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Flops and Flips

• A simple flop (resp. simple flip) is a birational map

Y −− → Y + which induces an isomorphism (Y −C) ∼=
(Y +−C+), where C and C+ are smooth rational curves

on the Gorenstein (resp. Q-Gorenstein) threefolds Y and

Y +, respectively, and

KY · C = KY + · C+ = 0

(resp. KY · C < 0 and KY + · C > 0).
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• The curves C and C+ can be contracted to points (in Y

and Y +, respectively), yielding the same normal variety

X.
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• The curves C and C+ can be contracted to points (in Y

and Y +, respectively), yielding the same normal variety

X.

• Thanks to a theorem of Kawamata, it is known that all

birational maps between Calabi–Yau threefolds can be

expressed as the composition of simple flops.
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• The curves C and C+ can be contracted to points (in Y

and Y +, respectively), yielding the same normal variety

X.

• Thanks to a theorem of Kawamata, it is known that all

birational maps between Calabi–Yau threefolds can be

expressed as the composition of simple flops.

• Thanks to work of Mori, Reid, Kawamata, and others,

simple flips and contractions of divisors form the building

blocks for birational transformations used to construct

minimal models of threefolds of general type.
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• Another theorem of Kawamata relates the two:

essentially, every simple flip has a cover which is a

simple flop.
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Atiyah’s Flop

• In 1958, Atiyah noticed that if he made a basechange

s = t2 in the versal deformation of an ordinary double

point

xy + z2 = s,

then the resulting family of surfaces admitted a

simultaneous resolution of singularities.
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• That is, factoring the equation as

xy = (t + z)(t− z)

and blowing up the (non-Cartier) divisor described

by x = t + z = 0, one obtains a family of non-

singular surfaces which, for each value of t, resolves

the corresponding singular surface.
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• That is, factoring the equation as

xy = (t + z)(t− z)

and blowing up the (non-Cartier) divisor described

by x = t + z = 0, one obtains a family of non-

singular surfaces which, for each value of t, resolves

the corresponding singular surface.

• In fact, there are two ways of doing this, for one might

have chosen to blow up the divisor x = t − z = 0
instead. This produces two threefolds Y and Y + related

by a flop.
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Reid’s pagoda

• A generalization of Atiyah’s flop was discussed by Miles

Reid in 1983.

xy = (t + zk)(t− zk)
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Reid’s pagoda

• A generalization of Atiyah’s flop was discussed by Miles

Reid in 1983.

xy = (t + zk)(t− zk)

• The flop itself can be described by blowing up C and

its proper transforms k times, and then blowing back

down:
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Laufer’s analysis

• Laufer analyzed simple flops from a different perspective.

In Atiyah’s flop, the normal bundle of C in Y is

O(−1)⊕O(−1)

(and this in fact characterizes an Atiyah flop) while in

Reid’s examples, the normal bundle is O⊕O(−2) (and

again, any rigid curve with such a normal bundle must

be one of Reid’s examples).
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• Laufer showed that any rational curve on a smooth

threefold which can be contracted to a Gorenstein

singular point must have normal bundle O(a) ⊕ O(b)
with (a, b) = (−1,−1), (0,−2), or (1,−3). The last

possibility was extremely surprising at the time, but

Laufer gave an explicit example to show that this

actually happened.
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• A slight generalization of Laufer’s example (due to

Pinkham and DRM) is

v2
4 + v3

2 − v1v
2
3 − v3

1v2 + λ(v1v
2
2 − v4

1) = 0

(Laufer’s example had λ = 0).
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• A slight generalization of Laufer’s example (due to

Pinkham and DRM) is

v2
4 + v3

2 − v1v
2
3 − v3

1v2 + λ(v1v
2
2 − v4

1) = 0

(Laufer’s example had λ = 0). A small blowup is

obtained by blowing up the ideal generated by the 2× 2
minors of the matrix[

v1 v2 v3 v4

−v3 −v4 v1(v2 + λv1) v2(v2 + λv1)

]
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• A slight generalization of Laufer’s example (due to

Pinkham and DRM) is

v2
4 + v3

2 − v1v
2
3 − v3

1v2 + λ(v1v
2
2 − v4

1) = 0

(Laufer’s example had λ = 0). A small blowup is

obtained by blowing up the ideal generated by the 2× 2
minors of the matrix[

v1 v2 v3 v4

−v3 −v4 v1(v2 + λv1) v2(v2 + λv1)

]
We shall discuss this example again later in the talk.
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Simultaneous resolution

• A generalization of Atiyah’s observation in a different

direction was made by Brieskorn and Tyurina, who

showed that the (uni)versal family over the versal

deformation space, for any rational double point, admits

a simultaneous resolution after basechange.
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• More precisely, each rational double point has an

associated Dynkin diagram Γ whose Weyl group W =
W (Γ) acts on the complexification hC of the Cartan

subalgebra h of the associated Lie algebra g = g(Γ). A

model for the versal deformation space is given by

Def = hC/W

and there is a (uni)versal family X → Def of

deformations of the rational double point.



13

• The deformations of the resolution are given by a

representable functor, which can be modeled by

Res = hC.

The basechange which relates Res to Def is thus the

map hC → hC/W .
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• The deformations of the resolution are given by a

representable functor, which can be modeled by

Res = hC.

The basechange which relates Res to Def is thus the

map hC → hC/W .

• In fact, there is a (uni)versal simultaneous resolution

X̂ of the family X ×Def Res. The construction of

this resolution requires some trickiness with the algebra

which will in fact be generalized and somewhat explained

later in this talk.
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Simultaneous partial resolution

• It is not too hard to generalize the work of Brieskorn

and Tyurina to cases in which we do not wish to fully

resolve the rational double point, but only to partially

resolve it.
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• If we let Γ0 ⊂ Γ be the subdiagram for the part of the

singularity that is not being resolved, then we can define

a functor of deformations of the partial resolution, which

has a model

PRes(Γ0) = hC/W (Γ0)

and there is a simultaneous partial resolution X̂ (Γ0) of

the family X ×Def PRes(Γ0).
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Back to flops

• By a lemma of Reid, given a simple flop from Y to

Y + and the associated small contraction Y → X, the

general hyperplane section of X through the singular

point P has a rational double point at P , and the proper

transform of that surface on Y gives a partial resolution

of the rational double point.
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Back to flops

• By a lemma of Reid, given a simple flop from Y to

Y + and the associated small contraction Y → X, the

general hyperplane section of X through the singular

point P has a rational double point at P , and the proper

transform of that surface on Y gives a partial resolution

of the rational double point. This is the first instance

of Reid’s “general elephant” principle.
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• Pinkham used this to give a construction for all

Gorenstein threefold singularities with small resolutions

(with irreducible exceptional set): they can be described

as pullbacks of the (uni)versal family via a map from

the disk to PRes(Γ0) (for some Γ0 ⊂ Γ which is the

complement of a single vertex).
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• Pinkham used this to give a construction for all

Gorenstein threefold singularities with small resolutions

(with irreducible exceptional set): they can be described

as pullbacks of the (uni)versal family via a map from

the disk to PRes(Γ0) (for some Γ0 ⊂ Γ which is the

complement of a single vertex).

• Kollár introduced an invariant of simple flops called the

length: it is defined to be the generic rank of the sheaf

on C defined as the cokernel of OY → f ∗(mP) where

mP is the maximal ideal of the singular point P .



18

• It turns out that the length can be computed from the

hyperplane section, and it coincides with the coefficient

of the corresponding vertex in the Dynkin diagram in the

linear combination of vertices which yields the longest

positive root in the root system.
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The generic hyperplane section

• In 1989, Katz and DRM proved that the generic

hyperplane section for a flop of length ` was the smallest

rational double point which used ` as a coefficient in

the maximal root. The proof was computationally

intensitive, and Kawamata later gave a short and direct

proof of this fact.
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Other general facts about flops

• Kollár and Mori gave a general construction of flops,

based on the fact that the contracted variety X is a

hypersurface with an equation of the form

x2
1 + f(x2, . . . , xn) = 0;

the flop is essentially induced by the automorphism

x1 → −x1.
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• Much more recently, Bridgeland has constructed flops

as moduli spaces for a certain category of complexes of

sheaves (the complexes of sheaves on Y which are the

inverse image under the flop of the structure sheaves of

points on Y +).
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• Much more recently, Bridgeland has constructed flops

as moduli spaces for a certain category of complexes of

sheaves (the complexes of sheaves on Y which are the

inverse image under the flop of the structure sheaves of

points on Y +). This work has been extended in various

ways by Kawamata, Chen, and Abramovich.
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Wrapping D-branes

• The physics represented by D-branes wrapping the

rational curve in a resolution of Atiyah’s flop has been

thoroughly studied; for example, there is the large N

duality proposal of Gopakumar and Vafa, and the matrix

model presentation studied by Dijkgraaf and Vafa. We

began this project with a desire to obtain a similarly

deep understanding of the physics of D-branes wrapping

the rational curve for other kinds of flops.
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• One quickly runs into difficulties: the Pinkham

description in terms of a map from the disk to a

(uni)versal family is not adequate for describing the

D-brane states.
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• One quickly runs into difficulties: the Pinkham

description in terms of a map from the disk to a

(uni)versal family is not adequate for describing the

D-brane states.

• However, there is an intriguing proposal for describing

certain D-branes states that was made by Kontsevich

in a different context: for Landau–Ginzburg theories,

Kontsevich has proposed using the category of “matrix

factorizations” of the Landau–Ginzburg potential to

describe D-brane states.
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• Here we do not have a Landau–Ginzburg theory, but we

do have a hypersurface singularity, and it makes sense

to consider the matrix factorizations in that context as

well.
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Matrix factorizations

• Matrix factorizations are a tool introduced by Eisenbud

in 1980 to study maximal Cohen–Macaulay modules

(modules over R whose depth is equal to the dimension)

on isolated hypersurface singularities.
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• The ring R is (the localization at the origin of)

k[x1, . . . , xn]/(f)

for some polynomial f ∈ S = k[x1, . . . , xn] with an

isolated singular point at the origin.
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• A maximal Cohen–Macaulay module M is supported on

f = 0 and is locally free away from the origin; regarded

as an S-module, there is a resolution

0 → S⊕k Ψ→ S⊕k → M → 0

Since fM = 0, fS⊕k ⊂ Ψ(S⊕k) which implies that

there is a map

S⊕k Φ→ S⊕k

such that Φ ◦ Ψ = f id. The pair (Φ,Ψ) is called a

matrix factorization.
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• A maximal Cohen–Macaulay module M is supported on

f = 0 and is locally free away from the origin; regarded

as an S-module, there is a resolution

0 → S⊕k Ψ→ S⊕k → M → 0

Since fM = 0, fS⊕k ⊂ Ψ(S⊕k) which implies that

there is a map

S⊕k Φ→ S⊕k

such that Φ ◦ Ψ = f id. The pair (Φ,Ψ) is called a

matrix factorization. We also have Ψ ◦ Φ = f id.
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• Eisenbud’s Theorem

There is a one-to-one correspondance between

isomorphism classes of maximal Cohen–Macaulay

modules over R with no free summands and matrix

factorizations (Φ,Ψ) with no summand of the form

(1, f) (induced by an equivalence between appropriate

categories).
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The McKay correspondance

• The McKay correspondance for a rational double point

can be described in terms of maximal Cohen–Macaulay

modules. If X = C2/G and ρ is a representation of G

of rank r then

(Cr ×ρ C2)/G → C2/G

is generically locally free, and a maximal Cohen–

Macaulay module.
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• To express this more algebraically, we decompose

C[s, t] into C[s, t]G modules according to the irreducible

representations ρ:

C[s, t] =
⊕

ρ∈Irrep(G)

C[s, t]ρ

and each summand is a C[s, t]G module.
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• Example.

Let G = Z/NZ. The algebra C[s, t]G is generated by

x = sN , y = tN and z = st subject to the relation

xy − zN = 0. We choose ρk to act as u → e2πik/Nu. It

is not hard to see that Mk := C[s, t]ρk
is generated over

C[s, t]G by sk and tN−k, with relations

xtN−k = zN−ksk

ysk = zktN−k
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• This gives a presentation of Mk as the cokernel of[
x −zN−k

−zk y

]
The corresponding matrix factorization is[

y zN−k

zk x

] [
x −zN−k

−zk y

]
= (xy − zN)I2

If we do the minimal blowup which makes the cokernel of

the right-hand matrix locally free, we find that precisely

one curve is blown up—the curve associated to the

corresponding representation ρk.
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Grassmann blowups

• We now describe a blowup associated to a matrix

factorization. Given a matrix factorzation (Φ,Ψ), the

cokernel of Ψ is supported on the hypersurface f = 0,

and the k × k matrix Ψ will have some generic rank

k − r along the hypersurface (so that the cokernel has

rank r).
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• We do a Grassmann blowup which makes this locally

free as follows. In the product Cn × Gr(r, k) we take

the closure of the set

{(x, v) | x ∈ Xsmooth, v = coker Ψx}.

There are natural coordinate charts for this blowup,

given by Plücker coordinates for the Grassmannian.

• The Grassmann blowup is the minimal blowup which

makes the cokernel of Ψ locally free.
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The explicit McKay correspondence

• Gonzalez-Sprinberg and Verdier calculated generators

and relations for each C[s, t]ρ (and hence a matrix

factorization), and used this to calculate Chern classes

of the correponding sheaves on the resolution of C2/G,

making the McKay correspondence very concrete.
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• Implicit in the literature (but I cannot find it stated

explicitly) is the fact that the Grassmann blowup of the

rational double point has an irreducible exceptional set:

it blows up precisely the component of the exceptional

divisor which is associated to the representation ρ.
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• For example, taking

Φ = Ψ =



X 0 0 Y −Z 0
0 X 0 0 Y Z

0 0 X −Z2 0 Y

Y 2 Y Z −Z2 −X 0 0
−Z3 Y 2 −Y Z 0 −X 0
Y Z2 Z3 Y 2 0 0 −X


gives the matrix factorization corresponding to the

central vertex of E6 (with equation X2 + Y 3 + Z4).
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Deformations

• The versal deformation of the AN−1 singularity can be

written as

xy − fN(z)
for a monic polynomial f of degree N whose coefficient

of zN−1 vanishes. (The coefficients of this polynomial

generate the invariants of the Weyl group WAN−1
which

coincides with the symmetric group on N letters SN .)
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• The partial resolution corresponding to the kth vertex in

the Dynkin diagram corresponds in the invariant theory

to the subgroup

Sk ×SN−k ⊂ SN

The relationship between the invariants of these two

groups is neatly summarized by writing

fN(z) = gk(z)hN−k(z)

where g and h are monic polynomials.
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• It is then clear that the matrix factorization data extends

to PRes: we have[
y hN−k(z)

gk(z) x

] [
x −hN−k(z)

−gk(z) y

]
=

(
xy−fN(z)

)
I2

This is in fact what was used above to describe Reid’s

pagoda cases: the two blowups are obtained from the

two different matrices, and correspond to making the

cokernel of the matrix locally free.
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• It is then clear that the matrix factorization data extends

to PRes: we have[
y hN−k(z)

gk(z) x

] [
x −hN−k(z)

−gk(z) y

]
=

(
xy−fN(z)

)
I2

This is in fact what was used above to describe Reid’s

pagoda cases: the two blowups are obtained from the

two different matrices, and correspond to making the

cokernel of the matrix locally free. That is, the two

threefolds related by a flop are obtained by Grassmann

blowups associated to coker(Ψ) and coker(Φ).
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Conjectures and Theorems

• Conjecture 1. For every length ` flop, there are two

maximal Cohen–Macaulay modules M and M+ on X

of rank `, such that Y (resp. Y +) is the Grassmann

blowup of M (resp. M+).



42

• Conjecture 2. If the flop has length `, then the matrix

factorizations corresponding to M and M+ are of size

2`× 2`, and are obtained from each other by switching

the factors (Φ,Ψ) → (Ψ,Φ).
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• Conjecture 3. For a partial resolution of a rational

double point corresponding to a single vertex in the

Dynkin diagram with coefficient ` in the maximal

root, the versal deformation X over PRes has matrix

factorizations of size 2`× 2`, such that a simultaneous

partial resolution can be obtained as the Grassmann

blowup of the corresponding Cohen–Macaulay module.
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• Conjecture 3. For a partial resolution of a rational

double point corresponding to a single vertex in the

Dynkin diagram with coefficient ` in the maximal

root, the versal deformation X over PRes has matrix

factorizations of size 2`× 2`, such that a simultaneous

partial resolution can be obtained as the Grassmann

blowup of the corresponding Cohen–Macaulay module.

• Theorem. The conjectures above hold for length 1 and

2.
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• Note that we in fact gave (most of) the proof for length

1 in our discussion of the AN−1 case above.
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• Note that we in fact gave (most of) the proof for length

1 in our discussion of the AN−1 case above.

• Expectation. Bridgeland’s categorical description of

flops should be explicitly describable in terms of M and

M+.
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• What about flips? We don’t have a precise conjecture

to make at the moment; however, we speculate that

flips are obtained via equivariant matrix factorizations

for some group action.
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• What about flips? We don’t have a precise conjecture

to make at the moment; however, we speculate that

flips are obtained via equivariant matrix factorizations

for some group action.

• That is, the contracted space will be described in

the form (f = 0)/G and one will look for matrix

factorizations (Ψ,Φ) which are G-equivariant. Notice

that the group actions on the two factors Ψ and Φ are

quite different, leading to the natural asymmetry one

finds in a flip (as opposed to a flop).
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• The conjectures above can be loosely stated as

follows: the general elephant of a flop has a matrix

factorization whose Grassmann blowup(s) realize the

partial resolution, and that matrix factorization can

be deformed to the total space.
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• The conjectures above can be loosely stated as

follows: the general elephant of a flop has a matrix

factorization whose Grassmann blowup(s) realize the

partial resolution, and that matrix factorization can

be deformed to the total space. Hopefully, a similar

statement of some kind is true for flips as well.



47

The universal flop of length 2

• We now describe a flop of length 2 which will turn

out to be universal in a certain sense. Our description

follows an idea of Reid although this was not the way

we originally found the flop.
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• We start with a quadratic equation in four variables

x, y, z, t over the field C(u, v, w), chosen so that its

discriminant is a perfect square. The one we use has

matrix 
1 0 0 0
0 u v 0
0 v w 0
0 0 0 uw−v2


whose determinant is (uw − v2)2. (Reid’s matrix had

v = 0.)
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• We start with a quadratic equation in four variables

x, y, z, t over the field C(u, v, w), chosen so that its

discriminant is a perfect square. The one we use has

matrix 
1 0 0 0
0 u v 0
0 v w 0
0 0 0 uw−v2


whose determinant is (uw − v2)2. (Reid’s matrix had

v = 0.) The corresponding quadratic equation is

x2 + uy2 + 2vyz + wz2 + (uw − v2)t2. (1)
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• The quadratic in C4 has two rulings by C2; since

the determinant is a perfect square, the individual

rulings are already defined over C(u, v, w). In fact,

the corresponding rank two sheaf is a maximal Cohen–

Macaulay module over the hypersurface defined by

equation (1) (which we now regard as a hypersurface in

C7).
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• Although the singularity of this equation is not isolated

so that we cannot invoke Eisenbud’s theorem, in fact

this maximal Cohen–Macaulay module can be expressed

in terms of a matrix factorization (Φ,Ψ).
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• The one we will use has

Φ =


x− vt y −z t

uy + 2vz −x− vt −ut −z

wz −wt x− vt y

uwt wz uy + 2vz −x− vt


and

Ψ =


x + vt y z t

uy + 2vz −x + vt −ut z

−wz −wt x + vt y

uwt −wz uy + 2vz −x + vt

 .
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• For these matrices,

ΦΨ =
(
x2 + uy2 + 2vyz + wz2 + (uw − v2)t2

)
I4.
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• For these matrices,

ΦΨ =
(
x2 + uy2 + 2vyz + wz2 + (uw − v2)t2

)
I4.

• Example. If we set

x = v4, y = iv3, z = iv2, t = v1,

u = v1, v = 0, w = λv1 + v2

then we reproduce the Laufer–Pinkham–DRM example

mentioned earlier.
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• We do the Grassmann blowup corresponding to the

cokernel of Ψ.
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• We do the Grassmann blowup corresponding to the

cokernel of Ψ.

• There are only two coordinate charts which are relevant

for our computation. For the first, we introduce four

new variables Ai,j and eight equations Ei,j by means of

E = Ψ


1 0
0 1

A1,1 A1,2

A2,1 A2,2
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Note that by multiplying by Φ from the left, we see that

the original equation is contained in the ideal generated

by the Ei,j.

We then compute

zE1,1 + zE2,2 − tE2,1 + utE1,2

= (z2 + ut2)(A1,1 + A2,2)

utE1,1 + utE2,2 + zE2,1 − uzE1,2

= (z2 + ut2)(2v − uA1,2u + A2,1)
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so that the proper transform must include

E1 = A1,1 + A2,2

and

E2 = 2v − uA1,2 + A2,1

These allow us to eliminate A1,1 and A2,1, leaving as

variables on this chart A1,2 and A2,2, as well as x, y, z,

t, u, v, w.
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We compute once again:

zE3,1 + utE3,2 − (xz + vzt)E1 − yzE2

+(utA1,2 − zA2,2)E2,2 + (−utA2,2 − uzA1,2 + 2vz)E1,2

= −(z2 + ut2)(w + uA2
1,2 − 2vA1,2 + A2

2,2)
which implies that the proper transform must also

include

E3 = w + uA2
1,2 − 2vA1,2 + A2

2,2

In fact, the ideal is generated by E1,2, E2,2, E1, E2, and
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E3: we have

E1,1 = −E2,2 + zE1 + tE2

E2,1 = uE1,2 − utE1 + zE2

E3,1 = (uA1,2−2v)E1,2+A2,2E2,2+(x+vt)E1+yE2−zE3

E3,2 = −A1,2E2,2 + A2,2E1,2 − tE3

E4,1 = A2,1E2,2+uA1,1E1,2+(2vz−uzA1,2−utA2,2)E1+

(−zA2,2 + utA1,2)E2 + utE3

E4,2 = A2,2E2,2 + uA1,2E1,2 − zE3
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To study the second coordinate chart, we introduce

four new variables Bi,j and eight new equations Ẽi,j by

means of

Ẽ = Ψ


1 0

B1,1 B1,2

0 1
B2,1 B2,2


Note that by multiplying by Φ from the left, we see that

the original equation is contained in the ideal generated

by the Ẽi,j.
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We then compute

yẼ1,1 − tẼ3,1 − wtẼ1,2 − yẼ3,2

= (wt2 + y2)(B1,1 −B2,2)

and

wtẼ1,1 + yẼ3,1 + wyẼ1,2 − wtẼ3,2

= (wt2 + y2)(B2,1 + wB1,2)

Thus, the proper transform must include

Ẽ1 = B1,1 −B2,2
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and

Ẽ2 = B2,1 + wB1,2

These allow us to eliminate B1,1 and B2,1, leaving as

variables on this chart B1,2 and B2,2, as well as x, y, z,

t, u, v, w.

We compute once again:

yẼ2,1+(yB2,2−wtB1,2)Ẽ3,2+(wyB1,2−2vy+wtB2,2)Ẽ1,2

+(xy − vyt)Ẽ1 − yzẼ2 − wtẼ2,2

= (wt2 + y2)(u + B2
2,2 + wB2

1,2 − 2vB1,2)
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and conclude that the proper transform must include

Ẽ3 = u + B2
2,2 + wB2

1,2 − 2vB1,2

In fact, Ẽ1, Ẽ2, Ẽ3, Ẽ1,2 and Ẽ3,2 will generate the ideal,

as we now demonstrate.

Ẽ1,1 = Ẽ3,2 + yẼ1 + tẼ2

Ẽ2,1 = −B2,2Ẽ3,2 + (−wB1,2 + 2v)Ẽ1,2 + yẼ3

−(x− vt)Ẽ1 + zẼ2

Ẽ2,2 = −B1,2Ẽ3,2 + B2,2Ẽ1,2 − tẼ3
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Ẽ3,1 = −wẼ1,2 − wtẼ1 + yẼ2

Ẽ4,1 = wB1,2Ẽ3,2−wB2,2Ẽ1,2+wtẼ3−wzẼ1−(x−vt)Ẽ2

Ẽ4,2 = −B2,2Ẽ3,2 + (−wB1,2 + 2v)Ẽ1,2 + yẼ3
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The Dn case

The versal deformation of Dn can be written in the form

X2 + Y 2Z − Zn−1 + 2γY −
n−1∑
i=1

δ2iZ
n−1−i

The invariant theory is based on the polynomial

Zn +
n−1∑
i=1

δ2iZ
n−i + γ2 =

n∏
j=1

(Z + t2j) (2)
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The Weyl group WDn is an extension of the symmetric

group Sn (acting to permute the tj’s) by a group

(µ2)n−1. The latter is the subgroup of (µ2)n (acting on

the tj’s by coordinatewise multiplication) which preserves

the product t1 . . . tn. (This product coincides with γ in

the polynomial.) We have δ2i = σi(t21, . . . , t
2
n), with

δ0 = γ2.
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Picking a vertex in most cases corresponds to Dn−k and

Ak−1. (This holds for 0 ≤ k ≤ n− 2, where k = 0 means

that we choose no vertex at all.) In the invariant theory,

this means that we break the group action into

Sk ×WDn−k
.

The two polynomials which now capture the invariant

theory are

f(U) =
k∏

j=1

(U − tj) and Zh(Z) + η2 =
n∏

j=k+1

(Z + t2j)
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(where η is the quantity such that η = tk+1 . . . tn). To

relate these to the original polynomial (2), we write

f(U) = Q(−U 2) + UP (−U 2)

and note that if Z = −U 2 then

k∏
j=1

(Z + t2j) = f(U)f(−U) = Q(Z)2 + ZP (Z)2



67

so that
n∏

j=1

(Z + t2j) = (Zh(Z) + η2)(Q(Z)2 + ZP (Z)2)

and γ = ηQ(0). Moreover, the relationship between

P (U), Q(U), and the polynomials occuring in the

invariant theory is captured by the existence of a

polynomial in two variables G(Z,U) satisfying

UP (Z) + Q(Z) = (Z + U 2)G(Z,U) + f(U).

One final manipulation: we write Q(Z) = ZS(Z) + Q(0)



68

when needed so that

Q(Z)2 −Q(0)2 = ZS(Z)[2Q(Z)− ZS(Z)].



69

Thus, the polynomial

F (Z) =
1
Z

−γ2 +
n∏

j=1

(Z + t2j)


which appears in the versal deformation of Dn can be

rewritten as

F (Z) =
h(Z)[Q(Z)2+ZP (Z)2]+η2[2S(Z)2Q(Z)−ZS(Z)2+P (Z)2]
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We’re now ready for a matrix factorization. We use the

universal length two matrix factorization, with

x = X, y = Y − ηS(Z), z = Q(Z), t = P (Z),

u = Z, v = 2η, w = −h(Z).
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In the first chart, after eliminating A1,1 and A2,1, the

proper transform is defined by the ideal (E3, E1,2, E2,2)
where

E1,2 = Y − ηS(Z) + Q(Z)A1,2 + P (Z)A2,2

allows us to eliminate Y , and

E2,2 = −X + ηP (Z)− ZP (Z)A1,2 + Q(Z)A2,2

allows us to elminate X. The remaining generator is

E3 = ZA2
1,2 − 2ηA1,2 + A2

2,2 − h(Z)
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which is the versal deformation of a Dn−k singularity.

In the other chart, after eliminating B1,1 and B2,1, the

proper transform is defined by the ideal (Ẽ3, Ẽ1,2, Ẽ3,2).
We have

Ẽ3,2 = X + ηP (Z) + h(Z)P (Z)B1,2 + (Y − ηS(Z))B2,2

which allows us to eliminate X on this chart, but

Ẽ1,2 = Q(Z) + (Y − ηS(A))B1,2 + P (Z)B2,2

does not immediately allow elimination. The third
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generator is

Ẽ3 = Z + B2
2,2 − h(Z)B2

1,2 − 2ηB1,2

To understand the geometry of this chart, we form the

combination

Ẽ1,2−G(Z,B2,2)Ẽ3 = (Y−ηS(Z))B1,2+G(Z,B2,2)h(Z)B2
1,2

+2ηG(Z,B2,2)B1,2 + f(B2,2)

= (Y − ηS(Z) + G(Z,B2,2)h(Z)B1,2 + 2ηG(Z,B2,2))B1,2

+f(B2,2)
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so introducing the variable

Ỹ = Y − ηS(Z) + G(Z,B2,2)h(Z)B1,2 + 2ηG(Z,B2,2)

we see that this forms a versal deformation of an Ak−1

singularity

Ỹ B1,2 + f(B2,2)
since f(U) is monic of degree k. Note that Z can be

implicitly eliminated using Ẽ3.


