X-Smooth projective curve/[
with distinct points t1,.,tn

Bun (x)-moduli space of stable parabolic PGL2-bundles
of degree m on X, i.e. rank 2 bung,
modulo tensoring with line bundles Parabolic stope: for a zank bundle: $S(E) = \frac{1}{2} degE + \frac{N}{4}$ for a line subbundle: $L \subset E$ $S(L) = deg L + \frac{N_L}{2}$ $N_{\perp} = \# \text{ of pazabolic lines in }$ Stable: $S(L) < S(E) \quad \forall L \subset E$ Buns(x) = Buns(x) 11 Bung(x). Jl: = L2 (Bun; (X)) - 394a H= 46 & H, = L (Buns(x)) $x \in X, x \neq t$

Hecke modification: EEBun;
se PEx
Hx,s(E) - bundle where
sections are meromorphic
sections of E with & Jirst
order pole at x, min
residue, in s
This is not necessarily stable,
but generically it is
Hecke operator: dessely
Hecke operator: Hx: H -> H (defined initially)
(11 11) (F) = (V) (2P (E)) [US]
$(P_XY)(P)$ $S \in PE$
n his
makes sense canonically.

Conjecture: These govanus we compact, self-adjoint, and pairwise commuting. (for different x). Theorem 2 The operators Hx commute with the quartum Hitchin hamitonians on Buns(X). If Conjecture 1 holds By the spectral theorem for compact self-adjoint operators, 5 Hx3 admit basis of eigenfunctions with naturally density $H_{\chi} \Psi_{\chi} = \beta_{\chi}(\chi) \Psi_{\chi}$.

Theorem. YA 3 a real SI oper L_{Λ} on X $L_{\Lambda}: K^{1/2} \longrightarrow K^{3/2}$ with monodromy in SLz (R) = SV(1,1), with $L_{\Lambda} \beta_{\Lambda}(x) = 0$. $L_{\Lambda} \beta_{\Lambda} = 0$ $L_{\Lambda} \beta_{\Lambda} = 0$ $L_{\Lambda} \beta_{\Lambda} = 0$ $L_{\Lambda} \beta_{\Lambda} = 0$ real-valued analytic solution $\beta = f_1 f_2 + f_2 f_1$ where f_1, f_2 is a basis of solutions of LB = 0 Recall that according to Beilinson - Drinfel if A is the grantum

Hitchin algebra them Spec A = Op, the Space of opers. So YLEOP have character $\chi_{L}: \mathcal{A} \to \mathcal{C}.$ Prop. YDEA $D Y_{\Lambda} = \chi_{L_{\Lambda}}(D) Y_{\Lambda}$. Conjecture The spectrum is simple, labeled by all real opers. (Almost) all these pro blem Also this

makes	sense	oves	R	
(and of	her l	ocal	fill	ds).
Some:		D hi.	storica	al .
refere Braverman		an e	2006	
Kontsevicl Langland	A		2007	Beukers
Teschne	2		2017	IP with
Gaiotto Nekraso			bora	TOPS
		20 and	21 earlie	
Kapustin	- Witte	20		
Quantun	n Hi	tchin	?	
Usual	Hitchi	in su	15tcm;	
T * Bu	n	> 2	3 -t	he itchin

 $H^{0}(X, X_{X}^{2})$ O(B) > O(T*Bua) Quantum: Comm. alsebra of Bun