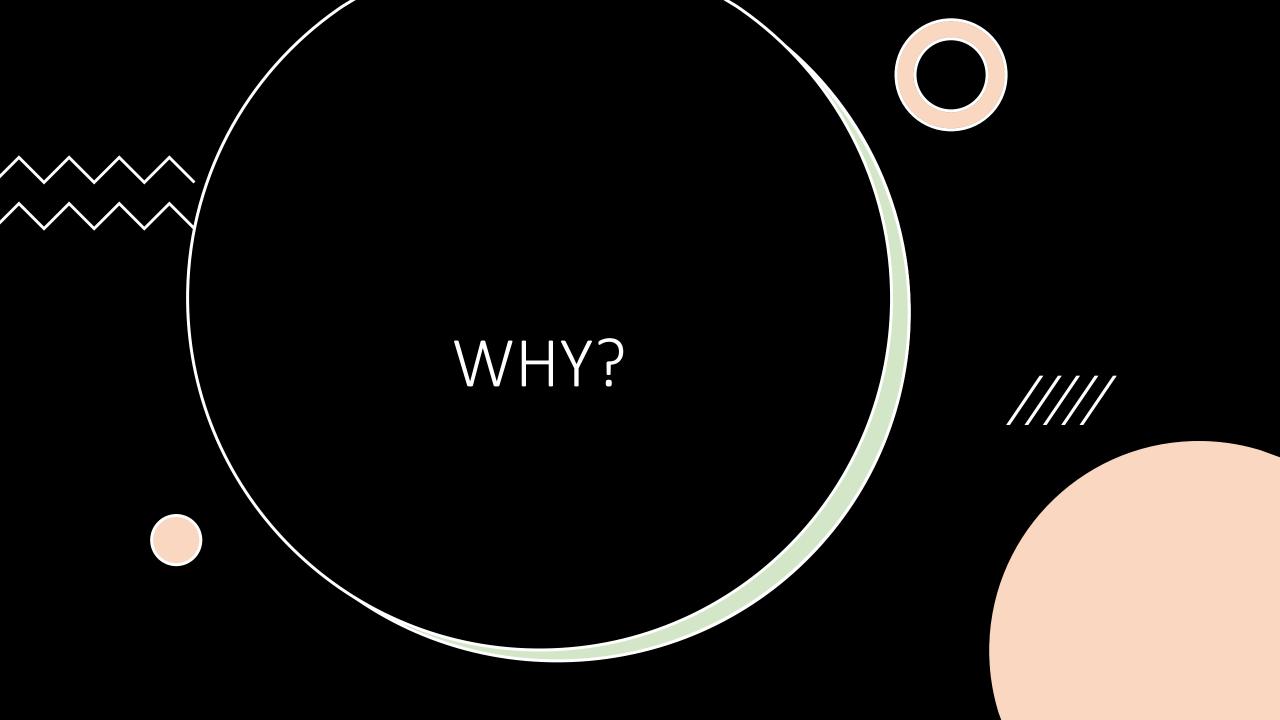
$$H^{k}(z,\bar{z}) = \sum_{m=\frac{k-2}{2}}^{\frac{2-k}{2}} \bar{z}^{-\frac{k-2}{2}-m} H^{k}_{m}(z) , \qquad \qquad w^{p}_{n} = \frac{1}{\kappa} (p-n-1)! (p+n-1)! H^{-2p+4}_{n}(z) + \frac{1}{\kappa} (p-n-1)! (p+n-1)! (p+n-1)! H^{-2p+4}_{n}(z) + \frac{1}{\kappa} (p-n-1)! (p+n-1)! (p+n-1$$

## **2D** Radial Quantization → More Symmetries

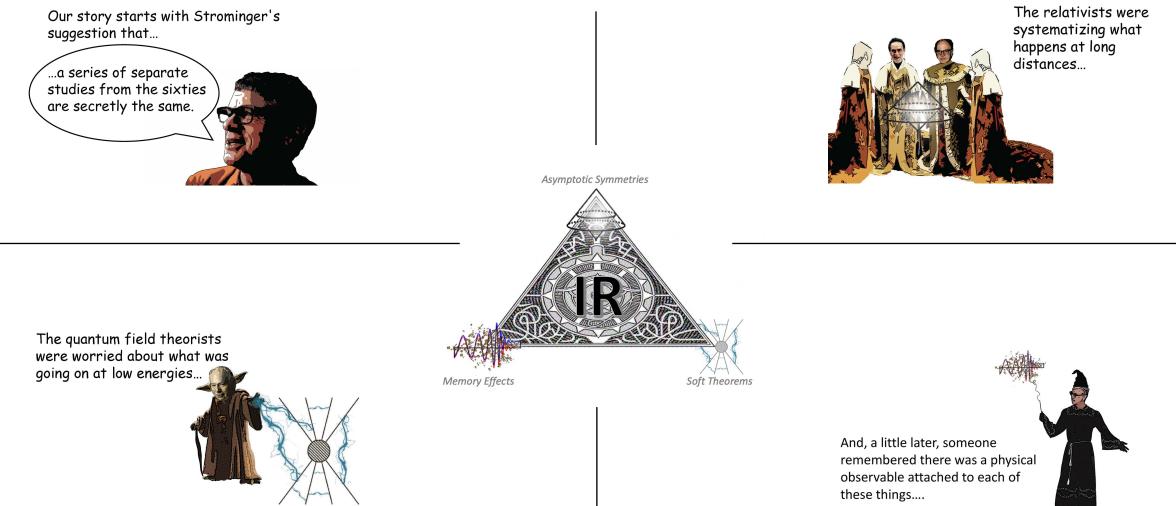
Complexifying the celestial sphere variables and defining a holomorphic commutator

$$[A,B](z) = \frac{1}{2\pi i} \oint_z dw A(w)B(z)$$

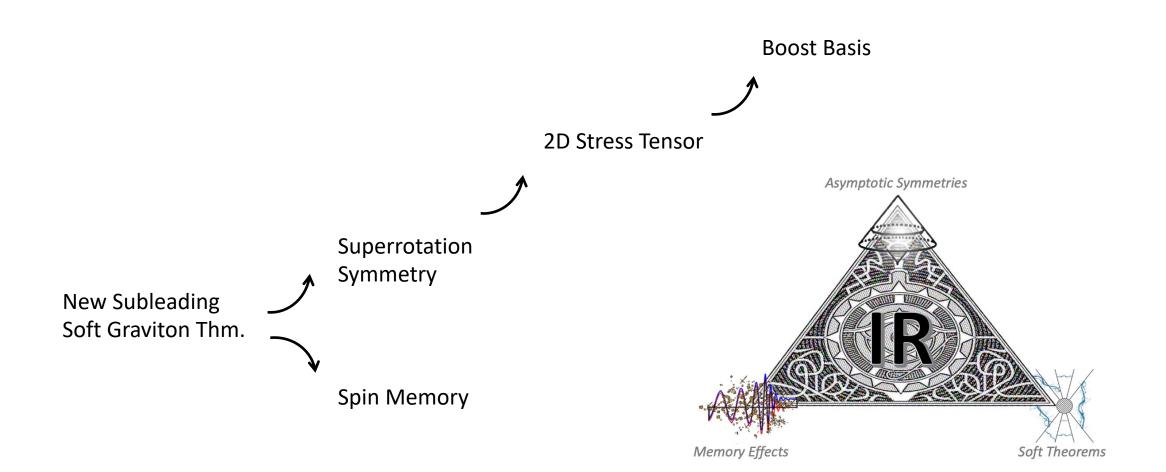

gives a  $Lw_{1+\infty}$  symmetry algebra for appropriately rescaled modes


$$\left[w_{n}^{p}, w_{m}^{q}\right](z) = \left[n(q-1) - m(p-1)\right] w_{m+n}^{p+q-2}(z)$$

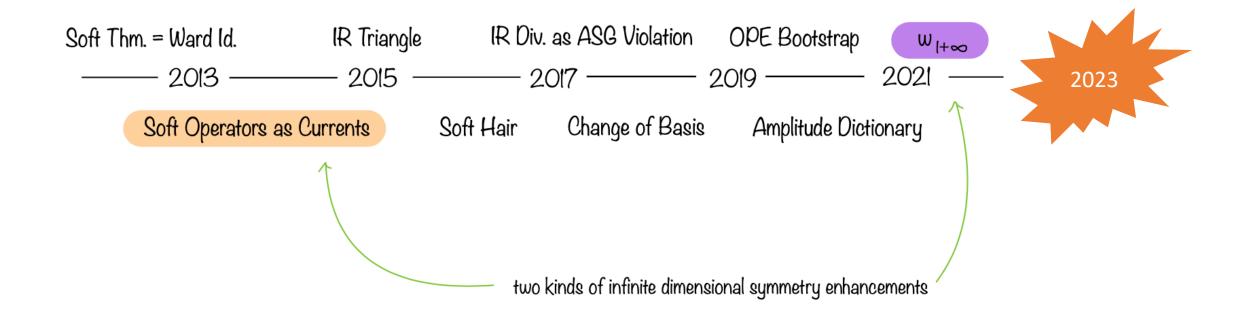
Do these symmetries beyond tree level, or the self-dual sector?

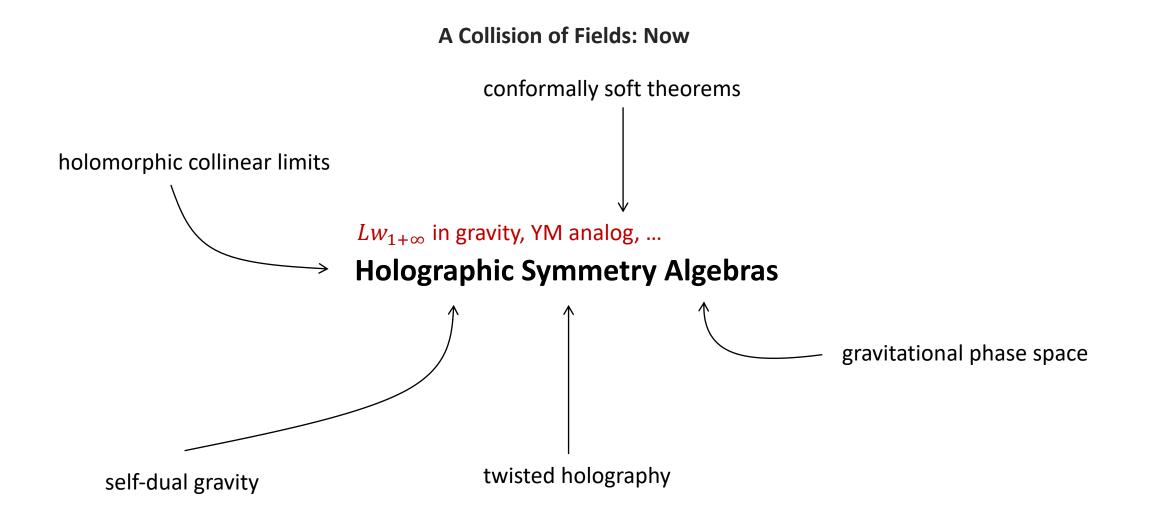

Can we realize them in the matter sector?

Can we really complexify the celestial sphere to define these currents?

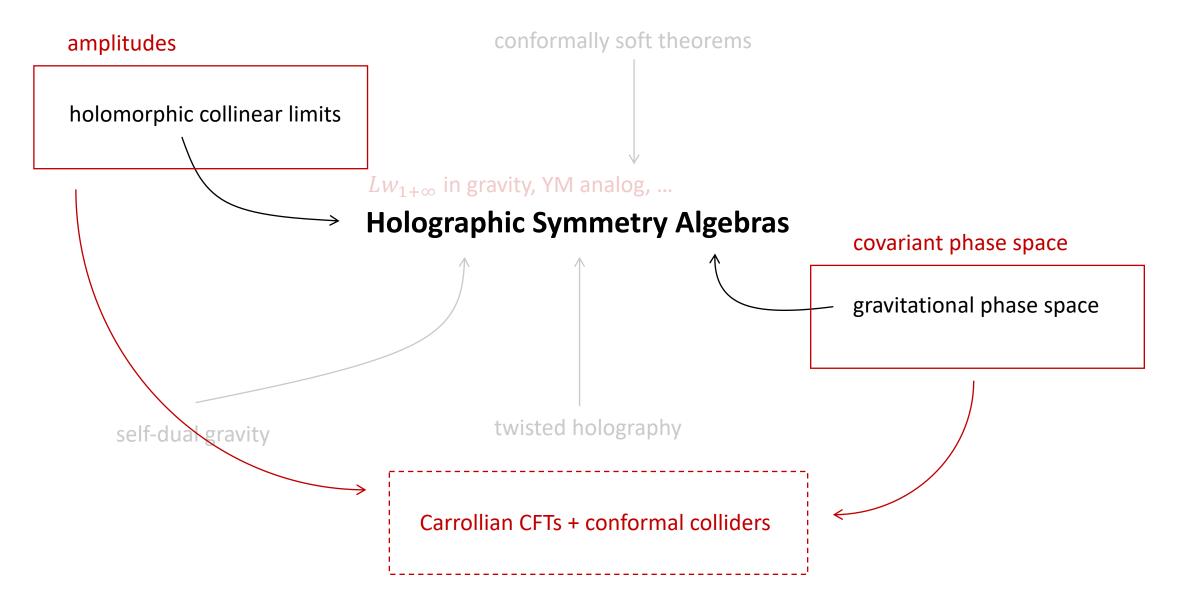






### A Collision of Fields: Then



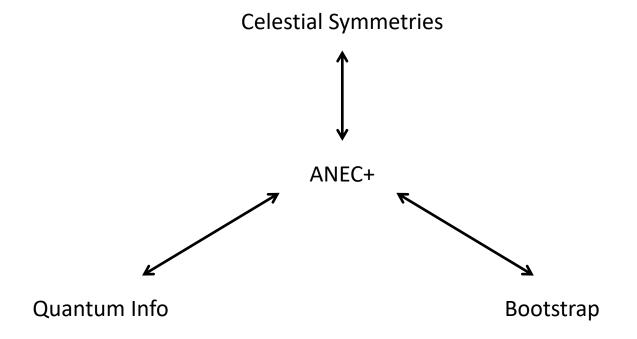

# A Collision of Fields: Then

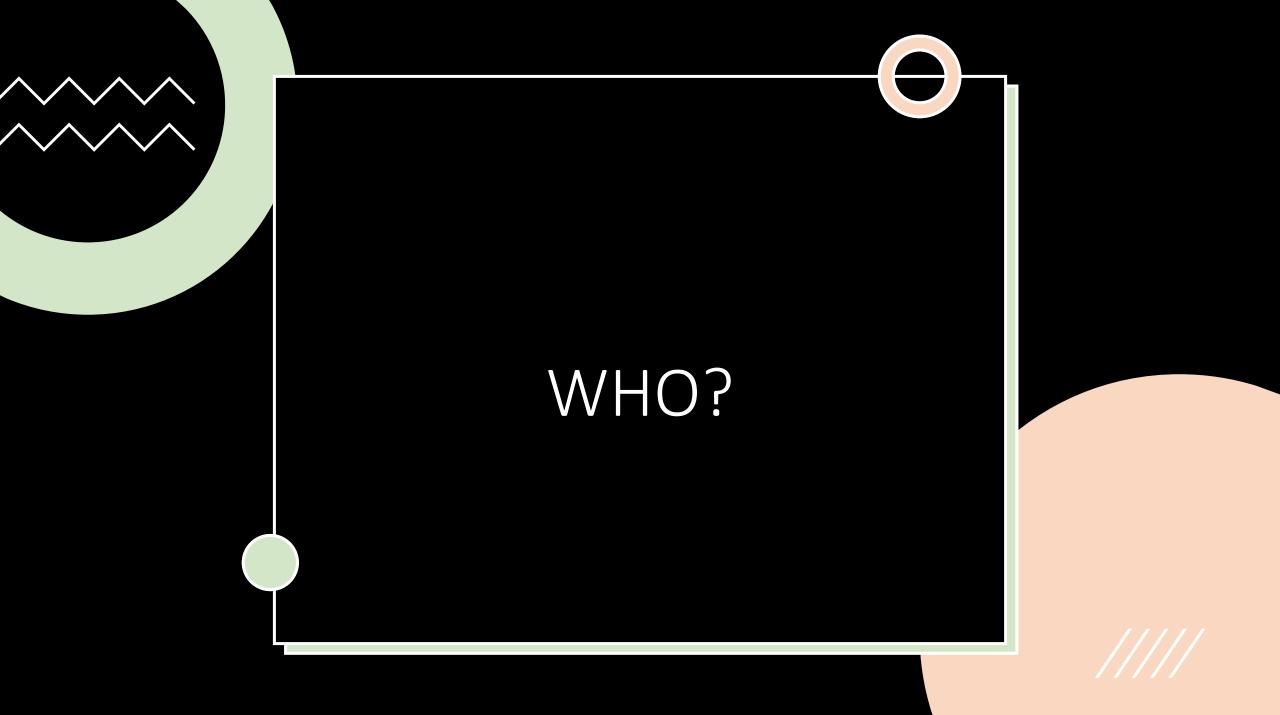


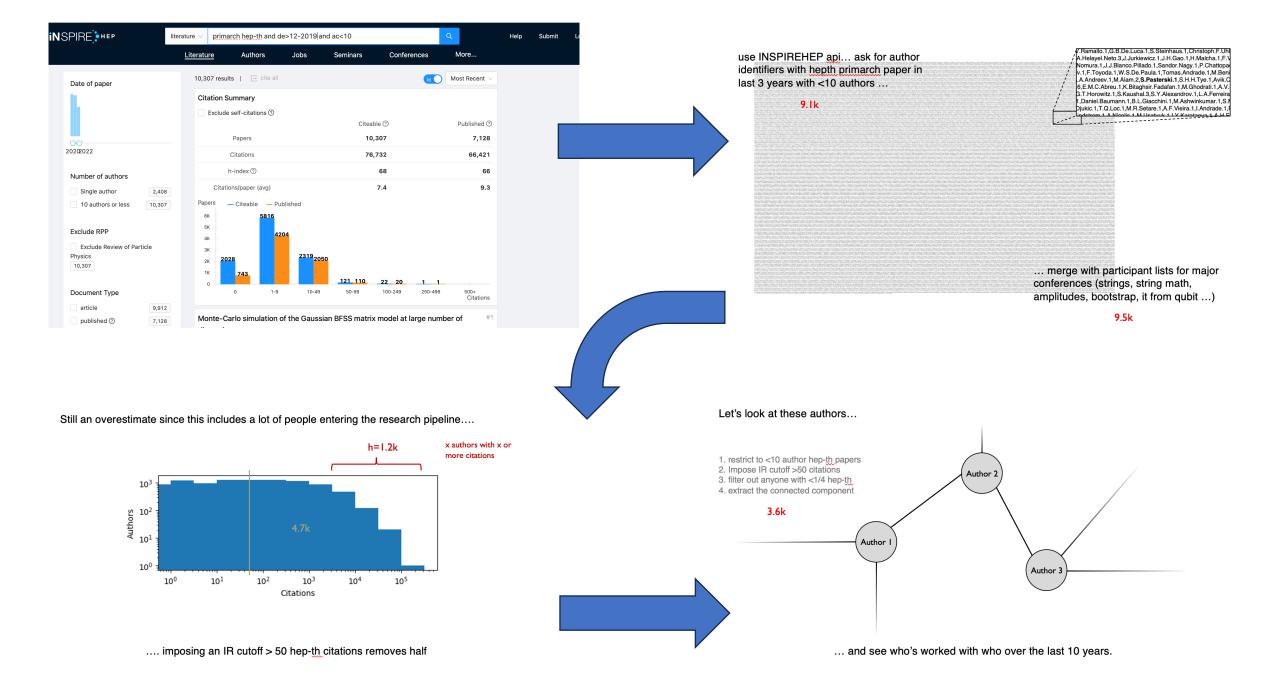

## A Collision of Fields: Now

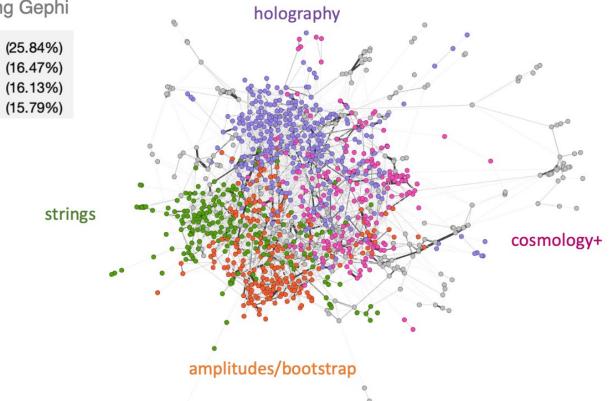





#### A Collision of Fields: Now





A Collision of Fields: Soon



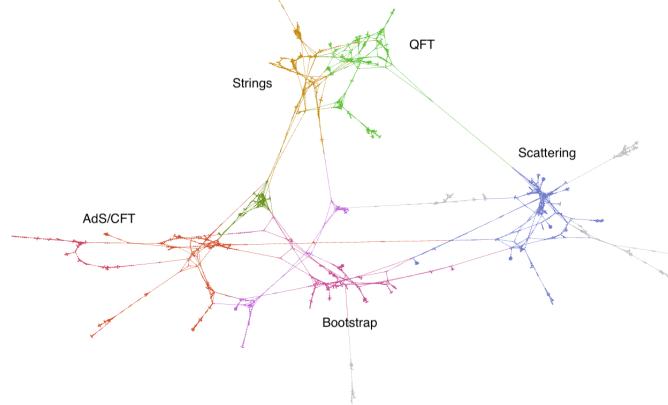

#### A Collision of Fields: Soon

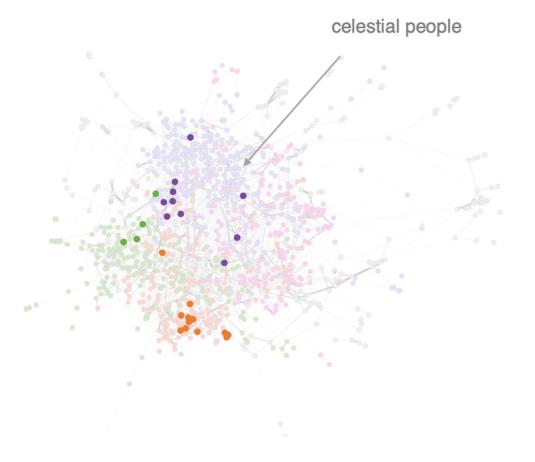









can identify communities using Gephi


| 1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>0 1<br>1 1<br>0 1<br>1 1 | [[2616014, 2104727, 2104755], [2112370], [1923692, 1867137]]<br>[[2616019, 2614218, 2613889, 2610564, 2154234, 2087695, 20<br>[[2514161], [2162567, 2154673, 2018548, 1897417, 1849552]]<br>[[2593467, 2063978, 2055692, 2032108, 1949145, 1907935, 190<br>[]2615487, 2070502, 1986080, 1973774, 1973157, 1866130, 184 | ['estimating global charge', 'acc<br>['dark dimension gravitons', 'stri<br>['lieb schultz mattis', 'lifshitz the<br>('hybrid cosmological attractors<br>( ['celestial conformal field', 'warp                                                                                                                                                                                                                                                                                                                                                                                                                                                | ring lamppost principle', 'bps black branes']<br>eory tensor']<br>s', 'goldstino condensation']                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>0 1<br>1 1<br>0 1<br>1 1 | [[2616014, 2104727, 2104755], [2112370], [1923692, 1867137]]<br>[[2616019, 2614218, 2613889, 2610564, 2154234, 2087695, 20<br>[[2514161], [2162567, 2154673, 2018548, 1897417, 1849552]]<br>[[2593467, 2063978, 2055692, 2032108, 1949145, 1907935, 190<br>[]2615487, 2070502, 1986080, 1973774, 1973157, 1866130, 184 | ['estimating global charge', 'acc<br>['dark dimension gravitons', 'stri<br>['lieb schultz mattis', 'lifshitz the<br>('hybrid cosmological attractors<br>( ['celestial conformal field', 'warp                                                                                                                                                                                                                                                                                                                                                                                                                                                | cumulation point amplitudes', 'scale black holes']<br>ring lamppost principle', 'bps black branes']<br>eory tensor']<br>s', 'goldstino condensation']<br>ped black holes', 'bfss matrix model', 'quantum encoder']                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 1<br>1<br>1<br>0<br>1<br>0<br>1<br>1                               | [[2514161], [2162567, 2154673, 2018548, 1897417, 1849552]]<br>[[2593467, 2063978, 2055692, 2032108, 1949145, 1907935, 19<br>[[2615487, 2070502, 1986080, 1973774, 1973157, 1866130, 184<br>]                                                                                                                           | ['lieb schultz mattis', 'lifshitz the<br>I'hybrid cosmological attractors<br>['celestial conformal field', 'warp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eory tensor']<br>s', 'goldstino condensation']<br>rped black holes', 'bfss matrix model', 'quantum encoder']                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 1<br>1<br>1<br>0<br>1<br>0<br>1<br>1                               | [[2514161], [2162567, 2154673, 2018548, 1897417, 1849552]]<br>[[2593467, 2063978, 2055692, 2032108, 1949145, 1907935, 19<br>[[2615487, 2070502, 1986080, 1973774, 1973157, 1866130, 184<br>]                                                                                                                           | ['lieb schultz mattis', 'lifshitz the<br>I'hybrid cosmological attractors<br>['celestial conformal field', 'warp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eory tensor']<br>s', 'goldstino condensation']<br>rped black holes', 'bfss matrix model', 'quantum encoder']                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 1<br>1<br>0<br>1<br>1<br>0<br>1                                    | [2615487, 2070502, 1986080, 1973774, 1973157, 1866130, 18                                                                                                                                                                                                                                                              | ( ['celestial conformal field', 'warp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ped black holes', 'bfss matrix model', 'quantum encoder']                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 0<br>1<br>0<br>1                                                   |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 0<br>1<br>0<br>1                                                   |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 1<br>0<br>1                                                        |                                                                                                                                                                                                                                                                                                                        | ['nonperturbative negative geon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | metries', 'tropical geometry', 'tree level string', 'weak gravity conjectu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 0                                                                  | [[2120761, 1990023], [2037717], [2020681], [1933887], [1866953                                                                                                                                                                                                                                                         | ['nonperturbative negative geon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | metries', 'tropical geometry', 'tree level string', 'weak gravity conjectu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 0                                                                  |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 1                                                                  |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 0                                                                  |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                    | [[2177393, 2139921, 2116125, 2083958, 2005610, 1994088, 19                                                                                                                                                                                                                                                             | ['holographic dark energy', 'cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | arged black holes', 'slow rotating black', 'horizon black holes', 'dark $\epsilon$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 0                                                                  | J                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 0                                                                  | [[2614902, 2172051, 1909144], [2176762, 2157990, 1991201, 1                                                                                                                                                                                                                                                            | ['primordial black holes', 'black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | k holes correspondence', 'efficient quantum computation']                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 1                                                                  | [[2617473, 1869539], [2181809, 1975550], [2167953, 2094752,                                                                                                                                                                                                                                                            | ['fermionic lattice models', 'criti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fermionic lattice models', 'critical field theories', 'discrete chiral symmetry']                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 1                                                                  | [[2617022], [2170581, 2122418, 2103461, 1866164, 1860825, 1                                                                                                                                                                                                                                                            | ['derivative scalar theory', 'bp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | son loop', 'integrable supersymmetric deformations', 'defect qft',                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 0                                                                  | / [[2058015], [1989007]]                                                                                                                                                                                                                                                                                               | ['massless schwinger model',                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pes and hidden']                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 0                                                                  | ,                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 1                                                                  | [[2168963, 2063426, 2020643, 1856580, 1841069], [1869123]]                                                                                                                                                                                                                                                             | ['scattering radiation reaction'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | igularity scattering maps']                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 0                                                                  | 1                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 1                                                                  | [[2166821, 2036329, 1960285], [2024912]]                                                                                                                                                                                                                                                                               | ['complexity equals', 'extrema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | inds made']                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 0                                                                  | [[2616328, 2054698, 2016467, 1904870, 1870526], [1955845, 19                                                                                                                                                                                                                                                           | ['einstein cartan gravity', 'finite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lan symanzik', 'reconciling resonant leptogenesis']                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 0                                                                  | [[2178053, 2513318, 2162003, 2108965, 2028982, 2619683, 19                                                                                                                                                                                                                                                             | ['gravitational chiral anomaly',                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | namic critical exponent', 'quantized vortices', 'phase modulation re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1                                                                  | [[2610588, 2514138, 2120761, 2072456, 2072539, 2058002, 19                                                                                                                                                                                                                                                             | ['super yang mills', 'point integ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | integrable']                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                    |                                                                                                                                                                                                                                                                                                                        | <b>+‡</b> GPT-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                    |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | can you distill 10 main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                    | 1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>0<br>0                                                                                                                                                                                                                                                                         | 1         [[2617022], [2170581, 2122418, 2103461, 1866164, 1860825, 1           0         [[2058015], [1989007]]           1         [[2168963, 2063426, 2020643, 1856580, 1841069], [1869123]]           0         1           1         [[2166821, 2036329, 1960285], [2024912]]           0         1           1         [[2166821, 2036329, 1960285], [2024912]]           0         1           1         [[2166823, 2054698, 2016467, 1904870, 1870526], [1955845, 11           0         [[2178053, 2513318, 2162003, 2108965, 2028982, 2619683, 193           1         [[2610588, 2514138, 2120761, 2072456, 2072539, 2058002, 193 | 1       [[2617022], [2170581, 2122418, 2103461, 1866164, 1860825, 11       ['derivative scalar theory', 'bp         0       [[2058015], [1989007]]       ['massless schwinger model',         1       [[2168963, 2063426, 2020643, 1856580, 1841069], [1869123]]       ['scattering radiation reaction'         0       1       [[2168821, 2036329, 1960285], [2024912]]       ['complexity equals', 'extrema         0       1       [[2166821, 2036329, 1960285], [2024912]]       ['complexity equals', 'extrema         0       [[2616328, 2054698, 2016467, 1904870, 1870526], [1955845, 11       ['einstein cartan gravity', 'finito'         0       [[2178053, 2513318, 2162003, 2108965, 2028982, 2619683, 19;       ['gravitational chiral anomaly',         1       [[2610588, 2514138, 2120761, 2072456, 2072539, 2058002, 19i       ['super yang mills', 'point intego |  |

themes. feel free to use your knowledge of the keywords

Certainly. Here are the ten main themes distilled from the provided keywords:

- 1. Holography and AdS/CFT
- 2. Black Hole Physics
- 3. Conformal and Quantum Field Theories
- 4. String Theory and Dualities
- 5. Supersymmetry and Supergravity
- 6. Topological and Geometric Methods
- 7. Entanglement and Quantum Mechanics
- 8. Gauge Theories
- 9. Cosmology and the Universe
- 10. Quantum Gravity and General Relativity





### can identify communities using Gephi

| 6 | (25.84%) |
|---|----------|
| 1 | (16.47%) |
| 0 | (16.13%) |
| 2 | (15.79%) |



Kevin Costello Laurent Freidel Sabrina Pasterski Perimeter Institute for Theoretical Physics



Monica Pate NYU



Nima Arkani-Hamed IAS



ted Tim Adamo University of Edinburgh



Lionel Mason Oxford



Natalie Paquette University of Washington



Andrew Strominger Jordan Cotler Harvard University



Tomasz Taylor Northeastern



Andrea Puhm École Polytechnique



David Skinner Cambridge





