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Abstract

Let R be a ring with Jacobson ideal J and center C. McCoy and
Montgomery introduced the concept of a p-ring (p prime) as a ring R
of characteristic p such that xp = x for all x in R. Thus, Boolean rings
are simply 2-rings (p = 2). It readily follows that a p-ring (p prime) is
simply a ring R of prime characteristic p such that R ⊆ N + Ep, where
N = {0} and Ep = {x ∈ R : xp = x}. With this as motivation, we
define a generalized p-ring to be a ring of prime characteristic p such
that R \ (J ∪ C) ⊆ N + Ep, where N denotes the set of nilpotents of
R (and Ep is as above). The commutativity behavior of these rings is
considered.
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1 Introduction and preliminaries

McCoy and Montgomery [2] introduced the concept of a p-ring (p prime)
as a ring R of prime characteristic p such that xp = x for all x in R. This is
equivalent to saying that R is of prime characteristic p and

R ⊆ N + Ep, N = {0}, Ep = {x ∈ R : xp = x}. (1)

With this as motivation, we define a generalized p-ring as follows:
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Definition 1. A generalized p-ring is a ring R of prime characteristic p
such that

R \ (J ∪ C) ⊆ N + Ep, N = N(R) is the set of nilpotents of R, (2)

Ep = {x ∈ R : xp = x} .

The class of generalized p-rings (p prime) is large and contains all com-
mutative rings and all radical rings (R = J) as long as these are of prime
characteristic p. It also contains all p-rings (p prime). However, a generalized
p-ring is not necessarily commutative, as can be seen by taking

R =

{(
0 0
0 0

)
,

(
1 1
1 1

)
,

(
1 0
1 0

)
,

(
0 1
0 1

)
; 0, 1 ∈ GF (2)

}
.

Indeed, R is a generalized 2-ring which is not commutative and not a 2-ring.
In Theorem 4, we characterize all commutative generalized p-rings (p prime).
In preparation for the proofs of the main theorems, we have the following two
lemmas.

Lemma 1. ([1]) Suppose R is a ring in which every element x is central or
“potent” in the sense that xk = x for some k > 1. Then R is commutative.

Lemma 2. Suppose R is a ring with central idempotents and suppose x ∈ N ,
N is the set of nilpotents. Suppose, further, that ax − (ax)n ∈ N for some
n > 1. Then ax ∈ N .

Proof. Since ax − (ax)n ∈ N , n > 1, (ax)q = (ax)q+1g(ax), g(λ) ∈ Z[λ]. Let
e = ((ax)g(ax))q. Then e2 = e, and hence

e = ee = e((ax)g(ax))q = eat = aet.

So e = aet = a2et2 = . . . = aketk for all positive integers k. Since a ∈ N , ak = 0
for some k ≥ 1, which implies that e = aketk = 0. Thus, (ax)q = (ax)qe = 0,
and hence ax ∈ N , which proves the lemma.

2 Main results

Theorem 1. Suppose R is a generalized p-ring (p prime) with identity and
with central idempotents. Then

(i) Ep ⊆ C, and (ii) N ⊆ J ⊆ N ∪ C.

Proof (i). Let b ∈ Ep and let r ∈ R. Since bp = b (by definition of Ep), b
p−1 is

idempotent, which is central (by hypothesis) and hence
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bp−1(rb− br) = rbp − bpr = rb− br,

which implies that

(bp−1 − 1)(rb− br) = 0 for all r in R. (3)

Since R is of prime characteristic p, an elementary number-theoretic result
shows that (3) is equivalent to

(b+ 1)(b+ 2) · · · (b+ (p− 1))(rb− br) = 0, (r ∈ R). (4)

Furthermore, since R is of prime characteristic p, we have:

bp = b implies (b+ 1)p = b+ 1,

and hence the above argument may be repeated with b replaced by b + 1
throughout. Thus (4) now yields

(b+ 2)(b+ 3) · · · (b+ (p− 1))(b+ p)(r(b+ 1)− (b+ 1)r) = 0,

and hence

b(b+ 2)(b+ 3) · · · (b+ (p− 1))(rb− br) = 0. (5)

Subtracting (5) from (4), we obtain

1 · (b+ 2)(b+ 3) · · · (b+ (p− 1))(rb− br) = 0. (6)

Repeating this argument, where b is replaced by b + 1 again throughout, we
see that

1 · (b+ 3)(b+ 4) · · · (b+ (p− 1))(b+ p)(rb− br) = 0,

and hence

1 · b(b+ 3)(b+ 4) · · · (b+ (p− 1))(rb− br) = 0. (7)

Subtracting (7) from (6), we obtain

1 · 2 · (b+ 3)(b+ 4) · · · (b+ (p− 1))(rb− br) = 0.

Continuing this process, we eventually obtain

(p− 1)!(rb− br) = 0 for all r in R. (8)

Since (p − 1)! is relatively prime to the prime characteristic p of R, (8)
yields rb− br = 0 for all r in R, and hence b is central, which proves part (i).
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(ii) Let a ∈ N , x ∈ R. If ax ∈ J , then ax is r.q.r. Also, if ax ∈ C,
then ax ∈ N and hence again ax is r.q.r. Now suppose that ax 6∈ (J ∪ C).
Then, by (2),

ax = a0 + b0; a0 ∈ N, bp0 = b0, and b0 ∈ C, by part (i). (9)

Since b0 ∈ C, [b0, ax] = 0, and hence [b0, a0] = 0. So, by (9), [ax− a0, a0] = 0,
which implies [ax, a0] = 0. Then, by (9) again,

ax− a0 = (ax− a0)p, [ax, a0] = 0.

Since R is of prime characteristic p and ax commutes with a0, (ax − a0)p =
(ax)p − ap0 and hence (ax − a0) = (ax)p − ap0. So ax − (ax)p = a0 − ap0 ∈ N ,
which implies, by Lemma 2, ax ∈ N . Since ax ∈ N , ax is r.q.r. for all x ∈ R,
and hence a ∈ J . So

N ⊆ J (10)

Next, we prove that J ⊆ N ∪ C. To prove this, let j ∈ J \ C. Then, 1 + j 6∈
(J ∪ C), and hence by (2)

1 + j = a+ b, a ∈ N, (bp = b, and hence b ∈ C, by part (i)). (11)

Since b ∈ C, [1 + j − a, a] = 0 which implies [1 + j, a] = 0.
So, 1 + j − a = b = bp = (1 + j − a)p = (1 + j)p − ap (since 1 + j commutes
with a), which implies

1 + j − (1 + j)p = a− ap ∈ N. (12)

So 1 + j − (1 + jp) ∈ N , and hence j − jp ∈ N . Thus,

j = j(1− jp−1)(1− jp−1)−1 = (j − jp)(1− jp−1)−1 ∈ N,

since j − jp ∈ N . Hence, j ∈ N . This proves part (ii).

Theorem 2. Under the hypotheses of Theorem 1, we have (i) N is an ideal
and (ii) R/N is commutative. Thus, the commutator ideal of R is nil.

Proof. (i) Let a ∈ N , b ∈ N . Then, by Theorem 1 (ii), a ∈ J , b ∈ J , and
hence a − b ∈ J . Since j ⊆ N ∪ C (Theorem 1 (ii)) we have a − b ∈ N or
a − b ∈ C. If a − b ∈ C, then a commutes with b, and hence a − b ∈ N . So
in any case a− b ∈ N . Next, suppose a ∈ N , x ∈ R. Then a ∈ J (Theorem 1
(ii)), x ∈ R, and hence ax ∈ J ⊆ N ∪ C (by Theorem 1 (ii)). So ax ∈ N or
ax ∈ C. If ax ∈ C, then (ax)k = akxk for all k ≥ 1, and hence ax ∈ N (since
a ∈ N). So in any case ax ∈ N . Similarly xa ∈ N , which proves
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N is an ideal. (13)

(ii) Since N ⊆ J ⊆ N ∪ C (Theorem 1 (ii)), it follows that

N ∪ C ⊆ J ∪ C ⊆ (N ∪ C) ∪ C = N ∪ C,

and hence J ∪ C = N ∪ C. Therefore, by (2),

∀x ∈ R \ (N ∪ C), x = a+ b, a ∈ N, bp = b. (14)

Since (14) is trivially satisfied if x ∈ N , we conclude that

∀x ∈ R \ C, x = a+ b, a ∈ N, bp = b. (15)

Combining (13) and (15), we conclude that every element of R/N is central
or potent (x̄p = x̄). Therefore, by Lemma 1, R/N is commutative, and thus
the commutator ideal of R is nil. This completes the proof.

In the following we obtain our first commutativity theorem of the ground
ring R by adding one additional hypothesis.

Theorem 3. Suppose R is a generalized p-ring (p prime) with identity and
with central idempotents. Suppose, further, that N ∩ J is commutative. Then
R is commutative.

Proof. By Theorem 1 (ii), N ⊆ J ⊆ N ∪ C, and hence (as shown in the proof
of that theorem), J ∪ C = N ∪ C. Hence (see the proof of (15)) we have

∀x ∈ R \ C, x = a+ b, a ∈ N, bp = b, b ∈ C (by Theorem 1(i)). (16)

Suppose that, for some x, y ∈ R, [x, y] 6= 0. Then x 6∈ C and y 6∈ C, which
implies by (16) that

[x, y] = [a+ b, a′ + b′], a, a′ ∈ N, bp = b, (b′)p = b′. (17)

Moreover, in (17), b ∈ C, b′ ∈ C, by Theorem 1 (i). So (17) readily implies

[x, y] = [a, a′], (a, a′ ∈ N). (18)

Since N ⊆ J (Theorem 1 (ii)), N ∩ J = N , and hence N is commutative
(since, by hypothesis, N ∩ J is commutative). Combining this fact with (18),
we conclude that [x, y] = 0, contradiction. This proves the theorem.

Corollary 1. A generalized p-ring (p prime) with identity and with central
idempotents and commuting nilpotents is commutative.
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In our final theorem, we delete the hypothesis that R has an identity and
at the same time strengthen the hypothesis that N ∩ J is commutative.

Theorem 4. Suppose R is any generalized p-ring (p prime), not neces-
sarily with identity. Suppose that the idempotents of R are central and J is
commutative. Then R is commutative (and conversely).

Proof. Case 1. 1 ∈ R. Then by Theorem 3, R is commutative. For the general
case, where we no longer assume that R has an identity, we distinguish two
cases.

Case A. Ep = {0}. In this case, we have R = N ∪ J ∪ C (see (2)). Let
a ∈ N , x ∈ R. If ax ∈ N , then ax is r.q.r. Also, if ax ∈ J , then ax is r.q.r.
Finally, if ax ∈ C, then ax ∈ N , and hence again ax is r.q.r. So ax is r.q.r.
for all x ∈ R, and hence N ⊆ J , which implies that R = J ∪ C. Since, by
hypothesis, J is commutative, R is commutative (if Ep = {0}).

Next, consider the case Ep 6= {0}. Let b ∈ Ep, b 6= 0. Then bp = b, and
hence e = bp−1 is a nonzero central idempotent (recall that, by hypothesis,
all idempotents are central). It can be verified that eR is a ring with identity
e which in fact satisfies all the hypotheses imposed on R. In verifying this,
recall that J(eR) ⊆ J(R), and hence J(eR) is commutative, since J(R) is
commutative. Therefore, by case 1, eR is commutative. Next, we prove that

Ep ⊆ C (the center of R). (19)

(Note that Theorem 1 (i) no longer applies here, since we are not assuming
that 1 ∈ R). To prove (19), let b ∈ Ep, y ∈ R. Recall that e = bp−1 is in the
center of R. Since eR is commutative,

0 = [eb, ey] = ebey − eyeb = eby − yeb = bpy − ybp = by − yb,

and hence [b, y] = 0 for all y ∈ R, which proves (19).
We claim that

N ⊆ J (20)

(Note again that Theorem 1 (i) no longer applies here, since we are not
assuming that 1 ∈ R.) To prove (20), let a ∈ N , x ∈ R. If ax ∈ J or ax ∈ C,
then (as we saw above), ax is r.q.r. Suppose ax 6∈ (J ∪ C). Then, by (2),

ax = a0 + b0; a0 ∈ N, bp0 = b0, and hence b0 ∈ C, by (19). (21)

Thus, ax − a0 = (ax − a0)
p and [ax, a0] = 0 (since b0 ∈ C), which readily

implies that ax − (ax)p ∈ N . Hence, by Lemma 2, ax ∈ N , and thus ax is
r.q.r. for all x ∈ R. So a ∈ J , proving (20).
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To complete the proof , note that N is commutative (since J is commu-
tative; see (20)). Assume, for the moment, that x1, x2 are not in (J ∪ C).
Then,

x1 = a1 + b1;x2 = a2 + b2; a1, a2 ∈ N, bp1 = b1, b
p
2 = b2. (22)

Combining (22) and (19), we see that

x1 = a1 + b1;x2 = a2 + b2; a1, a2 ∈ N, b1, b2 ∈ C, (23)

and hence

[x1, x2] = [a1 + b1, a2 + b2] = [a1, a2] = 0 (since N is commutative).

Thus, in this present case, [x1, x2] = 0. The case where x1 ∈ (J ∪ C) or
x2 ∈ (J ∪ C) readily yields [x1, x2] = 0 (since J is commutative and N ⊆ J).

Hence, R is commutative, and the theorem is proved.

The following corollary was first proved in [2].

Corollary 2. A p-ring R is commutative.

Proof. It is readily seen that in a p-ring R all idempotents are central and
J = {0}.

Related work appears in [3].
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