International Journal of Algebra, Vol. 9, 2015, no. 8, 395-401
 HIKARI Ltd, www.m-hikari.com
 http://dx.doi.org/10.12988/ija.2015.5848

A Generalization of p-Rings

Adil Yaqub
Department of Mathematics
University of California
Santa Barbara, CA 93106, USA

Copyright © 2015 Adil Yaqub. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let R be a ring with Jacobson ideal J and center C. McCoy and Montgomery introduced the concept of a p-ring (p prime) as a ring R of characteristic p such that $x^{p}=x$ for all x in R. Thus, Boolean rings are simply 2 -rings ($p=2$). It readily follows that a p-ring (p prime) is simply a ring R of prime characteristic p such that $R \subseteq N+E_{p}$, where $N=\{0\}$ and $E_{p}=\left\{x \in R: x^{p}=x\right\}$. With this as motivation, we define a generalized p-ring to be a ring of prime characteristic p such that $R \backslash(J \cup C) \subseteq N+E_{p}$, where N denotes the set of nilpotents of R (and E_{p} is as above). The commutativity behavior of these rings is considered.

Mathematics Subject Classification: 16U80, 16D70

Keywords: p-rings, generalized p-rings, Jacobson radical, commutator ideal, potent element

1 Introduction and preliminaries

McCoy and Montgomery [2] introduced the concept of a p-ring (p prime) as a ring R of prime characteristic p such that $x^{p}=x$ for all x in R. This is equivalent to saying that R is of prime characteristic p and

$$
\begin{equation*}
R \subseteq N+E_{p}, N=\{0\}, E_{p}=\left\{x \in R: x^{p}=x\right\} \tag{1}
\end{equation*}
$$

With this as motivation, we define a generalized p-ring as follows:

Definition 1. A generalized p-ring is a ring R of prime characteristic p such that

$$
\begin{align*}
& R \backslash(J \cup C) \subseteq N+E_{p}, \quad N=N(R) \text { is the set of nilpotents of } R, \tag{2}\\
& E_{p}=\left\{x \in R: x^{p}=x\right\}
\end{align*}
$$

The class of generalized p-rings (p prime) is large and contains all commutative rings and all radical rings $(R=J)$ as long as these are of prime characteristic p. It also contains all p-rings (p prime). However, a generalized p-ring is not necessarily commutative, as can be seen by taking

$$
R=\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right) ; 0,1 \in G F(2)\right\}
$$

Indeed, R is a generalized 2 -ring which is not commutative and not a 2-ring. In Theorem 4, we characterize all commutative generalized p-rings (p prime). In preparation for the proofs of the main theorems, we have the following two lemmas.

Lemma 1. ([1]) Suppose R is a ring in which every element x is central or "potent" in the sense that $x^{k}=x$ for some $k>1$. Then R is commutative.

Lemma 2. Suppose R is a ring with central idempotents and suppose $x \in N$, N is the set of nilpotents. Suppose, further, that ax $-(a x)^{n} \in N$ for some $n>1$. Then $a x \in N$.

Proof. Since $a x-(a x)^{n} \in N, n>1,(a x)^{q}=(a x)^{q+1} g(a x), g(\lambda) \in \mathbb{Z}[\lambda]$. Let $e=((a x) g(a x))^{q}$. Then $e^{2}=e$, and hence

$$
e=e e=e((a x) g(a x))^{q}=e a t=a e t .
$$

So $e=a e t=a^{2} e t^{2}=\ldots=a^{k} e t^{k}$ for all positive integers k. Since $a \in N, a^{k}=0$ for some $k \geq 1$, which implies that $e=a^{k} e t^{k}=0$. Thus, $(a x)^{q}=(a x)^{q} e=0$, and hence $a x \in N$, which proves the lemma.

2 Main results

Theorem 1. Suppose R is a generalized p-ring (p prime) with identity and with central idempotents. Then
(i) $E_{p} \subseteq C$, and (ii) $N \subseteq J \subseteq N \cup C$.

Proof (i). Let $b \in E_{p}$ and let $r \in R$. Since $b^{p}=b$ (by definition of E_{p}), b^{p-1} is idempotent, which is central (by hypothesis) and hence

$$
b^{p-1}(r b-b r)=r b^{p}-b^{p} r=r b-b r,
$$

which implies that

$$
\begin{equation*}
\left(b^{p-1}-1\right)(r b-b r)=0 \quad \text { for all } r \text { in } R . \tag{3}
\end{equation*}
$$

Since R is of prime characteristic p, an elementary number-theoretic result shows that (3) is equivalent to

$$
\begin{equation*}
(b+1)(b+2) \cdots(b+(p-1))(r b-b r)=0, \quad(r \in R) . \tag{4}
\end{equation*}
$$

Furthermore, since R is of prime characteristic p, we have:

$$
b^{p}=b \text { implies }(b+1)^{p}=b+1
$$

and hence the above argument may be repeated with b replaced by $b+1$ throughout. Thus (4) now yields

$$
(b+2)(b+3) \cdots(b+(p-1))(b+p)(r(b+1)-(b+1) r)=0,
$$

and hence

$$
\begin{equation*}
b(b+2)(b+3) \cdots(b+(p-1))(r b-b r)=0 \tag{5}
\end{equation*}
$$

Subtracting (5) from (4), we obtain

$$
\begin{equation*}
1 \cdot(b+2)(b+3) \cdots(b+(p-1))(r b-b r)=0 . \tag{6}
\end{equation*}
$$

Repeating this argument, where b is replaced by $b+1$ again throughout, we see that

$$
1 \cdot(b+3)(b+4) \cdots(b+(p-1))(b+p)(r b-b r)=0
$$

and hence

$$
\begin{equation*}
1 \cdot b(b+3)(b+4) \cdots(b+(p-1))(r b-b r)=0 . \tag{7}
\end{equation*}
$$

Subtracting (7) from (6), we obtain

$$
1 \cdot 2 \cdot(b+3)(b+4) \cdots(b+(p-1))(r b-b r)=0
$$

Continuing this process, we eventually obtain

$$
\begin{equation*}
(p-1)!(r b-b r)=0 \text { for all } r \text { in } R . \tag{8}
\end{equation*}
$$

Since $(p-1)$! is relatively prime to the prime characteristic p of R, (8) yields $r b-b r=0$ for all r in R, and hence b is central, which proves part (i).
(ii) Let $a \in N, x \in R$. If $a x \in J$, then $a x$ is r.q.r. Also, if $a x \in C$, then $a x \in N$ and hence again $a x$ is r.q.r. Now suppose that $a x \notin(J \cup C)$. Then, by (2),

$$
\begin{equation*}
a x=a_{0}+b_{0} ; a_{0} \in N, b_{0}^{p}=b_{0}, \quad \text { and } b_{0} \in C, \text { by part (i). } \tag{9}
\end{equation*}
$$

Since $b_{0} \in C,\left[b_{0}, a x\right]=0$, and hence $\left[b_{0}, a_{0}\right]=0$. So, by (9), $\left[a x-a_{0}, a_{0}\right]=0$, which implies $\left[a x, a_{0}\right]=0$. Then, by (9) again,

$$
a x-a_{0}=\left(a x-a_{0}\right)^{p},\left[a x, a_{0}\right]=0 .
$$

Since R is of prime characteristic p and $a x$ commutes with $a_{0},\left(a x-a_{0}\right)^{p}=$ $(a x)^{p}-a_{0}^{p}$ and hence $\left(a x-a_{0}\right)=(a x)^{p}-a_{0}^{p}$. So $a x-(a x)^{p}=a_{0}-a_{0}^{p} \in N$, which implies, by Lemma $2, a x \in N$. Since $a x \in N$, $a x$ is r.q.r. for all $x \in R$, and hence $a \in J$. So

$$
\begin{equation*}
N \subseteq J \tag{10}
\end{equation*}
$$

Next, we prove that $J \subseteq N \cup C$. To prove this, let $j \in J \backslash C$. Then, $1+j \notin$ $(J \cup C)$, and hence by (2)

$$
\begin{equation*}
1+j=a+b, a \in N,\left(b^{p}=b, \text { and hence } b \in C, \text { by part }(\mathrm{i})\right) . \tag{11}
\end{equation*}
$$

Since $b \in C,[1+j-a, a]=0$ which implies $[1+j, a]=0$.
So, $1+j-a=b=b^{p}=(1+j-a)^{p}=(1+j)^{p}-a^{p}$ (since $1+j$ commutes with a), which implies

$$
\begin{equation*}
1+j-(1+j)^{p}=a-a^{p} \in N \tag{12}
\end{equation*}
$$

So $1+j-\left(1+j^{p}\right) \in N$, and hence $j-j^{p} \in N$. Thus,

$$
j=j\left(1-j^{p-1}\right)\left(1-j^{p-1}\right)^{-1}=\left(j-j^{p}\right)\left(1-j^{p-1}\right)^{-1} \in N
$$

since $j-j^{p} \in N$. Hence, $j \in N$. This proves part (ii).
Theorem 2. Under the hypotheses of Theorem 1, we have (i) N is an ideal and (ii) R / N is commutative. Thus, the commutator ideal of R is nil.

Proof. (i) Let $a \in N, b \in N$. Then, by Theorem 1 (ii), $a \in J, b \in J$, and hence $a-b \in J$. Since $j \subseteq N \cup C$ (Theorem 1 (ii)) we have $a-b \in N$ or $a-b \in C$. If $a-b \in C$, then a commutes with b, and hence $a-b \in N$. So in any case $a-b \in N$. Next, suppose $a \in N, x \in R$. Then $a \in J$ (Theorem 1 (ii)), $x \in R$, and hence $a x \in J \subseteq N \cup C$ (by Theorem 1 (ii)). So $a x \in N$ or $a x \in C$. If $a x \in C$, then $(a x)^{k}=a^{k} x^{k}$ for all $k \geq 1$, and hence $a x \in N$ (since $a \in N)$. So in any case $a x \in N$. Similarly $x a \in N$, which proves

$$
\begin{equation*}
N \text { is an ideal. } \tag{13}
\end{equation*}
$$

(ii) Since $N \subseteq J \subseteq N \cup C$ (Theorem 1 (ii)), it follows that

$$
N \cup C \subseteq J \cup C \subseteq(N \cup C) \cup C=N \cup C,
$$

and hence $J \cup C=N \cup C$. Therefore, by (2),

$$
\begin{equation*}
\forall x \in R \backslash(N \cup C), x=a+b, a \in N, b^{p}=b \tag{14}
\end{equation*}
$$

Since (14) is trivially satisfied if $x \in N$, we conclude that

$$
\begin{equation*}
\forall x \in R \backslash C, x=a+b, a \in N, b^{p}=b \tag{15}
\end{equation*}
$$

Combining (13) and (15), we conclude that every element of R / N is central or potent $\left(\bar{x}^{p}=\bar{x}\right)$. Therefore, by Lemma $1, R / N$ is commutative, and thus the commutator ideal of R is nil. This completes the proof.

In the following we obtain our first commutativity theorem of the ground ring R by adding one additional hypothesis.

Theorem 3. Suppose R is a generalized p-ring (p prime) with identity and with central idempotents. Suppose, further, that $N \cap J$ is commutative. Then R is commutative.

Proof. By Theorem 1 (ii), $N \subseteq J \subseteq N \cup C$, and hence (as shown in the proof of that theorem), $J \cup C=N \cup C$. Hence (see the proof of (15)) we have

$$
\begin{equation*}
\forall x \in R \backslash C, x=a+b, a \in N, b^{p}=b, b \in C \text { (by Theorem 1(i)). } \tag{16}
\end{equation*}
$$

Suppose that, for some $x, y \in R,[x, y] \neq 0$. Then $x \notin C$ and $y \notin C$, which implies by (16) that

$$
\begin{equation*}
[x, y]=\left[a+b, a^{\prime}+b^{\prime}\right], a, a^{\prime} \in N, b^{p}=b,\left(b^{\prime}\right)^{p}=b^{\prime} . \tag{17}
\end{equation*}
$$

Moreover, in (17), $b \in C, b^{\prime} \in C$, by Theorem 1 (i). So (17) readily implies

$$
\begin{equation*}
[x, y]=\left[a, a^{\prime}\right],\left(a, a^{\prime} \in N\right) \tag{18}
\end{equation*}
$$

Since $N \subseteq J$ (Theorem 1 (ii)), $N \cap J=N$, and hence N is commutative (since, by hypothesis, $N \cap J$ is commutative). Combining this fact with (18), we conclude that $[x, y]=0$, contradiction. This proves the theorem.

Corollary 1. A generalized p-ring (p prime) with identity and with central idempotents and commuting nilpotents is commutative.

In our final theorem, we delete the hypothesis that R has an identity and at the same time strengthen the hypothesis that $N \cap J$ is commutative.

Theorem 4. Suppose R is any generalized p-ring (p prime), not necessarily with identity. Suppose that the idempotents of R are central and J is commutative. Then R is commutative (and conversely).

Proof. Case 1. $1 \in R$. Then by Theorem $3, R$ is commutative. For the general case, where we no longer assume that R has an identity, we distinguish two cases.

Case A. $E_{p}=\{0\}$. In this case, we have $R=N \cup J \cup C$ (see (2)). Let $a \in N, x \in R$. If $a x \in N$, then $a x$ is r.q.r. Also, if $a x \in J$, then $a x$ is r.q.r. Finally, if $a x \in C$, then $a x \in N$, and hence again $a x$ is r.q.r. So $a x$ is r.q.r. for all $x \in R$, and hence $N \subseteq J$, which implies that $R=J \cup C$. Since, by hypothesis, J is commutative, R is commutative (if $E_{p}=\{0\}$).

Next, consider the case $E_{p} \neq\{0\}$. Let $b \in E_{p}, b \neq 0$. Then $b^{p}=b$, and hence $e=b^{p-1}$ is a nonzero central idempotent (recall that, by hypothesis, all idempotents are central). It can be verified that $e R$ is a ring with identity e which in fact satisfies all the hypotheses imposed on R. In verifying this, recall that $J(e R) \subseteq J(R)$, and hence $J(e R)$ is commutative, since $J(R)$ is commutative. Therefore, by case $1, e R$ is commutative. Next, we prove that

$$
\begin{equation*}
E_{p} \subseteq C(\text { the center of } R) \tag{19}
\end{equation*}
$$

(Note that Theorem 1 (i) no longer applies here, since we are not assuming that $1 \in R$). To prove (19), let $b \in E_{p}, y \in R$. Recall that $e=b^{p-1}$ is in the center of R. Since $e R$ is commutative,

$$
0=[e b, e y]=e b e y-e y e b=e b y-y e b=b^{p} y-y b^{p}=b y-y b
$$

and hence $[b, y]=0$ for all $y \in R$, which proves (19).
We claim that

$$
\begin{equation*}
N \subseteq J \tag{20}
\end{equation*}
$$

(Note again that Theorem 1 (i) no longer applies here, since we are not assuming that $1 \in R$.) To prove (20), let $a \in N, x \in R$. If $a x \in J$ or $a x \in C$, then (as we saw above), $a x$ is r.q.r. Suppose $a x \notin(J \cup C)$. Then, by (2),

$$
\begin{equation*}
a x=a_{0}+b_{0} ; a_{0} \in N, b_{0}^{p}=b_{0}, \quad \text { and hence } b_{0} \in C, \text { by (19). } \tag{21}
\end{equation*}
$$

Thus, $a x-a_{0}=\left(a x-a_{0}\right)^{p}$ and $\left[a x, a_{0}\right]=0$ (since $b_{0} \in C$), which readily implies that $a x-(a x)^{p} \in N$. Hence, by Lemma $2, a x \in N$, and thus $a x$ is r.q.r. for all $x \in R$. So $a \in J$, proving (20).

To complete the proof, note that N is commutative (since J is commutative; see (20)). Assume, for the moment, that x_{1}, x_{2} are not in $(J \cup C)$. Then,

$$
\begin{equation*}
x_{1}=a_{1}+b_{1} ; x_{2}=a_{2}+b_{2} ; a_{1}, a_{2} \in N, b_{1}^{p}=b_{1}, b_{2}^{p}=b_{2} . \tag{22}
\end{equation*}
$$

Combining (22) and (19), we see that

$$
\begin{equation*}
x_{1}=a_{1}+b_{1} ; x_{2}=a_{2}+b_{2} ; a_{1}, a_{2} \in N, b_{1}, b_{2} \in C, \tag{23}
\end{equation*}
$$

and hence

$$
\left[x_{1}, x_{2}\right]=\left[a_{1}+b_{1}, a_{2}+b_{2}\right]=\left[a_{1}, a_{2}\right]=0 \text { (since } N \text { is commutative). }
$$

Thus, in this present case, $\left[x_{1}, x_{2}\right]=0$. The case where $x_{1} \in(J \cup C)$ or $x_{2} \in(J \cup C)$ readily yields $\left[x_{1}, x_{2}\right]=0$ (since J is commutative and $N \subseteq J$).

Hence, R is commutative, and the theorem is proved.
The following corollary was first proved in [2].
Corollary 2. A p-ring R is commutative.
Proof. It is readily seen that in a p-ring R all idempotents are central and $J=\{0\}$.

Related work appears in [3].

References

[1] H.E. Bell, A near-commutativity property for rings, Result. Math., 42 (2002), 28-31. http://dx.doi.org/10.1007/bf03323550
[2] M.H. McCoy and D. Montgomery, A representation of generalized Boolean rings, Duke Mathematical Journal, 3 (1937), 455-459.
http://dx.doi.org/10.1215/s0012-7094-37-00335-1
[3] A. Yaqub, On Weakly periodic-like rings and commutativity, Result. Math., 49 (2006), 377-386. http://dx.doi.org/10.1007/s00025-006-0230-4

Received: August 31, 2015; Published: October 14, 2015

